
15-110 Hw4 - Written + Programming
Fall 2024

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results. Also complete the programming problems in the
starter file hw4.py from the course website. When you are finished, upload your hw4.pdf
to Hw4 - Written on Gradescope, and upload your hw4.py file to Hw4 - Programming
on Gradescope. Make sure to check the autograder feedback after you submit!

Written Problems
#0 - Exam 1 reflection - 5pts
#1 - Best Case and Worst Case - 8pts
#2 - Calculating Big-O Families - 10pts
#3 - Tree Vocabulary - 8pts
#4 - Searching a BST - 6pts
#5 - Binary Search Tree Efficiency - 4pts
#6 - Good Use of Hashing - 8pts
#7 - P and NP Identification - 5pts
#8 - P vs NP - 6pts
#9 - Heuristics - 4pts
#10 - Optimizing for Search - 6pts

Programming Problems
#1 - getLeftmost(t) - 5pts
#2 - getInitialTeams(bracket) - 10pts
#3 - largestEdge(g) - 10pts
#4 - getPrereqs(g, course) - 5pts

Written Problems

#0 - Exam 1 reflection - 5pts
Already due

No action is needed here; the vast majority of you have already completed this! These
5 points are for the exam reflection form described on Piazza here and discussed in the
slides and every lecture in week 7. This was due no later than 11:59pm on Friday Oct.
11. If you wish to confirm that you successfully submitted the form, check your inbox for
the confirmation email from Google. If you have not completed it or if you did not
successfully submit it, it is too late to receive these points (and we cannot make any
exceptions without creating unfairness), but don’t stress; it’s worth very very little in the
scope of your semester average and will be very very very unlikely to affect your
semester letter grade.

https://piazza.com/class/m0bp2xiar0567v/post/182

#1 - Best Case and Worst Case - 8pts
Can attempt after Runtime and Big-O Notation lecture

For each of the following functions, describe the characteristics of an input that would
result in best-case efficiency, then describe the characteristics of an input that would
result in worst-case efficiency. These characteristics must apply for very large inputs,
so do not simply give one specific input. For example regarding the best-case, do not
simply answer with an empty list for getEmail, or 1 or 2 for isPrime.

def getEmail(words):

words is a list of strings

for i in range(len(words)):

if "@" in words[i]:

return words[i]

return "No email found"

def isPrime(num):

for factor in range(2, num):

if num % factor == 0:

return False

return True

What is a generic best case input for getEmail?

What is a generic worst case input for getEmail?

What is a generic best case input for isPrime?

What is a generic worst case input for isPrime?

#2 - Calculating Big-O Families - 10pts
Can attempt after Runtime and Big-O Notation lecture

For each of the following functions, check the one best-matching Big-O function family
that function belongs to. You should determine the function family by considering how
the number of steps the algorithm takes grows as the size of the input grows.

n = len(L)

def sumFirstTwo(L):

if len(L) < 2:

return 0

return L[0] + L[1]

O(1)

O(logn)

O(n)

O(n2)

O(2n)

n = len(L1) = len(L2)

def allLinearSearch(L1, L2):

count = 0

for item in L1:

Hint: what is the efficiency of

linear search?

if linearSearch(L2, item) == True:

count = count + 1

return count

O(1)

O(logn)

O(n)

O(n2)

O(2n)

n = len(L1) = len(L2)

def bothBinarySearch(L1, L2, item):

Hint: what is the efficiency of

binary search?

result1 = binarySearch(L1, item)

result2 = binarySearch(L2, item)

return result1 or result2

O(1)

O(logn)

O(n)

O(n2)

O(2n)

n = len(L); original call has i = 0

def recursiveSum(L, i):

if i == len(L):

return 0

else:

return L[i] + recursiveSum(L, i+1)

O(1)

O(logn)

O(n)

O(n2)

O(2n)

def countEven(L): # n = len(L)

result = 0

for i in range(len(L)):

if L[i] % 2 == 0:

result = result + 1

return result

O(1)

O(logn)

O(n)

O(n2)

O(2n)

#3 - Tree Vocabulary - 8pts
Can attempt after Trees lecture

Consider the following tree, implemented in code with our dictionary implementation:

How many nodes does this tree have?

What are the values of the leaves of the tree?

