
Programming Problems

For each of these problems (unless otherwise specified), write the needed code directly
in the Python file, in the corresponding function definition.

All programming problems may also be checked by running 'Run File As Script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - onlyPositive(lst) - 5pts
Can attempt after Lists and Methods lecture

Write a function onlyPositive(lst) that takes as input a 2D list and returns a new 1D
list that contains only the positive elements of the original list, in the order they originally
occurred. You may assume the list only has numbers in it.

Example: onlyPositive([[1, 2, 3], [4, 5, 6]]) returns [1, 2, 3, 4, 5, 6],
onlyPositive([[0, 1, 2], [-2, -1, 0], [10, 9, -9]] returns [1, 2, 10, 9],
and onlyPositive([[-4, -3], [-2, -1]]) returns [].

#2 - getCharacterLines(script, character) - 10pts
Can attempt after Lists and Methods lecture

Assume you're provided a string script that has been formatted in a specific way. Each
line of the script begins with a character's name, followed by a colon, followed by their
line of dialogue. Lines are separated by newlines, which are represented in Python by
the string '\n'. For example:

'''Buttercup: You mock my pain.

Man in Black: Life is pain, Highness.

Man in Black: Anyone who says differently is selling something.'''

Using the algorithm provided below, write the function getCharacterLines(script,

character), which takes a script and a character name (both strings) and returns a list
of the lines spoken by that character. The lines should be stripped of the leading
character name and any leading/trailing whitespace. So if we use the following script:

'''Burr: Can I buy you a drink?

Hamilton: That would be nice.

Burr: While we're talking, let me offer you some free advice: talk less.

Hamilton: What?

Burr: Smile more.

Hamilton: Ha.

Burr: Don't let them know what you're against or what you're for.

Hamilton: You can't be serious.

Burr: You want to get ahead?

Hamilton: Yes.

Burr: Fools who run their mouths oft wind up dead.'''

Then:

getCharacterLines(script, "Hamilton") ==

["That would be nice.", "What?", "Ha.", "You can't be serious.", "Yes."]

[continued on next page]

To do this:
1. You should first split the script into lines
2. Then, iterate over the lines of the script

a. For each line, you should check if the character who is saying that line is
the character that was given to you as a parameter.

b. If it is, separate the dialogue line from the rest of the string (note that it
occurs after the colon) and strip any leading/trailing whitespace from it

c. Add the resulting line into a list where you are keeping track of all the lines
for this character.

3. You should return the list of all the lines for this character

Hint: you'll want to use string and list methods and operations to make this problem
more approachable. Specifically:

● split can help you separate the lines of text
● index can help you locate where a line of text switches from name to dialogue
● slicing can help you separate the name from the dialogue
● strip can remove excess whitespace from the front and end of the string

#3 - addToEach(lst, str) - 10pts
Can attempt after References and Memory lecture

Write the function addToEach(lst, str) which takes a list of strings and a string str

and destructively modifies the list so that every element has str concatenated to it,
then returns None. For example, if lst = [“ab”, “fgh”, “deg”], calling the function
addToAll(lst, “xyz”) will evaluate to None, but will also change lst to hold
[“abxyz”, “fghxyz”, “degxyz”].

#4 - recursiveLongestString(lst) - 10pts
Can attempt after Recursion lecture

Write a function recursiveLongestString(lst) that takes a list of strings as input
and returns the longest string in the list. You may assume the list contains at least one
element and there will not be a tie. This function must use recursion in a meaningful
way; a solution that uses a loop or built-in max functions will receive no points.

For example, recursiveLongestString(["a", "bb", "ccc"]) returns "ccc", and
recursiveLongestString(["hi", "its", "fantastic", "here"]) returns
"fantastic".

Hint: what properties does the recursive result have if the function works as expected?
Another hint: consider what the base case for this algorithm should be. It isn't the
usual list base case...

#5 - generateBubbles(canvas, bubbleList) - 10pts
Can attempt after Dictionaries lecture

Write the tkinter function generateBubbles(canvas, bubbleList) which takes a
tkinter canvas and a list of dictionaries, bubbleList, and draws bubbles as described
in bubbleList.

Each dictionary in the bubble list contains exactly four keys: "left", "top", "size",
and "color". The first three all map to integers (the left coordinate, top coordinate, and
diameter size of the bubble), and the fourth maps to a string (its color). Use this
information to draw the bubble (with canvas.create_oval) in the appropriate location,
with the correct size and color.

For example, if we make run the function with the bubble list from the first test:
bubbleList1 = [{"left":150, "top":150, "size":100, "color":"green"}]

We'll get:

[continued on next page]

And the second test, which has:

bubbleList2 = [

{'left': 317, 'top': 269, 'size': 45, 'color': 'red' },

{'left': 118, 'top': 27, 'size': 90, 'color': 'orange'},

{'left': 101, 'top': 321, 'size': 65, 'color': 'yellow'},

{'left': 231, 'top': 219, 'size': 25, 'color': 'pink' },

{'left': 50, 'top': 12, 'size': 20, 'color': 'blue' }]

Should produce this:

The third test randomly generates 10 bubbles using the provided makeNBubbles(n)

function. Try changing the size of n to generate more or less bubbles, and see how it
looks! Your bubbles will be different every time.

Hint: a list of dictionaries might sound intimidating at first, but it's not so bad! Just loop
over the list, access the dictionary using the loop control variable, then index into the
dictionary to get the needed values.

#6 - getBookByAuthor(bookInfo, author) - 10pts
Can attempt after Dictionaries lecture

Dictionaries are very good at searching for keys, but not so good at searching for
values. Write the function getBookByAuthor(bookInfo, author) which takes a
dictionary mapping book titles (strings) to author names (also strings) and an author
name (a string) and returns the book associated with that author, or None if the author
does not appear in the dataset. You are guaranteed that no author will appear more
than once in the dictionary.

For example, calling the function on { "The Hobbit" : "JRR Tolkein", "Harry

Potter and the Sorcerer's Stone" : "JK Rowling", "A Game of Thrones" :

"George RR Martin" } and "JK Rowling" would return "Harry Potter and the

Sorcerer's Stone".

Hint: you basically want to implement linear search over a dictionary instead of a list.
Make sure you use the right kind of loop!

