
15-110 Hw4 - Full

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results.

When you are finished, upload your hw4.pdf to Hw4 - Full on Gradescope.

Don't forget that you can get three bonus points on Hw4 by filling out the midsemester
surveys! Check Piazza for links to those surveys and further instructions.

Written Problems
#1 - Best Case and Worst Case - 8pts
#2 - Calculating Big-O Families - 10pts
#3 - Tree Vocabulary - 5pts
#4 - Graph Vocabulary - 5pts
#5 - Searching a BST - 6pts
#6 - Searching a Graph - 8pts
#7 - P and NP Identification - 5pts
#8 - P vs NP - 8pts
#9 - Heuristics - 4pts
#10 - Recognizing Data Structures - 5pts
#11 - Optimizing for Search - 6pts

Written Problems

#1 - Best Case and Worst Case - 8pts
Can attempt after Runtime and Big-O Notation lecture

For each of the following functions, describe an input that would result in best-case
efficiency, then describe an input that would result in worst-case efficiency. This
generic input must work at any possible size; don't answer 1 for isPrime, for example.

def getEmail(words):

words is a list of strings

for i in range(len(words)):

if "@" in words[i]:

return words[i]

return "No email found"

def isPrime(num):

for factor in range(2, num):

if num % factor == 0:

return False

return True

What is a best case input for getEmail?

What is a worst case input for getEmail?

What is a best case input for isPrime?

What is a worst case input for isPrime?

#2 - Calculating Big-O Families - 10pts
Can attempt after Runtime and Big-O Notation lecture

For each of the following functions, check the Big-O function family that function
belongs to. You should determine the function family by considering how the number of
steps the algorithm takes grows as the size of the input grows.

def countEven(L): # n = len(L)

result = 0

for i in range(len(L)):

if L[i] % 2 == 0:

result = result + 1

return result

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)

n = len(L)

def sumFirstTwo(L):

if len(L) < 2:

return 0

return L[0] + L[1]

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)

n = len(L1) = len(L2)

def linearSearchAll(L1, L2):

count = 0

for item in L1:

Hint: linear search complexity..?

if linearSearch(L2, item) == True:

count = count + 1

return count

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)

n = len(L1) = len(L2)

def binarySearchAll(L1, L2):

count = 0

for item in L1:

Hint: binary search complexity..?

if binarySearch(L2, item) == True:

count = count + 1

return count

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)

n = len(L); original call has i = 0

def recursiveSum(L, i):

if i == len(L):

return 0

else:

return L[i] + recursiveSum(L, i+1)

O(1)

O(logn)

O(n)

O(nlogn)

O(n2)

#3 - Tree Vocabulary - 5pts
Can attempt after Trees lecture

Consider the following tree, implemented in code with our dictionary implementation:

How many nodes does this tree have?

Which nodes are children of the node with value "C"?

What is the value of the root of the tree?

What are the values of the leaves of the tree?

If we ran the first version of the function countNodes

from lecture on this tree (with leaf base case), what is
the total number of function calls that would be made?

#4 - Graph Vocabulary - 5pts
Can attempt after Graphs lecture

In class we discussed how a graph can be used to model a social network. Create a
social network graph of your own design with the same notation we used in class (ovals
for nodes, lines for edges). You can base the graph on whoever you like- fictional
characters, celebrities, people in your own life, etc.- but your graph must meet the
following requirements:

● The graph should contain at least five labeled nodes
● The graph should contain at least five edges
● The graph should contain an annotation that points out a pair of neighbors
● The graph should contain an annotation describing whether it is weighted or

unweighted (your choice, but the annotation must match the graph)
● The graph should contain an annotation describing whether it is directed or

undirected (your choice, but the annotation must match the graph)

You can do this with a picture of a physical drawing or an online image editing tool (like
Google Drawings). To upload the image in the next page below, use the same approach
you used on Hw2.

(continued on next page….)

#5 - Searching a BST - 6pts
Can attempt after Search Algorithms II lecture

Given the Binary Search Tree shown below:

What series of numbers would you visit if you ran a search algorithm that looked for 19?

What series of numbers would you visit if you ran a search algorithm that looked for 4?