What is the value of the root of the tree?

Which nodes are children of the node with value "C"?

If we ran the first version of the function countNodes
from lecture on this tree (with empty-tree base case),
what is the total number of function calls that would be
made?

#4 - Searching a BST - 6pts
Can attempt after Search Algorithms II lecture

Given the Binary Search Tree shown below:

What series of numbers would you visit if you ran a search algorithm that looked for 13?

What series of numbers would you visit if you ran a search algorithm that looked for 24?

What series of numbers would you visit if you ran a search algorithm that looked for 5?

#5 - Binary Search Tree Efficiency - 4pts
Can attempt after Search Algorithms II lecture

Consider the following binary search tree:

When running binary search on this tree and selecting the item to search for…

What is a specific best case input that could be provided for this particular tree?

What is a specific worst case input that could be provided for this particular tree?

#6 - Good Use of Hashing - 8pts
Can attempt after Search Algorithms II lecture

Recall our discussion of what hash functions are and what they are used for. Below
we've listed four different scenarios. Each scenario contains a data set, a hash function,
and which values will need to be looked up in the hashtable. Select all the scenarios
where you will generally be able to look up whether a specific value is in the dataset in
constant time.

Given a set of all the college essays ever sent to CMU (as strings), hash an
essay based on the ASCII value of the first character of the essay ("I want to go
to CMU because.." hashes based on "I"). Use the hashtable to look up an
individual essay.

Given a set of integer phone numbers, hash a phone number based on the
phone number itself. Use the hashtable to look up an individual phone number.

Given a set of string full names (like "Farnam Jahanian"), hash a name using the
length of the string. Use the hashtable to look up an individual name.

Given a set of lists of high scores (so each list contains integers), hash a list
based on the sum of its scores. Lists can mutate after hashing when new high
scores are added. Use the hashtable to look up an individual high-score list.

None of the situations described above can be searched in constant time.

#7 - P and NP Identification - 5pts
Can attempt after Tractability lecture

For each of the following problems, identify whether the problem is in the complexity
class P, NP, or neither. Please choose just one class (the one that best describes the
problem), even if multiple classes are technically correct.

Finding the smallest value in a
tree

Scheduling final exams for CMU
so that there are no conflicts

Determining if an item is in a list

Finding the best (fastest) road
route through Pittsburgh that
takes you over every bridge.

Determining if there is a set of
inputs that makes a circuit
output 1

P
NP
Neither

P
NP
Neither

P
NP
Neither

P
NP
Neither

P
NP
Neither

#8 - P vs NP - 6pts
Can attempt after Tractability lecture

For each of the following questions choose just one answer, the best answer.

Which of the following is the best definition of the complexity class P?
The set of problems that can be solved in polynomial time

The set of problems that can be verified in polynomial time

Only the set of problems discussed in lecture (Puzzle Solving, Subset Sum, etc)

Which of the following is the best definition of the complexity class NP?
The set of problems that can be solved in polynomial time

The set of problems that cannot be solved in polynomial time
The set of problems that can be verified in polynomial time

The set of problems that cannot be verified in polynomial time
Only the set of problems discussed in lecture (Puzzle Solving, Subset Sum, etc)

Why does it matter whether or not P = NP? Choose the best answer.
If they are the same, we'll be able to solve hard and useful problems a lot faster

If they are the same, we'll need to change how we implement some adversarial
algorithms, like encryption, to keep them from being broken easily
If they are not the same, we can spend less time trying to invent super-fast
solutions to hard but useful problems in NP
All of the above

#9 - Heuristics - 4pts
Can attempt after Tractability lecture

We want to apply the Travelling Salesperson algorithm to the graph shown here to find
a short route that visits each city once, but we want to use a heuristic to get the answer
quickly. Our heuristic is this: for each choice point, rank the neighbor cities that have not
yet been visited based on the weight of the edge leading to them, then choose the
lowest-weight edge (the shortest distance).

Say we want to start in New York City and visit each city once (returning to New York
City at the end). What path would this heuristic generate?

