
15-112 Homework 7 Page 1 of 9

15-112: Fundamentals of Programming and Computer Science,
Fall 2020

Homework 7 Programming: Sockets Programming and
Authentication

Due: Tuesday, October 27, 2020 by 22:00

This programming homework is designed to get you more practice with communicating over
the Internet with a server. Although you will submit your final code on Gradescope, your
work will be graded after you finish the homework - this assingment will not be autograded.
We will also grade you on the overall structure of your code to make sure you make good
design decisions. Download client.py and hw7.py from course website , rename hw7.py file
as YourAndrewIDhw7.py. Make sure you read both files and understand how the code
is structured. Write all the missing functions in the hw7.py file (You are encouraged to also
create your own helper functions). You will submit only the Y ourAndrewIDhw7.py file on
Gradescope.

1 Getting Started
As you probably know, different programs can communicate with each other over networks.
This allows computers to share resources and services. In one very popular networking
model, we call the program that requests the service as a client and the program which
provides the service as a server. For example, when you check your bank account from your
computer, a client program in your computer forwards a request to a server program at
the bank. Computer transactions in which the server fulfills a request made by a client are
very common and the client/server model has become one of the central ideas of network
computing.

In this homework, you will be implementing a client program that communicates with
a server to create a simple chat service. The client connects to the server using the socket
interface. There is some starter code available, you will fill in the missing functions.To start
this homework, you will need to connect and communicate with a server.
Your program will work in the following manner:

• Your client code will establish a socket connection with the server.

• You will login to the server using your username and password - by default, your user
name and password are the same as your andrewID.

• Once logged in, you will use the functions you implement to send and receive friend
requests, messages and files from other clients.

15-112 Homework 7 Page 2 of 9

• You will write a different function for each task in order to organize your code better.
connection every time.

• You will be graded on your coding style for this assignment. You can always ask your
instructors for coding style guidelines.

Task 0. To start this homework, you will need to connect and communicate with a server.
Fill in the function StartConnection that takes an IP Address and port number as input
parameters and starts a socket connection with this server. The server for this homework is
at IP Address 86.36.46.10 and is listening on port number 15112.

2 Knock knock!
In this task you will write code to login to the server. You already know your username and
password. You will use the following protocol for login:

• Send the command “LOGIN username\n” to the server.

• The server will respond back with “LOGIN username CHALLENGE” where CHAL-
LENGE is a string you will use to calculate your messagedigest“

• Send the command ”LOGIN username messagedigest\n“ to the server.

• The server will response back with either success or failure message. If you are suc-
cessful in logging in, you can sending commands to the server.

We will be using a variant of the popular message digest called MD5.The messagedigest can
be calculated in the following way:

• Lets say your password is PD = ”p1p2p3p4p5...pn“ where p1 is the first character, p2
is the second character and so on.

• Lets say the challenge string is CH = ’c1c2c3c3....cm” where c1 is the first character,
c2 is the second character and so on.

• n is size of password and m is size of challenge string. There is no relationship between
n and m.

• Create a string called message which is a concatenation of PD and CH in this order

• Create a block that is 512 characters long. The first n+m characters of this block are
the same as message created in the previous step. The last three characters of the
block determine the size of the string which is equal to n+m. The missing character in
the middle are filled in with character 1 followed by enough copies of the string m+n to
make block 512 characters long. If adding an additional m+n string makes the block
bigger than 512 character, fill the remaining characters with 0’s. For example, let’s
say password is srazak and challenge received from the server is ABCD123abcd. The
block will look like the following:

15-112 Homework 7 Page 3 of 9

"srazakABCD123abcd1srazakABCD123abcdsrazakABCD123abc
dsrazakABCD123abcdsrazakABCD123abcdsrazakABCD123abcds
razakABCD123abcdsrazakABCD123abcdsrazakABCD123abcdsra
zakABCD123abcdsrazakABCD123abcdsrazakABCD123abcdsraza
kABCD123abcdsrazakABCD123abcdsrazakABCD123abcdsrazakA
BCD123abcdsrazakABCD123abcdsrazakABCD123abcdsrazakABC
D123abcdsrazakABCD123abcdsrazakABCD123abcdsrazakABCD1
23abcdsrazakABCD123abcdsrazakABCD123abcdsrazakABCD123
abcdsrazakABCD123abcdsrazakABCD123abcdsrazakABCD123ab
cdsrazakABCD123abcd000000000000000017"

The last three characters “017”, represent the size of the string “srazakABCD123abcd”