What series of numbers would you visit if you ran a search algorithm that looked for 10?

#6 - Searching a Graph - 8pts
Can attempt after Search Algorithms II lecture

For this problem, note that each prompt has multiple correct answers; you only need to
include one. We recommend that you visit neighbors in alphabetical order.

Given the undirected graph shown below, where the letter A is the start node:

What series of letters could you visit if you ran Depth-First Search to find H?
(For this and the following problems, there is more than one correct answer.)

What series of letters could you visit if you ran Breadth-First Search to find H?

What series of letters could you visit if you ran Depth-First Search to find J?

What series of letters could you visit if you ran Breadth-First Search to find J?

#7 - P and NP Identification - 5pts
Can attempt after Tractability lecture

For each of the following problems, identify whether the problem is in the complexity
class P, NP, or neither. Please choose just one class (the one that best describes the
problem), even if multiple classes are technically correct.

Finding the smallest value in a
tree

Scheduling final exams for CMU
so that there are no conflicts

Determining if an item is in a list

Finding the best (fastest) road
route through Pittsburgh that
takes you over every bridge.

Determining if there is a set of
inputs that makes a circuit
output 1

P
NP
Neither

P
NP
Neither

P
NP
Neither

P
NP
Neither

P
NP
Neither

#8 - P vs NP - 8pts
Can attempt after Tractability lecture

Which of the following is the best definition of the complexity class P?
☐ The set of problems that can be solved in polynomial time
☐ The set of problems that can be verified in polynomial time
☐ The set of problems we discussed in lecture (Puzzle solving, Subset Sum, etc)

Which of the following is the best definition of the complexity class NP?
☐ The set of problems that can be solved in polynomial time
☐ The set of problems that cannot be solved in polynomial time
☐ The set of problems that can be verified in polynomial time
☐ The set of problems that cannot be verified in polynomial time
☐ The set of problems we discussed in lecture (Puzzle solving, Subset Sum, etc)

Why does it matter whether or not P = NP? Choose the best answer.
☐ If they are the same, we'll be able to solve hard and useful problems a lot faster
☐ If they are the same, we'll need to change how we implement some adversarial

algorithms, like encryption, to keep them from being broken easily
☐ If they are not the same, we can spend less time trying to invent super-fast

solutions to hard but useful problems
☐ All of the above

#9 - Heuristics - 4pts
Can attempt after Tractability lecture

We want to apply the Travelling Salesperson algorithm to the graph shown here to find
a short route that visits each city once, but we want to use a heuristic to get the answer
quickly. Our heuristic is this: rank the neighbor cities that have not yet been visited
based on the weight of the edge leading to them, and choose the lowest-weight edge
(the shortest distance).

Say we want to start in New York City and visit each city once (returning to New York
City at the end). What path would this heuristic generate?

#10 - Recognizing Data Structures - 5pts
Can attempt after Graphs lecture

For each of the following types of data, choose the data structure that would be the
best/most natural choice to represent the data

Carnegie Mellon's
organizational structure:
ie, departments within
each college, and majors
within each department

A chess board that has
pieces located at specific
row-column positions

A set of chores you need
to do over the weekend

The subway map for
London

A deck of flashcards with
words on one side and
definitions on the other

☐ 1D List
☐ 2D List
☐ Dictionary
☐ Tree
☐ Graph

☐ 1D List
☐ 2D List
☐ Dictionary
☐ Tree
☐ Graph

☐ 1D List
☐ 2D List
☐ Dictionary
☐ Tree
☐ Graph

☐ 1D List
☐ 2D List
☐ Dictionary
☐ Tree
☐ Graph

☐ 1D List
☐ 2D List
☐ Dictionary
☐ Tree
☐ Graph

#11 - Optimizing for Search - 6pts
Can attempt after Search Algorithms II lecture

You have been given a very large dataset of temperatures (represented as floats), and
your task is to find the most extreme temperatures that fall into a given temperature
range (such as 40 degrees to 50 degrees, or 75.7 degrees to 78.2 degrees). To do this,
you want to store the data in a data structure so that, given any range, you'll be able to:

● find the smallest value in the structure that falls in that range
● find the largest value in the structure that falls in that range

You want to optimize how quickly you can run the algorithm shown above,
assuming the data structure has already been created. In other words, you don't
know what range you'll need to check when you create the structure.