#10 - Optimizing for Search - 6pts
Can attempt after Search Algorithms II lecture

You have been given a very large dataset of temperatures (represented as floats), and
your task is to find the most extreme temperatures that fall into a given temperature
range (such as 40 degrees to 50 degrees, or 75.7 degrees to 78.2 degrees). To do this,
you want to store the data in a data structure so that, given any range, you'll be able to:

● find the smallest value in the structure that falls in that range
● find the largest value in the structure that falls in that range

You want to optimize how quickly you can run the algorithm shown above,
assuming the data structure has already been created. In other words, you don't
know what range you'll need to check when you create the structure.

Choose the best search algorithm + data structure combination for the task. There might
be multiple equally-correct answers; you only need to choose one per question. Note
that you should pick the best search algorithm for this prompt, not the best search
algorithm generically!

Search Algorithm:
Linear Search

Binary Search

Hashed Search

Random Search

Data Structure:
Sorted List of degrees

Dictionary mapping degree->count

Binary Search Tree of degrees

Graph connecting close degrees

Programming Problems
For each of these problems (unless otherwise specified), write the needed code directly
in the Python file in the corresponding function definition.

All programming problems may also be checked by running 'Run current script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - getLeftmost(t) - 5pts
Can attempt after Trees lecture

Write the function getLeftmost(t) that takes a binary tree in our dictionary format and
returns the contents of the leftmost child of that tree. This is the child we reach if we
keep moving down and left from the root node until we cannot go left any further. For
example, in the tree:

Which is represented as the dictionary:

t = { "contents" : "A",

"left" : { "contents" : "B",

"left" : { "contents" : "D", "left" : None, "right" : None},

"right" : None },

"right" : { "contents" : "C",

"left" : { "contents" : "E",

"left" : { "contents" : "G", "left" : None, "right" : None },

"right" : { "contents" : "H", "left" : None, "right" : None } },

"right" : { "contents" : "F", "left" : None, "right" : None } } }

We go from A to B, then from B to D, then we can't go left any further. "D" is the content
of the leftmost node and is returned when we call the function on t.

#2 - getInitialTeams(bracket) - 10pts
Can attempt after Trees lecture

We can represent a tournament bracket from a sports competition as a binary tree,
where the winning team is the root node. In general, every node represents the winner
of a match, and its two children are the two teams that competed in that match. For
example, this tree represents the last two rounds of the Women's World Cup in 2019.

In our binary tree dictionary format, this would look like:

t1 = { "contents" : "United States",

"left" : { "contents" : "United States",

"left" : { "contents" : "England", "left" : None, "right" : None },

"right" : { "contents" : "United States", "left" : None, "right" : None}},

"right" : { "contents" : "Netherlands",

"left" : { "contents" : "Netherlands", "left" : None, "right" : None },

"right" : { "contents" : "Sweden", "left" : None, "right" : None } } }

Write the function getInitialTeams(bracket) which takes a tree in dictionary format
and returns a list of the tree’s leaves. For the example above, getInitialTeams(t1)
might return ["England", "United States", "Netherlands", "Sweden"]. It is
ok if your function returns the teams in a different order.

You must implement this function recursively to access all the nodes. We recommend
that you start by looking at the sumNodes and listValues examples from the slides.

Hint: make sure the type you return is the same in both the base and recursive cases!

#3 - largestEdge(g) - 10pts
Can attempt after Graphs lecture

We often want to find the largest edge weight in a graph. This can help us identify useful
information, like the most congested street in a city or the two gas stops that are farthest
apart on a highway. Write the function largestEdge(g) that takes a weighted graph in
our dictionary format and returns a list holding two elements - the two endpoints of
the edge with the largest weight in the graph. For example, in the graph:

Which is represented as the dictionary:

g = { "A" : [["B", 10], ["C", 2], ["F", 25]],

"B" : [["A", 10], ["D", 42]],

"C" : [["A", 2], ["E", 30]],

"D" : [["B", 42]],

"E" : [["C", 30], ["F", 9]],

"F" : [["A", 25], ["E", 9]],

"G" : [] }

The largest edge has the weight 42. That edge is between the nodes B and D, so if we
call the function on that graph, it will return ["B", "D"] (or ["D", "B"] - the order
doesn't matter). In case of a tie between two edges, return the nodes for either edge.

To find the largest edge, modify the find-most-common/find-largest-item pattern we've
discussed several times in class. Iterate over each of the nodes in the graph, then for
each node iterate over each of that node's neighbors to visit each edge.

