
Staging (Higher-Order Functions in Action)

15-150
Lecture 11: October 3, 2024

Stephanie Balzer
Carnegie Mellon University

 1

Can we generalize map and fold?

2

Can we generalize map and fold?

2

So fare we have considered map and fold exclusively for lists.

Can we generalize map and fold?

2

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

Can we generalize map and fold?

2

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combining elements in a list, given a binary operation and
base value

Can we generalize map and fold?

2

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combining elements in a list, given a binary operation and
base value

Can we generalize map and fold to, for example, binary trees?

Can we generalize map and fold?

2

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combining elements in a list, given a binary operation and
base value

Can we generalize map and fold to, for example, binary trees?

Yes! Let’s work it out.

Can we generalize map and fold?

2

So fare we have considered map and fold exclusively for lists.

map: transform elements in a list, given a transformation function

fold: combining elements in a list, given a binary operation and
base value

Can we generalize map and fold to, for example, binary trees?

Yes! Let’s work it out.

It may be helpful to visualize map and fold for lists
diagrammatically first, to capture the underlying pattern.

The “pattern” underlying map

3

The “pattern” underlying map

3

(* map: ('a -> 'b) -> 'a list -> 'b list *)

The “pattern” underlying map

3

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

The “pattern” underlying map

3

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

The “pattern” underlying map

3

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

The “pattern” underlying map

4

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

The “pattern” underlying map

4

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

Replace every element value vi with its transformed value f(vi).

The “pattern” underlying map

5

map f

(* map: ('a -> 'b) -> 'a list -> 'b list *)

::

v1 ::

v2 ::

v3 [][]

::

f(v1) ::

f(v2) ::

f(v3) [][]

Replace every element value vi with its transformed value f(vi).

The “pattern” underlying fold

6

The “pattern” underlying fold

6

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

6

::

v1 ::

v2 ::

v3 [][]

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

6

fold f z

::

v1 ::

v2 ::

v3 [][]

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

6

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

7

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

The “pattern” underlying fold

7

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

The “pattern” underlying fold

8

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

The “pattern” underlying fold

8

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

catamorphism

The “pattern” underlying fold

8

fold f z

::

v1 ::

v2 ::

v3 [][]

f

v1 f

v2 f

v3 []z

(* fold: ('a * 'b -> 'b) -> 'b -> 'a list -> 'b *)

Replace every constructor with a function or value.

catamorphism

n-ary constructors
become n-ary functions

Map and fold for binary trees

9

Map and fold for binary trees

9

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

10

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

11

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

12

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

13

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

14

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

15

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

16

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

16

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

16

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

Map and fold for binary trees

16

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

result of fold
of left subtree

Map and fold for binary trees

16

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

result of fold
of left subtree result of fold

of right subtree

Map and fold for binary trees

16

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

same number
of arguments as

constructor

result of fold
of left subtree result of fold

of right subtree

base value for
empty

Map and fold for binary trees

17

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

18

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

19

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

20

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

21

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Map and fold for binary trees

22

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)
fun tmap f Empty = Empty
 | tmap f (Node(l,x,r)) = Node(tmap f l, f x, tmap f r)

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
fun tfold f z Empty = z
 | tfold f z (Node (l, x, r)) =
 f (tfold f z l, x, tfold f z r)

Examples for tmap and tfold

23

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

23

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

24

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

25

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

26

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

27

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

28

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

29

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Examples for tmap and tfold

30

(* tmap : ('a -> 'b) -> 'a tree -> 'b tree *)

val stringify = tmap Int.toString

(* tfold : ('b * 'a * 'b -> 'b) -> 'b -> 'a tree -> 'b *)
val treesum = tfold (fn (a,x,b) => a+x+b) 0

What are the types of stringify and treesum?