• Break the above block into sixteen 32-character chunks. Find the sum of ASCII values
of each character of each chunk and save it in M such that M is list of 16 integers.
M[j], 0 <= j <= 15, where M[0] is Sum of ASCII characters of first 32 characters of
the above block, M[1] is the sum of ASCII values of next 32 characters and so on. For
the example above, the values of these sixteen chunks are (these numbers are given for
your testing purposes):

M[0]= 2676
M[1]= 2776
M[2]= 2825
M[3]= 2789
M[4]= 2793
M[5]= 2720
M[6]= 2705
M[7]= 2695
M[8]= 2725
M[9]= 2729
M[10]= 2823
M[11]= 2807
M[12]= 2791
M[13]= 2752
M[14]= 2705
M[15]= 2008

• Process each chunk following the pseudocode given below (adapted from pseudocode
given at http://en.wikipedia.org/wiki/MD5#Pseudocode): s and K are lists with
64 values shown below.

s[0..15] := {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22}
s[16..31] := {5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20}
s[32..47] := {4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23}

http://en.wikipedia.org/wiki/MD5#Pseudocode

15-112 Homework 7 Page 4 of 9

s[48..63] := { 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 }

K[0.. 3] := { 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee }
K[4.. 7] := { 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501 }
K[8..11] := { 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be }
K[12..15] := { 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 }
K[16..19] := { 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa }
K[20..23] := { 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 }
K[24..27] := { 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed }
K[28..31] := { 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a }
K[32..35] := { 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c }
K[36..39] := { 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 }
K[40..43] := { 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05 }
K[44..47] := { 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 }
K[48..51] := { 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 }
K[52..55] := { 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1 }
K[56..59] := { 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1 }
K[60..63] := { 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }

//Initialize variables:
var int a0 := 0x67452301 //A
var int b0 := 0xefcdab89 //B
var int c0 := 0x98badcfe //C
var int d0 := 0x10325476 //D
var int A := a0
var int B := b0
var int C := c0
var int D := d0

//Main loop:
for i from 0 to 63

if 0 <= i <= 15 then
F := (B and C) or ((not B) and D)
F := F & 0xFFFFFFFF
g := i

else if 16 <= i<= 31
F := (D and B) or ((not D) and C)
F := F & 0xFFFFFFFF
g := (5xi + 1) mod 16

else if 32 <= i <= 47
F := B xor C xor D
F := F & 0xFFFFFFFF
g := (3xi + 5) mod 16

else if 48 <= i <= 63
F := C xor (B or (not D))
F := F & 0xFFFFFFFF

15-112 Homework 7 Page 5 of 9

g := (7xi) mod 16
dTemp := D
D := C
C := B
B := B + leftrotate((A + F + K[i] + M[g]), s[i])
B := B & 0xFFFFFFFF
A := dTemp

end for
//Add this chunk’s hash to result so far:

a0 := (a0 + A) & 0xFFFFFFFF
b0 := (b0 + B) & 0xFFFFFFFF
c0 := (c0 + C) & 0xFFFFFFFF
d0 := (d0 + D) & 0xFFFFFFFF

result := a0 append b0 append c0 append d0

//leftrotate function definition
leftrotate (x, c)

return (x << c)&0xFFFFFFFF or (x >> (32-c)&0x7FFFFFFF>>(32-c));

and, or, not are bit-wise operators.

• The result variable calculated above is a string that is the final message digest.

This algorithm is hard to debug since the only way for you to know that it does not
work is if the server rejects the hash value you sent. To make the debugging task easier,
use the following values while debugging your MD5 hash code:

Let’s assume that your password is “passwaard” and the challenge sent by the server
is “ABCDEFGHIJKLMNOP”.

The 512-character Block will be as follows:

passwaardABCDEFGHIJKLMNOP1passwaardABCDEFGHIJKLMN
OPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFGHIJKLM
NOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFGHIJKL
MNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFGHIJK
LMNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFGHIJ
KLMNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFGHI
JKLMNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFGH
IJKLMNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEFG
HIJKLMNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDEF
GHIJKLMNOPpasswaardABCDEFGHIJKLMNOPpasswaardABCDE
FGHIJKLMNOP00000000025

Using the above block, the value of 16 integers in the list M will be:

15-112 Homework 7 Page 6 of 9

M[0]= 2830
M[1]= 2703
M[2]= 2630
M[3]= 2725
M[4]= 2883
M[5]= 2602
M[6]= 2651
M[7]= 2843
M[8]= 2732
M[9]= 2623
M[10]= 2703
M[11]= 2880
M[12]= 2631
M[13]= 2644
M[14]= 2802
M[15]= 2222

