
Machine Learning – Testing
and Artificial Intelligence

15-110 – Wednesday 11/22

Announcements
● Office hours today are in GHC 4109

●Check6-1 grades are released
○ Make sure to view your feedback on the programming part!

●Check6-1 Revisions due Monday 11/25 at noon
○ This is the final item with a revision deadline

●Check6-2 due Monday 11/25 at noon
○ Don't forget to uncomment test cases at bottom of file!
○ Check6-2 / Hw6 autograded functions will not be manually graded for partial credit

● Monday is the last quizlet of the semester!

2

Learning Goals

• Describe how training, validation, and testing are used to build a
model and measure its performance

• Recognize how AIs attempt to achieve goals by using a
perception, reason, and action cycle

3

From Training to Testing

Once we've trained a model using machine learning, we may want
to evaluate that model to see how well it actually works.

We can do this by testing the model using the test data held in
reserve.

4

Testing Machine Learning
Models

5

Training Data, Validation Data, Testing Data

Once we've trained a model, we can use that model to make
predictions about future data that it has not seen.

We already separated our data into two sets: training data vs.
testing data.

Additionally, validation data can help make the training work as
well as possible before the final test is done.

6

Too Much Data Can Cause Overfitting

The training data is normally composed of the majority (maybe 70%) of the
available dataset. More training data typically yields greater accuracy.

This can go wrong: overfitting occurs when the model identifies patterns that only
exists within the training data, not in the general population.

Overfitting can result in a model performing very well on training data, but poorly on
test data.

7

Validation Data Identifies Overfitting

We can reduce overfitting by using validation data. This is a subset
of the data (maybe 15%) that is not used when training the model.
Instead, it will be used to validate the model during training.

Training should continue while the accuracy on the validation data
continues to increase.

Training should stop when the model’s accuracy on the
validation data begins to decrease.

8

Testing Data Provides Final Results

When the programmer thinks they've achieved an optimal model,
the testing data is used to determine how accurate that model
actually is. This is a portion of the data (maybe 15%) that was set
aside at the beginning and never used during the training or
validation process.

The model is run on the test data only once, after training. The
accuracy on the training data is the accuracy of the model.

You cannot train on your testing data if you want a fair test of
the model!

9

Example: Bad Training Process

What happens if we use our validation
and test data to train as well?

The algorithm will get the opportunity to
observe patterns in the additional data.
It will optimize the model to include
those patterns, even through validation.

When the model is tested, it will appear
accurate because the model was
optimized for this data.

But if we try to use the model on new,
unlabeled data, the patterns may no
longer be valid.

10

modeldata

validation

testing

final
model

new data

???

training

Example: Good Training Process

A better process: split the data into
training, validation, and testing sets.

We'll train on only the training set and
repeatedly test on the validation set. We
stop training when the validation
accuracy decreases, to prevent
overfitting.

When we're done, we'll test on the test
set once. That produces our final result.

Testing on new data should have about
the same accuracy as the test data,
since the model never saw the test data
before.

11

modeldata

final
model

new data

train

validate

test

training
validation

or

testing

or

Machine Learning Supports Artificial Intelligence

Now that we have machine learning algorithms, what can we do
with them?

One option is to use them to support artificial intelligence. Let's
talk more about what that means!

12

Artificial Intelligence

13

What is Artificial Intelligence?

Artificial Intelligence (AI) is a branch of computer science that
studies techniques which allow computers to do things that,
when humans do them, are considered evidence of intelligence.

However, it's extremely hard to build a machine with general
intelligence (that is, a machine that can do everything a human
can do). We believe we are still far away from this goal.

Most modern AI applications are specialized; they do one
specific task, and they do it very well. We call an AI application
trained for a specific task an agent.

14

Examples of AI Agents

We've built AI agents that can
play games, run robots, and
animate children's drawings.

AI is also used to translate
text, predict what you'll type,
and answer questions on
websites.

What do these agents have in
common? Each agent we
build has a specific goal, the
thing it is trying to do.

15

https://ai.facebook.com/blog/using-ai-to-bring-childrens-drawings-to-life/

What about Large Language Models (LLMs)?

Large Language Models (LLMs) like ChatGPT and Gemini are
more general than their predecessors and can emulate a wider
variety of human-like tasks, but:
• Training requires massive data and massive computational

power
• Running the model also requires massive computational

power
• Mistakes are still common, but harder to identify and reason

about

16

Perception, Reason, and
Action

17

Perception, Reason, and Action

Most AI agents attempt to reach goals by cycling through three
steps: perceive information, reason about it, then act on it.

This is similar to how humans and animals work! We constantly take
in information from our senses, process it, and decide what to do
(consciously or unconsciously).

18

Perception: What Data Can Be Gathered?

First, the agent needs to perceive information about the state of the
problem its solving.

This can include data given directly by the user and contextual
information about past actions the user has taken.

An autocomplete agent might observe what the user is currently
typing and what they've typed before.

Some agents can also perceive information through sensors, like
cameras, microphones, accelerometers, and more

19

Reason: Create a plan for the future

Second, the AI agent needs to reason about the data it has collected,
to decide what should be done next to move closer to the goal.

Reasoning uses algorithms, including machine learning algorithms.
The agent often creates a model representation of the world based
on the task it needs to solve and the data it has collected so far. It can
then search through all the possible actions it can take to inform its
decision.

A general goal of reasoning is to make correct decisions quickly. (For
example, this is especially important for self-driving cars.)

20

Action: Follow through with the plan

Finally, the AI agent needs to act, to produce a change in the
state of the problem.

Actions don't need to reach the goal immediately, and often
can't. It is often sufficient to move closer to the goal, and then
repeat the perception, reason, action cycle.

Agents that interface with the real world (robots) use actuators
to make changes. This often involves the sub-fields of
kinematics, dynamics, and control.

21

Example: IBM Watson

IBM's AI agent Watson was designed to play
(and win!) the game Jeopardy. Its goal was
to answer Jeopardy problems with a
question.

Watson perceived the questions by
receiving them as text, then broke them
down into keywords using natural language
processing.

It used that information to search for
relevant information in its database. Watson
used reasoning to determine how confident
it was that the answer it found was correct.

If Watson decided to answer, it would act by
organizing the information into a sentence,
then pressing the buzzer with a robotic
'finger'.

22

Search Supports Artificial Intelligence

In Watson (and many other artificial intelligence applications), the key to
being able to perceive and act quickly lies in fast search algorithms.

Being able to search quickly makes it possible for an AI agent to look
through hundreds of thousands of possible actions to find which action
will work best.

We've discussed many data structures and algorithms to support search
already. The slides at the end of this deck describe two concepts used
by AI agents to support fast search- game trees and minimax.

23

Learning Goals

• Describe how training, validation, and testing are used to build a
model and measure its performance

• Recognize how AIs attempt to achieve goals by using a
perception, reason, and action cycle

24

Extra Topics:
Game Trees and Minimax
(You are not required to know this for the final exam)

25

Game Trees Represent Possible World States

To search data about possible actions and results quickly, an AI
agent first needs to organize that data in a sensible way. Let's focus
on a simple example: a two-player game between an AI agent and a
human.

A game tree is a tree where the nodes are game states and the
edges are actions made by the agent or the opposing player. Game
trees let the agent represent all the possible outcomes of a game.

For example, the game tree for Tic-Tac-Toe looks like this...

26

27

Full board here: https://xkcd.com/832/

https://xkcd.com/832/

Reading a Game Tree

The root of a game tree is the current state of the game. That can
be the start state (as in the previous example), or it can be a game
state after some moves have been made.

The leaves of the tree are the final states of the game, when the AI
agent wins, loses, or ties.

The edges between the root and the first set of children are the
possible moves the agent can make. Then the next set of edges
(from the first level of children to the second) are the moves the
opponent can make. These alternate all the way down the tree.

28

Game Trees are Big

How many possible outcomes are there in a game of Tic-Tac-Toe?