Choose the best search algorithm + data structure combination for the task. There might
be multiple correct answers; you only need to choose one per question.

Search Algorithm:
☐ Linear Search
☐ Binary Search
☐ Hashed Search
☐ Breadth-First Search

Data Structure:
☐ Sorted List of degrees
☐ Dictionary mapping degree->count
☐ Binary Search Tree of degrees
☐ Graph connecting close degrees

	What is a best case input for getEmail:
	What is a worst case input for getEmail:
	What is a best case input for isPrime:
	What is a worst case input for isPrime:
	O1: Off
	Ologn: Off
	On: Off
	Onlogn: Off
	On2: Off
	O1_2: Off
	Ologn_2: Off
	On_2: Off
	Onlogn_2: Off
	On2_2: Off
	O1_3: Off
	Ologn_3: Off
	On_3: Off
	Onlogn_3: Off
	On2_3: Off
	O1_4: Off
	Ologn_4: Off
	On_4: Off
	Onlogn_4: Off
	On2_4: Off
	O1_5: Off
	Ologn_5: Off
	On_5: Off
	Onlogn_5: Off
	On2_5: Off
	How many nodes does this tree have:
	Which nodes are children of the node with value C:
	What is the value of the root of the tree:
	What are the values of the leaves of the tree:
	If we ran the first version of the function countNodes from lecture on this tree with leaf base case what is the total number of function calls that would be made:
	What series of numbers would you visit if you ran a search algorithm that looked for 19:
	What series of numbers would you visit if you ran a search algorithm that looked for 4:
	What series of numbers would you visit if you ran a search algorithm that looked for 10:
	For this and the following problems there is more than one correct answer:
	What series of letters could you visit if you ran BreadthFirst Search to find H:
	What series of letters could you visit if you ran DepthFirst Search to find J:
	What series of letters could you visit if you ran BreadthFirst Search to find J:
	P: Off
	NP: Off
	Neither: Off
	P_2: Off
	NP_2: Off
	Neither_2: Off
	P_3: Off
	NP_3: Off
	Neither_3: Off
	P_4: Off
	NP_4: Off
	Neither_4: Off
	P_5: Off
	NP_5: Off
	Neither_5: Off
	The set of problems that can be solved in polynomial time: Off
	The set of problems that can be verified in polynomial time: Off
	The set of problems we discussed in lecture Puzzle solving Subset Sum etc: Off
	The set of problems that can be solved in polynomial time_2: Off
	The set of problems that cannot be solved in polynomial time: Off
	The set of problems that can be verified in polynomial time_2: Off
	The set of problems that cannot be verified in polynomial time: Off
	The set of problems we discussed in lecture Puzzle solving Subset Sum etc_2: Off
	If they are the same well be able to solve hard and useful problems a lot faster: Off
	If they are the same well need to change how we implement some adversarial: Off
	If they are not the same we can spend less time trying to invent superfast: Off
	All of the above: Off
	City at the end What path would this heuristic generate:
	1D List: Off
	2D List: Off
	Dictionary: Off
	Tree: Off
	Graph: Off
	1D List_2: Off
	2D List_2: Off
	Dictionary_2: Off
	Tree_2: Off
	Graph_2: Off
	1D List_3: Off
	2D List_3: Off
	Dictionary_3: Off
	Tree_3: Off
	Graph_3: Off
	1D List_4: Off
	2D List_4: Off
	Dictionary_4: Off
	Tree_4: Off
	Graph_4: Off
	1D List_5: Off
	2D List_5: Off
	Dictionary_5: Off
	Tree_5: Off
	Graph_5: Off
	Linear Search: Off
	Binary Search: Off
	Hashed Search: Off
	BreadthFirst Search: Off
	Sorted List of degrees: Off
	Dictionary mapping degreecount: Off
	Binary Search Tree of degrees: Off
	Graph connecting close degrees: Off
	AndrewID:
	name:
	Image1_af_image:

