
15-112 Homework 3 Page 1 of 9

15-112: Introduction to Programming and Computer Science,
Fall 2020

Homework 3 Programming: Functions, Loops, and Lists

Due: Tuesday, September 15, 2020 by 22:00

This programming homework is designed to get you more practice with functions, loops,
and lists. Your submission will be made through the web interface of Gradescope. In this
homework, you will be writing nine functions. Write all functions in the same file and call
that file YourAndrewIDhw3.py. You should not have any test code in this file besides the
function definitions required in this handout plus any other helper functions you may want
to write. You should not have any main code that is executed. Your functions should be
named according to the specifications given in the questions below. Again, if you want to
write helper functions within the same file to help you organize your code, you are more
than welcome to do so and you can name them whatever you want. You should submit this
python file on Gradescope

1 Style
This is the first homework where you will be graded on style. In this course, I discourage
(read forbid) you to read other student’s code. However, as a software developer, you will
need to read code much more often than writing. It pays to adopt good programming style
so that your code is readable and, in turn, maintanable. Although there are several style
guides out there, a majority of them have common conventions. You can read the official
Python style guide at https://www.python.org/dev/peps/pep-0008/.

We will use the following rubric1 for grading style points. You can lose a maximum of 5
points for style errors.

• Ownership

– You must include your name and andrewId in a comment at the top of every file
you submit.

– This is good practice for later in life, when you will want to document all code
that you contribute to projects.

– 2-point error: not writing your name/andrewId in a submitted file

• Comments
1Adopted with minor modifications from https://www.cs.cmu.edu/~112/notes/notes-style.html

https://www.python.org/dev/peps/pep-0008/
https://www.cs.cmu.edu/~112/notes/notes-style.html

15-112 Homework 3 Page 2 of 9

– You should write concise, clear, and informative comments that supplement your
code and improve understanding.

– Comments should be included with any piece of code that is not self-documenting.

– Comments should also be included at the start of every function (including helper
functions).

– Comments should not be written where they are not needed.

– 5-point error: not writing any comments at all.

– 2-point error: writing too many or too few comments, or writing bad comments.

• Helper Functions (Top-Down Design)

– You should use top-down design to break large programs down into helper func-
tions where appropriate.

– This also means that no function should become too long (and therefore unclear).

– 5-point error: not using any helper functions (where helper functions are needed).

– 2-point error: using too many or too few helper functions.

– 2-point error: writing a function that is more than 20 lines long. Exceptions:
blank lines and comments do not count towards this line limit, and this rule does
not apply to graphics functions and init()/run() functions in animations.

• Variable Names

– Use meaningful variable and function names (whenever possible).

– Variables and functions should be written in the camelCase format. In this for-
mat, the first letter is in lowercase, and all following words are uppercased (eg:
tetrisPiece).

– Variable names should not overwrite built-in function names; for example, str is a
bad name for a string variable. Common built-in keywords to avoid include dict,
dir, id, input, int, len, list, map, max, min, next, object, set, str, sum, and type.

– 5-point error: not having any meaningful variable names (assuming variables are
used).

– 2-point error: using some non-meaningful variable names. Exceptions: i/j for
index/iterator, c for character, s for string, and n/x/y for number.

– 2-point error: not using camelCase formatting.

– 2-point error: using a built-in function name as a variable.

• Unused Code

– Your code should not include any dead code (code that will never be executed).

– Additionally, all debugging code should be removed once your program is com-
plete, even if it has been commented out.

15-112 Homework 3 Page 3 of 9

– 2-points error: having any dead or debugging code.

• Formatting

– Your code formatting should make your code readable. This includes:

∗ Not exceeding 79 characters in any one line (including comments!).
∗ Indenting consistently. Use spaces, not tabs, with 4 spaces per indent level

(most editors let you map tabs to spaces automatically).
∗ Using consistent whitespace throughout your code.
∗ Good whitespace: x=y+2, x = y+2, or x = y + 2
∗ Bad whitespace: x= y+2, x = y +2, or x = y + 2

– 2-point error: having bad formatting in any of the ways described above.

2 So many triangles
So there are different types of triangles. I knew for the longest time that there are right
triangles, isosceles, scalene, and equilateral triangles but, until I started teaching my son
Geometry over one summer, I did not know that there were obtuse angled triangles, acute
angled triangles, and even acute angled isosceles triangles. The following is a list of triangles
that I found and I am sure there are more

• Equilateral triangle.

• Right triangle.

• Obtuse angled scalene triangle.

• Obtuse angled isosceles triangle.

• Acute angled scalene triangle.

• Acute angled isosceles triangle.

The cool thing is that you can use the measure of the three sides to figure out if, infact,
the three sides can represent a triangle or not , and if they can, what kind of triangle they
represent.

Task 1 (4 points) Your task is to write a function that will take three values as input
parameters. These values represent the measure of three sides of a triangle and you can
assume that these numbers would be integers. You function will determine whether these
three sides represent a triangle and if so what kind of triangle. Based on this determination,
the function should return the appropriate value based on the following list (Notice that the
function never returns 2 - don’t ask me why):

• Sides cannot be a trianlge - return 0

15-112 Homework 3 Page 4 of 9

• Right triangle - return 1.

• Equilateral triangle - return 3.

• Obtuse angled scalene triangle - return 4.

• Obtuse angled isosceles triangle - return 5.

• Acute angled scalene triangle - return 6.

• Acute angled isosceles triangle - return 7.

You should call this function whichTriangle.

3 Error Checking
We have seen in some lecture notes that if we want to read a float from the user, we use
the function raw_input() to read a string from the user and then use the function float()
to convert that string to a float number. We also learned that if the user enters an invalid
number, our program will crash. Now we don’t like programs that crash. So, we would like
to check if a string can be a float before we attempt to convert it to a float. This way, if the
string is not float, we can print an error message and exit gracefully instead of crashing the
program. If would be nice to have a function called isFloat that takes an input of string and
returns back True if the input is a valid float and False if it is not. We can use this function
in our programs as given below:

inp = raw_input("Enter your QPA: ")
if(not isFloat(inp)):

print "You entered a value that is not a valid QPA. Exiting gracefully :)"
exit()

else:
we can safely decode the float now
qpa = float(inp)

Task 2 (4 points) Your task is to write the isFloat function that checks the string passed
to it for validity of being a float number. If the input is a valid float number, it should
return True, otherwise, it should return False. I will be calling the function as shown in the
above example, so make sure the return values, function name, and input parameters are
appropriate. You should NOT use a try/except structure for this function.

4 Base Bafflement
Numbers can be written in many different ways. For example, we know that the decimal

numbers we use everyday such as 12, 4 and 21 are represented inside the computers as binary
numbers: 1100, 100 and 10101 respectively or hexadecimal numbers: 14, 4, 25. The reason
all these numbers represent the same values is that they all follow the number base systems,
but on different bases (decimal is base 10, octal is base 8 and binary is base 2).

15-112 Homework 3 Page 5 of 9

We represent our decimal numbers using the digits from 0..9 where the position of each
digit determines the power of 10 that this digit should be multiplied with. For instance the
number 432 is broken down to:

432 = (4× 102) + (3× 101) + (2× 100)

We can generlize this decimal system to:

anan−1 . . . a2a1a0 = (an × 10n) + (an−1 × 10n−1) + · · ·+ (a2 × 102) + (a1 × 101) + (a0 × 100)

In fact, this can be generalized to any number with base b:

anan−1 . . . a2a1a0 = (an × bn) + (an−1 × bn−1) + · · ·+ (a2 × b2) + (a1 × b1) + (a0 × b0)

In this task, you will help write a base-converter that takes in a number presented in b1
and returns the same value in a different base b2. In order to convert from one base to
another, we need to do arithmetic in base other than which can get really confusing. So to
make things easier, we will convert the number from b1 to decimal, first.

Task 3 (4 points) . Having understood how base-systems work, you should now be able to
write a python function toDecimal(n, b) that takes in any number n written in base b and
returns the number in base 10.

Now all we need to do is convert the result from decimal to b2. We can do this by repeatedly
dividing the number by b2 and keeping track of the remainders. For example to convert 21
from decimal to hexadecimal (base-8):

21 = 8× 2 + 5

2 = 8× 0 + 2

The remainders in this case are 5 and 2. Notice that the base-8 number of 21 is 25 not 52!
By dividing repeatedly, we get the new base’s digits in reverse order.

Task 4 (2 points) . Use the function you created in previous task to create another func-
tion convertBase(n, b1, b2) that takes n as a number presented in base b1 and returns this
number’s representation in base b2.

5 Cryptarithm
a cryptarithm is a puzzle where we start with a simple arithmetic statement but then we
replace all the digits with letters (where the same digit is replaced by the same letter each
time). We will limit such puzzles to strings the form “A+B=C” (no spaces), where A, B,
and C are positive integers. For example, “SEND+MORE=MONEY” is such a puzzle. The
goal of the puzzle is to find an assignment of digits to the letters to make the math work out
properly. For example, if we assign 0 to “O”, 1 to “M”, 2 to “Y”, 5 to “E”, 6 to “N”, 7 to “D”,
8 to “R”, and 9 to “S” we get:

15-112 Homework 3 Page 6 of 9

S E N D 9 5 6 7
+ M O R E + 1 0 8 5
--------- ---------
M O N E Y 1 0 6 5 2

And so we see that this assignment does in fact solve the problem! Now, we need a way to
encode a possible solution. For that, we will use a single string where the index of the letter
corresponds to the digit it represents. Thus, the string “OMY −−ENDRS” represents the
assignments listed above (the dashes are for unassigned digits).

Task 5 (5 points) Write the function solvesCryptarithm(puzzle, solution) that takes two
strings, a puzzle (such as “SEND+MORE=MONEY”) and a proposed solution (such as
“OMY−−ENDRS”). Your function should return True if substituting the digits from the
solution back into the puzzle results in a mathematically correct addition problem, and False
otherwise. You do not have to check whether a letter occurs more than once in the proposed
solution, but you do have to verify that all the letters in the puzzle occur somewhere in the
solution (of course). You may not use the eval() function.

6 Hopscotch
Task 6 (4 points) Write a function called findExit, that takes list of integers as input pa-
rameters. Each number in this list represents the number of hops you need to make. You
start from index 0 and make as many hops as the number at index 0. Each time you land
on an index, make the number of hops at that index. Determine whether you can reach the
last index or not. Return True if you reach the last index, and False otherwise. In an empty
list,there is no last index, so you can never reach it. For example:

• findExit([2,0,1,0]) returns True

• findExit([1,1,0,1]) returns False

• findExit([1,2,0,3,1]) returns False

7 Nearest Word
Task 7 (5 points) Write a function nearestWords(wordlist, word) that takes a sorted wordlist
and a single word (all words in this problem will only contain lowercase letters). If the word
is in the wordlist, then that word is returned. Otherwise, the function returns a list of all
the words (in order) in the wordlist that can be obtained by making a single small edit on
the given word, either by adding a letter, deleting a letter, or changing a letter. If no such
words exist, the function returns None.

15-112 Homework 3 Page 7 of 9

8 Transpose Matrix
We can use 1-D lists to represent 2-D data. Matrices are an example of 2-D data that we
will represent using 1-D lists. Consider the following matrix: 12 3 −2 5

1 24 7 15
3 9 5 −13

The above matrix can be represented by a 1-D list: [12,3,-2,5,1,24,7,15,3,9,5,-13]. Know-

ing that the number of columns (numColumns) and rows (numRows) in the 2-D data, given
a row (r) and a column (c) we can find the index into the list as:

index = r ∗ numColumns+ c

Similarly, if we are given an index - Let’s say i and we want to find the row and column,
we can use the following equations:

row = index/numColumns

and

column = index%numColumns

Task 8 (6 points) Write a function transpose, that takes a list as input parameter. This list
represents a matrix where the number of rows and columns are also passed to your function
as arguments (in the order: matrix, rows , columns). Your function should find the transpose
of the matrix and return that as a 1-D list.

9 Oh So Many Units
Most questions of physics and chemistry require conversion between units to get the correct
units needed for an equation. Einstein’s famous equation E = mc2 allows you to find Energy
in Joules when you multiply mass in Kilograms by the square of the speed of light in meters
per second. For this equation to work correctly, the units of each quantity have to be exact.
If I know the mass of an object in pounds (pounds measure force but oh well), I would have
to convert pounds to kilograms first and then apply the equation. In this task, we (that
means you) will be performing conversions with length, mass, time and volume units.

Task 9 (6 points) Write a function called convertUnits that takes 4 input arguments. These
inputs are fromQuantity, fromUnit, toUnit, and category. “fromQuantity” is an amount that
represents a quantity in “fromUnit” units. Your function should convert “fromQuantity” in
“fromUnit” units, to a number in “toUnit” units. You should follow the tables below and only
use the numbers in the table or else you will not get the points.

For example, the function call convertUnits(1000.0,“mm”,“m”,“length”) is asking you to
convert 1000.0 millimeters to meters using length category. The return value of the above
call should be 1.0.

15-112 Homework 3 Page 8 of 9

The function call convertnits(156.5,“lb”,“kg”,“mass”) converts 156.6 pounds to kilograms
and returns 70.987148.

Your function should be able to handle the following units - we will only ask you to convert
between units that belong to the same category (for example, we will not ask you to convert
between seconds and meters):

Unit Description Category Conversion
g grams mass 1 g = 10−6 ton
g grams mass 1 g = 0.0022 lb
ton tons mass 1 ton = 106 g
lb pounds mass 1 lb = 453.592 g
s seconds time 1 s = 0.0003 hr
s seconds time 1 s = 0.0167 min
hr hours time 1 hr = 3600.0 s
min minutes time 1 min = 60.0 s
m meters length 1 m = 1.0936 yard
m meters length 1 m = 3.2802 feet
m meters length 1 m = 39.3701 inch

yard yards length 1 yard = 0.9144 m
foot feet length 1 foot = 0.3048 m
inch inches length 1 inch = 0.0254 inch
C Celsius Temperature Kelvin = Celsius + 273.15
K Kelvin Temperature Celsius = Kelvin - 273.15
C Celsius Temperature Fahrenheit = (9/5)*Celsius + 32
F Fahrenheit Temperature Celsius = (5/9)*(Fahrenheit - 32)

15-112 Homework 3 Page 9 of 9

Your function should also be able to handle the following prefixes before each unit.

Prefix Symbol in function Meaning
Terra T 1012

Giga G 109

Mega M 106

Kilo k 103

Deci d 10−1

Centi c 10−2

Milli m 10−3

Micro u 10−6

Nano n 10−9

Pico p 10−12

	Style
	So many triangles
	Error Checking
	Base Bafflement
	Cryptarithm
	Hopscotch
	Nearest Word
	Transpose Matrix
	Oh So Many Units