At the end of the first iteration of the “Main” loop, before variable ’A’ is assigned the
value of dTemp, the values of different variables should be:

at i = 0 :
A= 1732584193
B= 2770693684
C= 4023233417
D= 2562383102
F= 2562383102
g= 0
dtemp= 271733878

At the end of the iteration of the “Main” loop where i is 16, before variable ’A’ is
assigned the value of dTemp, the values of different variables should be:

at i = 16 :
A= 41450812
B= 779479484
C= 925865335
D= 2435026032
F= 3072558453
g= 1
dtemp= 1872834365

Task 1. (10 points) Write the functions __init__, startConnection, and login. The login
function takes a username as a string and the password as a string then applies the protocol
described above to log this user into the server. The function should return true if the logging
in process was successful and false otherwise.

15-112 Homework 7 Page 7 of 9

3 Who’s there?
Now that you’re logged into the chat service, you can start using the services provided by
the chat server. If you type Menu, you will see a list of all possible services:

• Menu: Shows a Menu of acceptable commands

• Users: List all active users

• Friends: Show your current friends

• Add Friend: Send another friend a friend request

• Send Message: Send a message to a friend

• Send File: Send a file to a friend

• Requests: See your friend requests

• Messages: See the new messages you received

• Exit: Exits the chat client

Currently, however, the chat does not communicate with the server and it simply returns
trivial answers to each of these commands. Your job is to study the protocol described
below, then use it to complete the implementation of the chat client. A protocol is a set of
communication rules shared between any two computers that defines the messages that they
can exchange and what each message means.
size is the size of the string being sent from beginning to end including the size field. size
should always be 5 digits long. (not including the null terminator). Notice that every time
a message is correctly sent to the server, the client must receive some reply.
Task 2. (10 points) Write the functions getUsers(@users), getFriends(@friends) and
getRequests(@rxrqst) that eachreturns a list of usernames. The first should return a list of
active users, the second should return a list of users who you have as friends and the third
should return a list of users who requested to become your friends. Keep in mind that the
message sent by server might be longer than the number of bytes you are reading. Make sure
you check the “size” field in each message to confirm you have read the message completely.

Task 3. (10 points) Write the functions sendFriendRequest(@request@friend) and
acceptFriendRequest(@accept@friend) that each takes a username as input parameters
and carries out the correct task sendFriendRequest sends a friend request to the server
and acceptFriendRequest sends a friend request acceptance to the server). Both functions
should return true if the task was carried out successfully and false otherwise.

Task 4. (5 points) Write the function sendMessage(@sendmsg) that takes a username and
a string as parameters and sends the string (message) to the user. This function should
return true if the message is sent succesfully and false otherwise.

15-112 Homework 7 Page 8 of 9

Message from Client (Your Code) Reply From Server

@users @size@users@n@[user1]@[user2]@....@[usern]

@friends @size@friends@n@[friend1]@[friend2]@
....@[friendn]

@size@request@friend@[username] @ok

@size@accept@friend@[username] @ok or @no such friend request

@size@sendmsg@[username]@[messageText] @ok

@size@sendfile@[username]@[filename] @ok
@[fileContent]

@rxrqst @size@n@[user1]@[user2]@...@[usern]

@rxmsg @size@n@msg@[user1]@[message1]@msg@
[user2]@[message2]...@file@[userm]
@[filenamem]@[fileContentm]@file@[userm+1]
@[filenamem+1]@[fileContentm+1]....
@file@[usern]@[filenamen]@[fileContentn]

Task 5. (5 points) Write the function sendFile(@sendfile) that takes a username and a
filename as input parameters. This function should read the file and send it in the correct
format to the user identified. It should then return true if the file was sent correctly and
false otherwise.

Task 6. (10 points) Write the function getMail(@rxmsg) that returns a tuple with two lists:
list of tuples (user, message) representing all received messages and a list of tuples (user,
filename) representing all files received. Your function should also save all the files that it
receives to local directory under the filename it got.
Task 7. (0 points) In this assignment, you will be not be explicitly graded on style. You
should, in general, follow the same guidelines as earlier assignments. Following are some
suggestions on how to make your code look better:

• Make sure your code is properly commented

• Make sure you use variable names that represent data being stored in these variables

• Put your name and andrewID on the top of each file as a comment.

• You are required to break your tasks into appropriate functions and call those func-
tions from within your program. Make sure you don’t make functions for the sake of

15-112 Homework 7 Page 9 of 9

making functions but have some logical division of tasks. Before each function, have a
block of comments that explains what this function does, what each input means, any
restrictions on the input (for example: x should be a prime number), and what return
value, if any, to expect from the function.

	Getting Started
	Knock knock!
	Who's there?