Let's assume that all nine positions are filled. That means the depth of the tree
is 10 (there are nine moves, so we count the root + 9 results of actions). There
are 9 options for the first move, 8 for the second (for each of those nine states),
7 for the third, etc... that's 9!, which is 362,880.

This number is a bit larger than the real set of possibilities (some games end
early), but it's a good approximation.

How can the agent choose the best set of moves to make out of all these
options?

29

Minimax Optimizes for Score

The minimax
algorithm can be
used to maximize
the final 'score' of a
game for an AI
agent.

In Tic-Tac-Toe, we'll
say that the score is
1 if the computer
wins, 0 if there's a
tie, and -1 if the
human wins.

30

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

Scoring Game States

How do we score the
intermediate states? Look
at the scores of the
state's children.

If the next move is made
by the agent, take the
maximum of the scores.

If it's made by the
opponent, take the
minimum.

Start from the leaves and
build up to the root.

31

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

1

AI max

User min

AI max

0 0 1

-1 -1 0

0

Activity: Apply Minimax

You do: given the
tree to the right,
apply minimax to
find the score of
the root node.

Note that the first
action is taken by
the AI agent.

32

O X

X X O

O

X O X

X X O

O

O X

X X O

O X

O X

X X O

O X

O O X

X X O

O X

O X

X X O

O O X

O X

X X O

O X O

O O X

X X O

O X

X O X

X X O

O O

X O X

X X O

O O

X O X

X X O

O O X

X O X

X X O

O X O

O O X

X X O

O X X

X O X

X X O

O X O

O O X

X X O

O X X

X O X

X X O

O O X

1 10 0 0 0

Minimax Algorithm

Need to use a general tree- "children" instead of "left" and "right"
def minimax(tree, isMyTurn):
 if len(tree["children"]) == 0:
 return score(tree["contents"]) # base case: score of the leaf
 else:
 results = [] # recursive case: get scores of all children
 for child in tree["children"]:
 # switch whose turn it will be for the children
 results.append(minimax(child, not isMyTurn))
 if isMyTurn == True:
 return max(results) # my turn? maximize!
 else:
 return min(results) # opponent's turn? minimize!

def score(state):
 ??? # this depends on the agent's goal

33

Complexity of Minimax

How efficient is minimax? It needs to visit every node of the tree,
so if the tree has n nodes, it runs in O(n) time.

However, complete game trees are huge; more complex games
have much larger trees. For example, in Chess there's an average of
35 possible next moves per turn, with an average of 100 turns per
game. That means there are 35100 possible states to check – way
too many!!

In general, AI agents will try to constrain the size of a game tree by
using heuristics, as we discussed in the Tractability lecture.

34

Heuristics in Minimax

The main flaw in minimax is the size of
the game tree. We can address this by
having the computer move down a set
number of levels in the game tree, then
stop, even if it has not reached an end
state.

For states that are not leaves, use a
heuristic to score the state based on the
current setup of the game. Then the
agent can use minimax to find the
next-best move based on the heuristic
scores.

If the heuristic is well-designed, its score
should approximate the real result and
minimax should still produce a good
result!

35

X O

X

O

X X O

X

O

X O

X X

O

X O

X X

O

X O

X

X O

X O

X

O X

O X O

X X

O

X O

X X O

O

X O

X X

O O

X O

X X

O O

O X O

X

X O

X O

O X

X O

X O

X O

X O

X O

X

X O O

-.33 0 0 0 0 0 .33 .33

Heuristic:
(number of possible X wins - number of possible O wins)

total number of non-tie results

stop here

...

Sidebar: Game AIs

Algorithms like minimax and the use of
heuristics have made it possible for AI
agents to beat world champions at
games like Chess, Go, and Poker.

Why did it take 19 years to get from
Chess to Go? Go has many more next
moves than Chess, so it needed more
advanced algorithms (including Monte
Carlo randomization and machine
learning!).

These AI agents will keep improving as
computers grow more powerful and
we design better algorithms.

36

DeepBlue beat chess grandmaster Garry Kasparov in 1997

AlphaGo beat 9-dan ranked Go champion Lee Sedol in 2016

