
Fundamentals of Programming &
Computer Science

CS 15-112
Efficiency

March 5

Hend Gedawy

There are Many Ways to Solve
Any Given Problem

2

Some are Better or more Efficient than Others !

What is Efficiency?

Efficiency is a measure of how much of
a resource an algorithm uses!

3

Time Space

Why Care About Time Efficiency?

4

User Experience

Compute Resources Battery Lifetime

Business/Commercial Costs

How to Assess Time Efficiency?

Measure Elapsed Time

5

Why isn’t the elapsed time for
an algorithm constant?

• Hardware Differences:
• CPU speed, number of cores, memory (RAM), disk speed, etc.

• Operating System:
• Different OSs may have different scheduling algorithms, memory

management strategies, and other system-level optimizations that can impact
runtime.

• Resource Utilization:
• If the system is under heavy load or if other resource-intensive tasks are

running concurrently, the algorithm may experience slower execution times.

6

How to Assess Time Efficiency?

We want to measure the efficiency of an algorithm
independent of the speed of the computer it is run on.

A better alternative is Counting Steps that the code takes
… Given input of size (N) …

Very good proxy to time performance
(but always constant)

7

Counting Steps

Two rules:

• A step takes constant amount of time;
i.e. time doesn’t increase as the input size (called n) increases

• Generally, A line of code is a single step if the whole line
runs in constant time

8

Counting Steps

9

Input Size (n) is
the integer n

1 step

1 step for range
Loop runs for n iterations

1 step

update i -----1 step
2

1+
2n

1

Total Number of Steps: 1+1+ 2n = 2n + 2

Counting StepsInput Size (n) is
the size of the list

Counting Steps

Why does len() take a constant amount of time (1 step)???
How come it is not affected by List size??

11

Len() takes constant runtime no matter how many elements are in the list.

Because in Python the list object maintains an integer counter that
increases and decreases as you add and remove list elements

Counting Steps

12

Input Size (n) is
the size of the list

1

2 +
2n
1

Total Number of Steps: 1+ 2+ 2n + 1= 2n + 4

Total Number of Steps: 4n+ 4

Counting Steps

13

Input Size (n) is
the size of the list

1
2

1
+
2

1

1

4n

1
1

1
1

Case 2 is
the Worst

Case

In this course, we
apply worst case

analysis

n iterations

Counting Steps

14

1+
2n

1 +
n (2n+3)

1

Total Number of Steps: 1+ n (2n+3) = 2n2 +3n+1

Input Size (n) is the
passed integer value

1

n iterations

Practice

15

Practice

16

1, 1, n iterations
22 iterations

1 step --- always
1 step --- case 1 if

1 step --- case 2 else
1 step --- case 2 else

1 step – case not else

update a --- 1 step
update i --- 1 step

If-else: 2
For a loop: 22* (1+1 +1)= 66
For i loop: 1+ n*67 + 1= 67n+2
Total= 67n+2+2= 67n+4

1 step

Python Built-Ins Cost

17

The efficiency of the built-in functions in Python will affect
the efficiency of the functions they are used in.

(Built-in Functions Efficiency Table)

1 step
n iterations

1 step
1 step

1 step
1 step

Total Steps: 3n + 2

https://www.cs.cmu.edu/%7E112q/notes/efficiency.html

Python Built-Ins Cost

18

The efficiency of the built-in functions in Python will affect
the efficiency of the functions they are used in.

(Built-in Functions Efficiency Table)

n steps
1 step -- always

1 step – case1
1 step – case1

1 step – case2

Total steps: n + 3

https://www.cs.cmu.edu/%7E112q/notes/efficiency.html

Lists
Compared to

Sets/Dicts

19

What is this O that appears

with the complexity value

20

• Consider the following example complexity (steps count)
• N2 + 100N + 500
• 5N2 + 2N + 3

• We say that N2 is the highest order term. This is the term that grows the fastest.
• The rest of the terms are called lower order terms

• What would happen if we remove lower order Terms?

21

Ignoring Lower Order Terms

In general, we ignore lower order terms for efficiency because for
large inputs, they make very little difference in the total.

• We say that N2 is the highest order term. This is the term that grows the fastest.
• The rest of the terms are called lower order terms

• In general, we ignore lower order terms for efficiency because for large inputs, they
make very little difference in the total.

22

Ignoring Lower Order Terms

This is called BigO

The notion we use to describe the efficiency of a program,
without considering lower order terms or coefficients.

BigO Function Families

23

(S
te

ps
)

We define a function family by the
highest order term of a function
without any coefficients.

• For example, the N2 (quadratic)
function family, contains all the
functions where the highest order
term is N2.

