
1

UNIT	7A	
Data	Representa1on:	Numbers	and	Text	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 1

Digital	Data	

10010101011110101010110101001110	
•  What	does	this	binary	sequence	represent?	
•  It	could	be:	

–  an	integer	
–  a	floa1ng	point	number	
–  text	encoded	with	ASCII	or	another	standard	
–  a	pixel	of	an	image	
–  several	digital	samples	of	a	music	recording	
–  an	instruc1on	that	the	computer	is	execu1ng	
–  ...	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 2

2

Integer	Representa1on	

•  An	integer	can	be	represented	using	binary.	
•  An	integer	can	be:	

–  unsigned	(always	considered	non-nega1ve)	
–  signed	(posi1ve	or	nega1ve)	

•  An	integer	can	be	represented	using	varying	
numbers	of	bits	

–  8	bits	(byte) 	 	̶						32	bits	
–  16	bits	(word) 	 	̶						64	bits		

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 3

Unsigned	Integers	

•  Every	bit	represents	a	power	of	2.	
•  Example	(8	bits):	

___ ___ ___ ___ ___ ___ ___ ___
 27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

 1 0 1 1 0 1 0 1
 27 25 24 22 20
128 + 32 + 16 + 4 + 1 = 181 	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 4

3

Unsigned	Integers:	Range	

bits	 	 	 	minimum 	 	maximum	
8 	 	 	 	0 	 	 	28	–	1		

	 	 	 	 	 	 	(255)	
16 	 	 	 	0 	 	 	216	–	1	

	 	 	 	 	 	(65,535)	
32 	 	 	 	0 	 	 	232	–	1	

	 	 	 	 	 	 	(4,294,967,295)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 5

Signed	Integers	

•  Every	bit	represents	a	power	of	2	except	the	
“leY-most”	bit,	which	represents	the	sign	of	
the	number	(0	=	posi1ve,	1	=	nega1ve)	

•  Example	for	posi1ve	integer	(8	bits):	
0 ___ ___ ___ ___ ___ ___ ___
 + 26 25 24 23 22 21 20

 0 0 1 1 0 1 0 0
 + 25 24 22
 32 + 16 + 4 = +52 	
	 15110 Principles of Computing,

Carnegie Mellon University - CORTINA 6

4

Signed	Integers:	2's	complement	

•  When	the	leYmost	bit	is	a	1,	the	integer	is	
nega1ve.	

•  To	find	its	magnitude,	we	take	the	2's	
complement	of	this	number.	

–  The	2's	complement	is	obtained	by	flipping	each	
bit	of	the	number	(from	0	to	1,	or	1	to	0)	and	
then	adding	1	to	that	number.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 7

Signed	Integers:	Nega1ve	

•  What	value	is	this	signed	integer?
 1 1 0 0 1 1 0 0
 - (leftmost bit 1 -> negative)
 Flip	each	bit:	
 0 0 1 1 0 0 1 1
and	add	00000001	to	get	magnitude:	
 0 0 1 1 0 1 0 0
 25 24 22
 32 + 16 + 4 = 52
	So, 11001100 = -52 	
	 15110 Principles of Computing,

Carnegie Mellon University - CORTINA 8

5

Signed	Integers:	Nega1ve	

•  Example:	How	do	you	store	-52	in	8	bits?	
Start	with	+52:	
 0 0 1 1 0 1 0 0
 25 24 22
 32 + 16 + 4 = 52
Flip	each	bit:	
 1 1 0 0 1 0 1 1
and	add	00000001	(in	base	2):	
 1 1 0 0 1 1 0 0 = -52

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 9

2's	complement	property	

•  When	you	add	a	number	to	its	2's	
complement	(in	binary),	you	always	get	0.	

–  Remember,	you're	using	base	2	arithme1c.	

•  Example	(using	8	bits):	
	 	00110100 +52
+ 11001100 -52
 00000000 0
 	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 10

6

Signed	Integers:	Range	

bits	 	 	minimum 	 	 	maximum	
8 	 	 		–27		 	 	 	 	27	–	1		

	 	 	(–128) 	 	 	(+127)	
	 	 	10000000	(binary)	 	01111111	(binary)	

	

16 	 	 		–215	 	 	 	 	215	–	1	
	 	(–32,768) 	 	 	(+32,767)	

	

32 	 	 		–231	 	 	 	 	231	–	1	
	 	 	(–2,147,483,648) 	 	(+2,147,483,647)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 11

Text:	ASCII	standard	

•  ASCII	(American	Standard	Code	for	Informa1on	
Interchange)	
–  7-bit	code	to	represent	standard	U.S.	characters	on	a	
keyboard	

–  Typically	stored	using	8	bits.	
–  The	8th	bit	is	some1mes	used	for	parity	(more	on	this	
shortly).	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 12

7

ASCII	table	

•  Values	above	are	represented	in	hexadecimal	
(base	16).	

