
Programming Basics
15-110 – August 08/28

1

Announcements

• Moved from Ed to Piazza

• 65% of students completed Ex1-1
• If you haven't completed it yet, you still can! Exercises can be

submitted late under the revision policy.

• 80% of students completed Pre-Semester Survey
• Due tonight at 11:50pm

•Check1 due next Tuesday at noon

• Tutorial: how to download & work on written assignments
• Tutorial: how to submit files on Gradescope

2

Learning Objectives

•Recognize and use the basic data types in programs

• Interpret and react to basic error messages caused by
programs

•Use variables in code and trace the different values they hold

3

Python & IDEs

4

Algorithms can be expressed as programs in many different
programming languages.

Python programming language syntax:

5

An IDE (Integrated Development Environment) is a text editor for
programs.

7

Thonny is an IDE with two parts for writing code:
a text editor and an interpreter (shell).

text
editor

interpreter

8

Data Types

10

Data is information we can manipulate with operations.

Data have different types based on properties:

Numbers: Strings: Truth values (booleans)

“Hello world”
“Dear Prof”
“”
“ be kind ”

10
-412
1.0
0.333
1e10

True
False

11

Numbers have two types: integers and floating point.

Integers are whole numbers, positive or negative: 0 14 -7
Floating point numbers include a decimal point: 3.0 5.735 8e10

Numbers can be combined with math operators:

to make expressions:
>> 4**2+(5-2)/3
17.0

addition + subtraction - multiplication * division / power **

12

Text values are called strings.

Text is recognized by Python as a string by putting it into either
single quotes: ‘Hello’ or double quotes: “Hello”

Strings can be concatenated using addition operator +:
>> “Hello” + “World”
HelloWorld

Strings can be repeated using multiplication operator *:
>> “Hello” * 3
HelloHelloHello

13

Python can evaluate whether certain expressions are true or
false. These types of values are called Booleans.

Booleans are either True or False

We get a Boolean when we do a comparison with comparison
operators:

>> “Hello” == “World”
False

less than < greater than >

less or equal <= greater or equal >=

equal ==

not equal !=

14

Mixing types in Python can cause error messages when the
types do not go together well.

Adding strings and numbers results in a TypeError.
>> “Hello” + 5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Comparing strings and numbers results in a TypeError.
>> “Hello” < 5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'str' and 'int'

15

Mixing types in Python can cause error messages when the
types do not go together well.

Integers and floating point numbers can be mixed freely. Usually the
result is a floating point number.
>> 8 * 2.0
16.0

16

Python uses shortened names for data types in
error messages:

Integers are called int
Floating point numbers are called float
Strings are called str
Booleans are called bool

17

Activity: Predict the Type

Let's do a poll to see if you can identify
data types correctly! For each expression,
vote for the type you think it will evaluate
to!

Hold up 1, 2, 3, or 4 fingers to indicate
your vote:
• 1: bool
• 2: float
• 3: int
• 4: string

18

"1" + "2"

15-110

"Hello" == "World"

3.0 * 5.0

Writing Code in Files

19

To write longer programs, write lines of code in editor,
save , and then run

20

print displays data in interpreter

21

If you want to display multiple values in the interpreter on the
same line, you have two choices.

If printing strings can concatenate together:
>> print(“Result: ” + “2”)
Result: 2

Use commas to separate values (will automatically print with spaces
between values):
>> print(“Result:”, 2)
Result: 2

22

Comments are notes for humans and are ignored by the
computer.

Any text that follows a # will be ignored by the computer:
print(“Hello World”) # a greeting

To comment out a block of code, use triple quotes at beginning and
end:
“““
print(“ignore”)
print(“this”)
”””

23

Error Messages

24

Errors happen when syntax is not valid Python code.

>> Print(“Hello World”)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'Print' is not defined

>> print “Hello World”
 File "<stdin>", line 1
 print "Hello World"
 ^^^^^^^^^^^^^^^^^^^
SyntaxError: Missing parentheses in call to
'print'. Did you mean print(...)?

25

Debug errors by reading the message.

1. Look for the line number. This line tells
you approximately where the error
occurred.

2. Look at the error type.
3. If it says SyntaxError, look for the inline

arrow. The position gives you more
information about the location of the
problem (though it isn't always right).

4. If it says something else, read the error
message. The error type and its message
give you information about what went
wrong.

We'll talk more about the debugging
process in future lectures.

26

inline arrow

error type

Be careful when using whitespace (spaces, tabs, and the return
key) – it can sometimes count as syntax too!

print("Hello World") # IndentationError

p r i n t ("Hello World") # SyntaxError

print ("Hello World") # this is okay!

27

Variables

29

Variables let us store data so we can reuse it in future
computations.

We define a variable with an equal sign:

variable = value

Variables can only go on the left side of this code, and its value (or
an expression that evaluates to a value) goes on the right. For
example:

myPet = "Kimchee"
result = 5 + 2 # result is set to 7
42 = foo # SyntaxError

30

Variables are like sticky notes.

You can think of a variable as a sticky note that is
applied to a data value.

When you want to use the data value, you can use it
directly or refer to the name on the note.

You assign a variable to a value by writing the name on
the note and putting the note on the value.

x

31

We can use variables in expressions and we can change the
variable to hold a new value.

x = 5
y = x - 2 # x evaluates to 5

By changing the values of variables we are updating the
program state:

x = 5
x = x - 1 # x evaluates to 5 on the right
 # then changes to 4
print("x:", x) # x: 4

33

x

This is like moving
the sticky note to

a new value

Python runs every line in order and doesn't peek ahead

If you want to use a variable, you must define it before it is used!

print(foo) # this causes an error!
foo = 42

foo = 42
print(foo) # this is fine!

34

Activity: Trace the Variable Values

You do: Trace through the following lines of code. What values
do a and b hold at the end?

a = 4
b = 7
b = a - 2
a = a + 1

35

Sidebar: Rules for Variable Names

Variable names can use any combination of uppercase letters,
lowercase letters, digits, and underscores. They must start with
a letter or _. Starting with a lowercase letter is recommended.

Variable names are case sensitive. For example, Banana is not
the same as banana. Make sure to type your variables
correctly, or you'll get a NameError!

36

Learning Objectives

•Recognize and use the basic data types in programs

• Interpret and react to basic error messages caused by
programs

•Use variables in code and trace the different values they hold

37

