
15-112
Lecture 2

Week 9 Thu
Recursion

Instructor: Pat Virtue

Announcements
Hack 112!

OH this weekend

▪ Heads up! Staff will be split between HW9 and Hack 112

Term Project

▪ Ideation meetings (required)

▪ Mini-Lectures this week (must attend at least one)

▪ Instructions (posted soon) (will be part of pre-reading checkpoint)

Announcements
Hack 112!

OH this weekend

▪ Heads up! Staff will be split between HW9 and Hack 112

Term Project

▪ Ideation meetings (required)

▪ Mini-Lectures this week (must attend at least one)

▪ Instructions (posted soon) (will be part of pre-reading checkpoint)

General Recursive Form
def recursiveFunction():

if (this is the base case):

do something non-recursive

else:

do something recursive

Recursion Example
▪ Recursive case

▪ Base case

▪ Recursion errors

▪ Call Stack

▪ Visualizing recursion

▪ Debugging recursion

Poll 1
Which is the best base case

A.

B.

C.

D.

E.

if n == 0

return 0

if n == 0

return 1

if n == 1

return 0

if n == 1

return 1

if n == 2

return 3

Debugging!
Notes: Recursive Debugging

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html#recursiveDebugging

Hazards!
Notes: Hazard Extra Recursive Calls

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html#extraRecursiveCalls

Recursive thinking
Suggestion: start with the recursive case

▪ How can you reduce the problem into smaller problem(s)
that have the same structure as the original?

▪ Assume (magically) that next recursive cases will work

Multiple recursive cases
Example Fibonacci

▪ How can you reduce the problem into smaller problem(s) that have
the same structure as the original?

▪ Assume (magically) that next recursive cases will work

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html#fibonacci

Multiple recursive cases
Example Fibonacci

https://www.cs.cmu.edu/~112/notes/notes-recursion-part1.html#fibonacci

Towers of Hanoi
Goal: Move stack to a different peg

Restrictions

▪ One piece at a time

▪ Can’t put bigger piece on top of smaller

Image (left): https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg

Reminder General Recursive Form
def recursiveFunction():

if (this is the base case):

do something non-recursive

else:

do something recursive

Towers of Hanoi
Recursive case

▪ Let’s start with magic!

Towers of Hanoi
Recursive case

▪ Let’s start with magic!

import magic # For now :)

def move5(start, end, temp):

Move 5 pieces from start to end

magic.move4(start, temp, end)

print(f"Move piece from {start} to {end}")

magic.move4(temp, end, start)

Revisit Merge Sort
Merge sort: 𝑂(𝑁 log 𝑁)

Merge concept:

Assume you had two piles that were already independently sorted.

Could you shuffle them together into one sorted pile in O(N)?

Fractals
Mandelbrot set

https://www.youtube.com/watch?v=u1pwtSBTnPU

Reminder: Fractals
Koch curve

Reminder: Fractals
Koch curve

Reminder: Fractals
Koch curve
def drawFractal(app, canvas, level, start, end):

dist = math.sqrt((end[0]-start[0])**2 + (end[1]-start[1])**2)

if level == 0 or dist <= 1:

canvas.create_line(start[0], start[1], end[0], end[1])

else:

point1, point2, point3 = newKochPoints(start, end)

drawFractal(app, canvas, level-1, start, point1, color)

drawFractal(app, canvas, level-1, point1, point2, color)

drawFractal(app, canvas, level-1, point2, point3, color)

drawFractal(app, canvas, level-1, point3, end, color)

Reminder: Fractals
Koch curve
def newKochPoints(start, end):

Point1

One third of the way from start to end

point1x = (end[0]-start[0])*1/3 + start[0]

point1y = (end[1]-start[1])*1/3 + start[1]

point1 = (point1x, point1y)

Point3

Two thirds of the way from start to end

point3x = (end[0]-start[0])*2/3 + start[0]

point3y = (end[1]-start[1])*2/3 + start[1]

point3 = (point3x, point3y)

Point2 ...

Reminder: Fractals
def newKochPoints(start, end):

...

Point2

Start with halfway between start and end

point2x = (end[0]-start[0])*1/2 + start[0]

point2y = (end[1]-start[1])*1/2 + start[1]

perpendicular change, scaled appropriately

dy = -(end[0]-start[0])

dx = (end[1]-start[1])

scale = math.sqrt((1/3)**2 - (1/6)**2)/1

point2x += scale*dx

point2y += scale*dy

point2 = (point2x, point2y)

return (point1, point2, point3)

Reminder General Recursive Form
def recursiveFunction():

if (this is the base case):

do something non-recursive

else:

do something recursive