•  ASCII	code	for	“M”	is	4D	(hex).	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 13

ASCII	Example	

•  The	ASCII	code	for	“M”	is	4D	hexadecimal.	
•  Conversion	from	base	16	to	base	2:	

	hex 	binary 	|	hex 	binary 	|	hex 	binary 	|	hex 	binary	
0 	0000 	|	4 	0100 	|	8 	1000 	|	C 	1100	
1 	0001 	|	5 	0101 	|	9 	1001 	|	D 	1101	
2 	0010 	|	6 	0110 	|	A 	1010 	|	E 	1110	
3 	0011 	|	7 	0111 	|	B 	1011 	|	F 	1111	

•  4D	(hex)	=	0100	1101	(binary)	=	77	(decimal)	
	(leYmost	bit	can	be	used	for	parity)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 14

8

Fixed-Width	Encoding	

•  In	a	fixed-width	encoding	scheme,	each	
character	is	given	a	binary	code	with	the	
same	number	of	bits.	

–  Example:		
Standard	ASCII	is	a	fixed	width	encoding	
scheme,	where	each	character	is	encoded	with	
7	bits.	
This	gives	us	27	=	128	different	codes	for	
characters.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 15

Huffman	Coding	

•  We	can	use	an	encoding	scheme	named		
aYer	David	A.	Huffman	to	compress	our		
text	without	losing	any	informa1on.	

•  Based	on	the	idea		
that	some	characters	
occur	more		
frequently		
than	others.	

•  Huffman	codes	are		
not	fixed-width.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 16

9

Huffman	Coding:	the	process	

1.  Assign	character	codes	
a.  Obtain	character	frequencies	
b.  Use	frequencies	to	build	a	Huffman	tree:	

More	frequent	characters	have	shorter	codes	
Less	frequent	characters	have	longer	codes	

c.  Use	tree	to	assign	variable-length	codes	to	characters	
(store	them	in	a	table)	

2.  Use	table	to	encode	(compress)	ASCII	source	file	to	
variable-length	codes	

3.  Use	tree	to	decode	(decompress)	to	ASCII	
(always	start	at	the	root!)	

15110 Principles of Computing,
Carnegie Mellon University 17

Example:	language	with	6	leiers	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 18

https://swiyu.wordpress.com/2012/10/08/huffman-code-and-optimal-bst/

a occurs
45% of
the time

f occurs
5% of
the time

le#er	 Huffman	
code	

 Fixed	width	
code	

a	 0	 000	

b	 101	 001	

c	 100	 010	

d	 111	 011	

e	 1101	 100	

f	 1100	 101	

"abca"	
Huffman:	 	01011000	
Fixed	Width: 	000001010000	

10

An	English	Huffman	Tree	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 19

Parity	

•  To	detect	transmission	errors,	the	8th	
(leYmost)	bit	could	be	used	as	an	error-
detec1on	bit.	

•  Even	parity:	Set	the	leYmost	bit	so	that	the	
number	of	1’s	in	the	byte	is	even.	

•  Odd	parity:	Set	the	leYmost	bit	so	that	the	
number	of	1’s	in	the	byte	is	odd.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 20

11

Example	

•  The	character	“M”	is	transmiied	using	odd	parity.	
•  “M”	in	ASCII	(7-bits)	is	1001101.	
•  Using	odd	parity,	we	transmit	11001101	since	this	
makes	the	number	of	1’s	odd.	

•  If	the	receiver	receives	a	character	with	an	even	
number	of	1’s,	the	receiver	knows	something	went	
wrong	and	requests	a	retransmission.	
–  If	two	bits	are	flipped	during	transmission,	we	can’t	detect	
this	with	this	simple	parity	scheme,	however	the	
probability	of	2	or	more	bits	in	error	is	extremely	low.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 21

•  Seven	characters	are	transmiied	here	as	bytes	
using	even	parity	along	with	a	special	8th	byte.	

•  The	two	colors	represent	1’s	and	0’s.	
•  One	bit	is	in	error.	Can	you	find	it?	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 22

