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So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combining elements in a list, given a binary operation and 
base value

Can we generalize map and fold to, for example, binary trees?

Yes!  Let’s work it out.

It may be helpful to visualize map and fold for lists 
diagrammatically first, to capture the underlying pattern.
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fold f z

::

v1 ::

v2 ::

v3 [ ][ ]

f

v1 f

v2 f

v3 [ ]z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

catamorphism

n-ary constructors 
become n-ary functions
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datatype 'a leafy = Leaf of ‘a 
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fun lmap f Leaf(x) = Leaf(f x) 
  | lmap f (Node(l,r)) = Node(lmap f l, lmap f r) 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
fun lfold f g Leaf(x) = g(x) 
  | lfold f g (Node (l, r)) = 
    f (lfold f g l, lfold f g r)
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(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *) 

val lstringify = lmap Int.toString 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
val leafysum = lfold (op +) (fn x => x)



Examples for lmap and lfold

43

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *) 

val lstringify = lmap Int.toString 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?
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(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *) 

val lstringify = lmap Int.toString 

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *) 
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?

(* lstringify : int leafy -> string leafy *) 

(* leafysum : int leafy -> int *)
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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datatype 'a option = NONE | SOME of 'a 

(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 
fun opmap f NONE = NONE 
  | opmap f (SOME x) = SOME (f x) 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
fun opfold f z NONE = z 
  | opfold f z (SOME x) = f x
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(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 

val ostringify = opmap Int.toString 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
val osum = opfold (fn x => x) 0
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(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 

val ostringify = opmap Int.toString 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?
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(* opmap: ('a -> 'b) -> 'a option -> 'b option *) 

val ostringify = opmap Int.toString 

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *) 
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

(* ostringify : int option -> string option *) 

(* osum : int option -> int *)
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Another use of HOF: Staging

59

Staging is a coding technique 
that has a function perform useful work 
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

to specialize inexpensive part for specific argument.

Improves efficiency when specialized function used many times.
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fun f (x:int, y:int) : int = 
    let  
       val z : int = horriblecomputation(x) 
    in 
       z + y 
    end

Consider the following function:

Suppose the horrible computation takes 10 months. 
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2) 
f (5,3)

If only we could recall horriblecomputation(5)!

without mutation
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fun f (x:int, y:int) : int = 
    let  
       val z : int = horriblecomputation(x) 
    in 
       z + y 
    end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Maybe currying can help?

Let’s define a curried version of f!
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fun g (x:int) (y:int) : int = 
    let  
       val z : int = horriblecomputation(x) 
    in 
       z + y 
    end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)
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How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and 
thus s a value!

No application, and thus no 
evaluation of body!
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How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is the closure 
returned by g(5).

The horrible 
computation has not yet 

happened :-(
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We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[ g5 ][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Similarly, g5(3) will take 10 months.

Defining g in place of f has not yet helped!

10 months!
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Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this 
computation here.

Move is valid because the computation does not depend on y.

Such rearrangement of code — putting it in the “right spot” — 
we refer to as staging.

Horrible 
computation hidden 

underneath inner lambda.
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    let  
       val z : int = horriblecomputation(x) 
    in 
       (fn y : int => z + y) 
    end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

h5 (3)

How long do the 3 lines above take?

Inner lambda free 
of hc(x)!
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Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months! This is the closure 
returned by h(5).
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We now have the following binding:

fn y => z+y

env[ h5 ][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Similarly, h5(3) will be very quick.

Factoring hc(x) out of the inner lambda has improved efficiency!

quick!



Staging

72



Staging

72

Summary:



Staging

72

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months



Staging

72

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months



Staging

72

Summary:

f (5,2)

f (5,3)
> 10 months
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val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months

val h5 = h(5)

h5 (2)
> 10 months

fast
h5 (3) fast
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X Y Z

g f

f ⚬ g
:’c :’b

:’a

infix o 
fun f o g = fn x => f(g(x))

Examples:

fun incr x = x + 1 
fun double x = 2 * x

Recall function composition:

Combinators are functions that combine small pieces of code 
into larger pieces of code.

We will view combinators are higher-order functions that expect 
functions and return functions.
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Integers

Space (set): Operations on elements:

X
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Operations on integers: 
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Operations on functions: 
++, **, MIN, …
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In math, one may write the sum of two integer-valued functions in a 
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a 
point-specific equation:

.( f + g)(x) = f(x) + g(x)

In SML, we define combinators using point-specific equations and use 
them for point-free programming.

combinator integer addition
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Addition of functions:

infix ++ 
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x) and subsequently write infix ++.

Other forms of declarations are possible, e.g.,
fun ++(f,g) = fn x => f(x) + g(x)

What is the type of ++?
(* (op ++) : ('a -> int) * ('a -> int) -> 'a -> int *)
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And more combinators:

fun square x = x * x 
fun double x = 2 * x

We can combine these function values:
fun quadratic = square ++ double

Observe:

quadratic (3)  15↪

quadratic fn x => x * x + 2 * x≅

I.e., quadratic represents the function .x2 + 2x

See lecture notes for more examples!