• Example functions that belong to

the N2 function family
• N2+3N+25
• 3N2 +30
• 100N2+N

24

Big O – Ignoring Constants
Multiplying by a constant does not change the
relationship between the function families.
• A faster growing function family will always

eventually overtake a slower growing function
family.

Does this mean you can change your algorithm’s
function family by just changing the hardware?

Running on a faster machine, can speed up our program by a constant factor.

 You will not change your algorithm's function family by changing the hardware

• This is why we ignore coefficients for efficiency
and function families.

Practice

25

S’23 Quiz Question

Which Step
highlights
efficiency

difference for
these data

structures??

1
n

??
1 – case if

1
----------------------------------- -----------update e --- 1 step

O(N2)
O(N)
O(N)

Practice – Free Response

26

mostCommonName(L)

Write the function mostCommonName, that takes a list of names (such as ["Jane", "Aaron", "Cindy", "Aaron"], and
returns the most common name in this list (in this case, "Aaron"). If there is more than one such name, return a set

of the most common names. So mostCommonName(["Jane", "Aaron", "Jane", "Cindy", "Aaron"]) returns the set
{"Aaron", "Jane"}. If the set is empty, return None. Also, treat names case sensitively, so "Jane" and "JANE" are

different names. You should write three different versions, one that runs in O(n**2), O(nlogn) and O(n).

def mostCommonName(L):
 return 42 # place your answer here!

def testMostCommonName():
print("Testing mostCommonName()...", end="")
assert(mostCommonName(["Jane", "Aaron", "Cindy", "Aaron"]) == "Aaron")
assert(mostCommonName(["Jane", "Aaron", "Jane", "Cindy", "Aaron"]) == {"Aaron",
"Jane"})
assert(mostCommonName(["Cindy"]) == "Cindy")
assert(mostCommonName(["Jane", "Aaron", "Cindy"]) == {"Aaron", "Cindy", "Jane"})
assert(mostCommonName([]) == None) print("Passed!")

testMostCommonName()

27

28

29

What is Log?

30

L.sort() & sorted(L)
take O(nlogn)

What is Log?

31

Think of it as repeated division
For (log N), Starting at the number N, How many

times do we need to divide by 2 to get to 1

Log(8) = ??

8/2= 4
4/2=2
2/2= 1

Log (8) = 3

What is Log?

32

Think of it as repeated division
Starting at the number, How many times do we

need to divide by 2 to get to 1

Often come up in code when we are repeatedly
cutting our input size (n) in half

Real Algorithm Example

33

Binary Search

Why is it O(LogN) ???

At every iteration, you are getting rid of half of the list
So you are repeatedly dividing the input size by half

Why is Log Fast?

34

• We can see that log takes big numbers and
converts them into much smaller numbers

• So if your algorithm has log(n) complexity, this
means that if your input size is:

• Thousand – 10 steps
• million – it will only take 20 steps
• Billion- 30 steps
• Trillion – 40 steps

• Your algorithm will run very fast for large inputs.
• Logs are very small

Recap
• Steps Counting gives a standard way to assess time efficiency of an algorithm regardless of the hardware on which the

algorithm is running
• While elapsed time for a given algorithm varies depending on different factors such as hardware specifications,

operating system, and resource utilizations.

• Two rules for counting steps
• A step takes constant amount of time (i.e. time doesn’t increase as the input size (called n) increases)
• Generally, A line of code is a single step if the whole line runs in constant time

• We consider highest order term in an efficiency function and ignore lower order terms
• because for large inputs, they make very little difference

• BigO is The notion we use to describe the efficiency of a program, without considering lower order terms or coefficients.

• We define a function family by the highest order term of a function without any coefficients (Big O function families)
• For example, the N2 (quadratic) function family, contains all the functions where the highest order term is N2.

• Built-in Functions Efficiency Table

• Multiplying by a constant does not change the relationship between the function families.

• Running the program on a faster hardware only improves time performance by a constant factor

35

https://www.cs.cmu.edu/%7E112q/notes/efficiency.html

	Fundamentals of Programming & Computer Science�CS 15-112�
	There are Many Ways to Solve Any Given Problem
	What is Efficiency?
	Why Care About Time Efficiency?
	How to Assess Time Efficiency?
	Why isn’t the elapsed time for an algorithm constant?
	How to Assess Time Efficiency?
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Counting Steps
	Practice
	Practice
	Python Built-Ins Cost
	Python Built-Ins Cost
	Lists Compared to Sets/Dicts
	What is this O that appears with the complexity value
	Ignoring Lower Order Terms
	Ignoring Lower Order Terms
	BigO Function Families
	Big O – Ignoring Constants
	Practice
	Practice – Free Response
	Slide Number 27
	Slide Number 28
	Slide Number 29
	What is Log?
	What is Log?
	What is Log?
	Real Algorithm Example
	Why is Log Fast?
	Recap