Note: to make this easier, you are guaranteed that all edge weights will be positive and
there will be at least one edge in the graph.

#4 - getPrereqs(g, course) - 5pts
Can attempt after Graphs lecture

College course prerequisites are notoriously complicated. However, we can make them
a little easier to understand by representing the course dependency system as a
directed graph, where the nodes are courses and an edge leads from course A to
course B if A is a prerequisite of B. For example, the core Computer Science courses
(almost) produce the following prereq graph:

Which would be represented in code as:

g = { "110" : [],

"112" : ["122", "150"],

"122" : ["213", "210", "251", "281"],

"151" : ["150", "251", "281"],

"150" : ["210", "251"],

"213" : [],

"210" : [],

"251" : [],

"281" : [] }

Write the function getPrereqs(g, course) that takes a directed graph (in our
adjacency list dictionary format, without weights) and a string (a course name) and
returns a list of all the immediate prerequisites of the given course. If we called
getPrereqs on our graph above and "210", for example, the function should return
["122", "150"].

Hint: you can't just return the neighbors of the course, because the edges are going in
the opposite direction! Instead, iterate over all the nodes to find those that have the
course as a neighbor. Construct a new list out of these nodes as the result.

	Name:
	AndrewID:
	What is a generic best case input for getEmail:
	What is a generic worst case input for getEmail:
	What is a generic best case input for isPrime:
	What is a generic worst case input for isPrime:
	O1: Off
	Ologn: Off
	On: Off
	On2: Off
	O2n: Off
	O1_2: Off
	Ologn_2: Off
	On_2: Off
	On2_2: Off
	O2n_2: Off
	O1_3: Off
	Ologn_3: Off
	On_3: Off
	On2_3: Off
	O2n_3: Off
	O1_4: Off
	Ologn_4: Off
	On_4: Off
	On2_4: Off
	O2n_4: Off
	O1_5: Off
	Ologn_5: Off
	On_5: Off
	On2_5: Off
	O2n_5: Off
	How many nodes does this tree have:
	What are the values of the leaves of the tree:
	What is the value of the root of the tree:
	Which nodes are children of the node with value C:
	If we ran the first version of the function countNodes from lecture on this tree with emptytree base case what is the total number of function calls that would be made:
	What series of numbers would you visit if you ran a search algorithm that looked for 13:
	What series of numbers would you visit if you ran a search algorithm that looked for 24:
	What series of numbers would you visit if you ran a search algorithm that looked for 5:
	What is a specific best case input that could be provided for this particular tree:
	What is a specific worst case input that could be provided for this particular tree:
	Given a set of all the college essays ever sent to CMU as strings hash an: Off
	Given a set of integer phone numbers hash a phone number based on the: Off
	Given a set of string full names like Farnam Jahanian hash a name using the: Off
	Given a set of lists of high scores so each list contains integers hash a list: Off
	None of the situations described above can be searched in constant time: Off
	P: Off
	NP: Off
	Neither: Off
	P_2: Off
	NP_2: Off
	Neither_2: Off
	P_3: Off
	NP_3: Off
	Neither_3: Off
	P_4: Off
	NP_4: Off
	Neither_4: Off
	P_5: Off
	NP_5: Off
	Neither_5: Off
	The set of problems that can be solved in polynomial time: Off
	The set of problems that can be verified in polynomial time: Off
	Only the set of problems discussed in lecture Puzzle Solving Subset Sum etc: Off
	The set of problems that can be solved in polynomial time_2: Off
	The set of problems that cannot be solved in polynomial time: Off
	The set of problems that can be verified in polynomial time_2: Off
	The set of problems that cannot be verified in polynomial time: Off
	Only the set of problems discussed in lecture Puzzle Solving Subset Sum etc_2: Off
	If they are the same well be able to solve hard and useful problems a lot faster: Off
	If they are the same well need to change how we implement some adversarial: Off
	If they are not the same we can spend less time trying to invent superfast: Off
	All of the above: Off
	City at the end What path would this heuristic generate:
	Linear Search: Off
	Binary Search: Off
	Hashed Search: Off
	Random Search: Off
	Sorted List of degrees: Off
	Dictionary mapping degreecount: Off
	Binary Search Tree of degrees: Off
	Graph connecting close degrees: Off

