
Oneliners
Jake Zimmerman

October 20, 2016

Review

We can define variables in bash

set my_variable to the string "hello"
(no spaces around the '=')
$ my_variable="hello"

get the value of my_variable and print it
$ echo $my_variable
hello

print another_var surrounded by other text
$ another_var="some string"
$ echo lone${another_var}s
lonesome strings

Sometimes using {...} is important:
$ echo lone$another_vars
lone

Quotes can be used to group arguments

▶ No quotes
▶ spaces separate arguments

▶ Single or double quotes
▶ entire quoted argument is one argument
▶ spaces inside don’t break it up

Quotes are optional sometimes

Unquoted strings are still strings
$ echo hello
hello

Quoted strings are strings
$ echo 'hello'
hello

Quotes aren’t optional with special characters

Unquoted special characters are shell expanded
$ echo *
file1.txt folder

Quoted special characters aren't expanded
$ echo "*"
*

...unless the special character is a '$'
$ echo "$my_variable"
hello

...in which case we can use single quotes
$ echo '$my_variable'
$my_variable

We don’t have to quote; we can escape

We can use '\' to escape special characters
$ echo *
*

Escaping and quoting compound on each other
(Sometimes this is what we want)
$ echo "*"
*

Understand the difference between globs and regex

grep homework_problem(.*) homework.py
^
This is a special shell character!
We need to quote or escape it.

grep 'homework_problem(.*)' homework.py
^
It's quoted now--we're good.

Input & Output

stdin , stdout , stderr

▶ Each process…
▶ can listen for text input on stdin (standard input)
▶ can output “normal” text on stdout (standard output)
▶ can output “error” text on stderr (standard error)

Redirection

▶ Normally stdin is the keyboard, and stdout & stderr are
the terminal

▶ We can change this
▶ We Have The Technology™

Syntax Meaning
command < file.txt stdin from file.txt
command > file.txt stdout to file.txt (overwrite)
command >> file.txt stdout to file.txt (append)
command 2> file.txt stderr to file.txt (overwrite)
command 2>> file.txt stderr to file.txt (append)

/dev/null is a “black hole” file

▶ Anything sent to /dev/null is thrown away
▶ Anything read from /dev/null is empty

Pipes send stdout of one command to stdin of another

Disclaimer: this is a toy example.

We normally run grep like this:
grep TODO *

But if we give grep no arguments, it
will search on stdin. So we can do
this equivalent command
cat * | grep TODO

Oneliners

Oneliners are chains of pipes

▶ We start with some sort of data
▶ Then we filter it down

Example
$ du -h d1 | sort -hr
^ ^
| |
| `- And feed it to this command (filter)
`- Take the stdout of this command (initial data)

Useful commands

▶ Old:
▶ sed
▶ grep

▶ New:
▶ find

▶ -name
▶ -regex

▶ curl
▶ xargs

Examples

Open all PDF files not named written.pdf
find . -name "*pdf" \

| grep -v "written.pdf" \
| xargs open

Get 100 random lowercase dictionary words
shuf /usr/share/dict/words \

| head -n 100 \
| tr '[A-Z]' '[a-z]' \
| sort

Count how many times it says "Vim" on a page
curl https://jez.io \

| grep --only-matching Vim \
| wc -l

Recap

Tips for Writing Oneliners

▶ Construct oneliners iteratively!
▶ Try the first command, see what it outputs
▶ Try the first two commands, see what they output
▶ …

▶ Many tools do the same thing
▶ Choose what you’re familiar with

▶ Some tools are subtly different
▶ For example, not all commands have the same regex syntax

More resources

▶ Google is great for finding the filtering commands
▶ “Strings that don’t match…”
▶ “Sum a list of numbers”
▶ “Replace character with newline”

▶ … but don’t just run what people tell you!
▶ man pages
▶ http://explainshell.com

http://explainshell.com

	Review
	Input & Output
	Oneliners
	Recap

