
Name: Andrew Id:

15-112 Spring 2023 Quiz 9
Up to 20 + 10 minutes (finish within 20 minutes for 20% proficiency bonus). No calculators, no notes, no

books, no computers. Show your work!

1. (3 points) Short Answer: Consider the following fractals drawn with a maximum recursion depth of 1, 2,
and 4. Assume that the function drawCierclinskyFractal is called to draw the fractal. In the code, how
many calls to drawCierclinskyFractal and canvas.create_oval occur in the base case? What about
the recursive case?

Maximum depth = 1 Maximum depth = 2 Maximum depth = 4

Base Case Recursive Case
Number of calls to
drawCierclinskyFractal

Number of calls to
drawCierclinskyFractal

Number of calls to
canvas.create_oval

Number of calls to
canvas.create_oval

2. (5 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing
else) in the box next to the code. Ensure strings are enclosed with quotes and the uppercase and lowercase
are distinguishable.

def recFunc(L, m):
print(f"{L} {m}")
L.append(m)
if m == 0:

return 42
else:

return m + recFunc(L, m//2)

def ct(n):
L = []
result = recFunc(L, n)
return L + [result]

print(ct(3))

Page 1 of 3

3. (4 points) Reasoning Over Code: Find an argument, s, for the function roc to cause it to return True.
Place your answer (and nothing else) in the box below the code. Make sure strings are enclosed with quotes.
Note: rocHelper(s, d) is a helper function, and your answer should refer to roc(s).

def rocHelper(s, d):
if d == 1:

return (s[0] == 'l')
if d == 2:

return (s[:2] == 's4')
h = d//2
return rocHelper(s[:h], h) and rocHelper(s[h:], d-h)

def roc(s):
return len(s) == 5 and rocHelper(s, 5)

Page 2 of 3

4. (8 points) Free Response: Write the recursive function recGetDigitFreqs(n) that, given an integer n,
returns a dictionary that maps each digit of n to the number of times the digit occurs in n. For instance,

assert(recGetDigitFreqs(15112) == {2: 1, 1: 3, 5: 1})
assert(recGetDigitFreqs(2023) == {3: 1, 2: 2, 0: 1})
assert(recGetDigitFreqs(-2023) == {3: 1, 2: 2, 0: 1})
assert(recGetDigitFreqs(11223344) == {4: 2, 3: 2, 2: 2, 1: 2})
assert(recGetDigitFreqs(0) == {0: 1})
assert(recGetDigitFreqs(1000) == {0: 3, 1: 1})
assert(recGetDigitFreqs(-111) == {1: 3})

Your solution must use recursion. If you use any loops or iterative functions, you will receive
no points on this problem. You should not convert n to a string.

Page 3 of 3