(* stringify : int tree -> string tree *)

(* treesum : int tree -> int *)

Map and fold for leafy binary trees

31

Map and fold for leafy binary trees

31

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

32

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

33

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

34

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

35

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

36

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> ‘b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

37

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

38

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

39

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

40

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Map and fold for leafy binary trees

41

datatype 'a leafy = Leaf of ‘a
 | Node of 'a leafy * 'a leafy

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)
fun lmap f Leaf(x) = Leaf(f x)
 | lmap f (Node(l,r)) = Node(lmap f l, lmap f r)

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
fun lfold f g Leaf(x) = g(x)
 | lfold f g (Node (l, r)) =
 f (lfold f g l, lfold f g r)

Examples for lmap and lfold

42

Examples for lmap and lfold

42

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)

val lstringify = lmap Int.toString

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
val leafysum = lfold (op +) (fn x => x)

Examples for lmap and lfold

43

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)

val lstringify = lmap Int.toString

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?

Examples for lmap and lfold

44

(* lmap: ('a -> 'b) -> 'a leafy -> 'b leafy *)

val lstringify = lmap Int.toString

(* lfold: ('b * 'b -> 'b) -> ('a -> 'b) -> 'a leafy -> 'b *)
val leafysum = lfold (op +) (fn x => x)

What are the types of ltringify and leafysum?

(* lstringify : int leafy -> string leafy *)

(* leafysum : int leafy -> int *)

Map and fold for non-recursive datatypes

45

Map and fold for non-recursive datatypes

45

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

46

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

47

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

48

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

49

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

50

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

51

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

52

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

53

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

54

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Map and fold for non-recursive datatypes

55

datatype 'a option = NONE | SOME of 'a

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)
fun opmap f NONE = NONE
 | opmap f (SOME x) = SOME (f x)

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
fun opfold f z NONE = z
 | opfold f z (SOME x) = f x

Examples for opmap and opfold

56

Examples for opmap and opfold

56

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)

val ostringify = opmap Int.toString

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
val osum = opfold (fn x => x) 0

Examples for opmap and opfold

57

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)

val ostringify = opmap Int.toString

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

Examples for opmap and opfold

58

(* opmap: ('a -> 'b) -> 'a option -> 'b option *)

val ostringify = opmap Int.toString

(* opfold: ('a -> 'b) -> 'b -> 'a option -> 'b *)
val osum = opfold (fn x => x) 0

What are the types of otringify and osum?

(* ostringify : int option -> string option *)

(* osum : int option -> int *)

Another use of HOF: Staging

59

Another use of HOF: Staging

59

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Another use of HOF: Staging

59

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Another use of HOF: Staging

59

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

Another use of HOF: Staging

59

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

Another use of HOF: Staging

59

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

to specialize inexpensive part for specific argument.

Another use of HOF: Staging

59

Staging is a coding technique
that has a function perform useful work
prior to receiving all its arguments.

Concern: efficiency (“cost”) of evaluation

Employs partial application

to factor out expensive part

to specialize inexpensive part for specific argument.

Improves efficiency when specialized function used many times.

Staging

60

Staging

60

Consider the following function:

Staging

60

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Staging

60

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Staging

60

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2)
f (5,3)

Staging

60

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2)
f (5,3)

If only we could recall horriblecomputation(5)!

Staging

60

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Suppose the horrible computation takes 10 months.
(And suppose that addition takes a picosecond.)

Then each of these expressions takes at least 10 months to evaluate:
f (5,2)
f (5,3)

If only we could recall horriblecomputation(5)!

without mutation

Staging

61

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

Staging

61

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?

Staging

61

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Staging

61

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Maybe currying can help?

Staging

61

fun f (x:int, y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Consider the following function:

What is the type of f?
(* f : int * int -> int *)

Maybe currying can help?

Let’s define a curried version of f!

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *),

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define

,

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2)

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

g5 (3)

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

g5 (3) (* instead of f (5,3) *)

Staging

62

fun g (x:int) (y:int) : int =
 let
 val z : int = horriblecomputation(x)
 in
 z + y
 end

Curried version of f:

Now the type of g is (* g : int -> int -> int *)
so we can define val g5 : int -> int = g(5)

,

and then evaluate g5 (2) (* instead of f (5,2) *)

g5 (3) (* instead of f (5,3) *)

How long do the 3 lines above take?

Staging

63

How long do the 3 lines above take?

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and
thus s a value!

Staging

63

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is a lambda, and
thus s a value!

No application, and thus no
evaluation of body!

Staging

64

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

64

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

Staging

64

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is the closure
returned by g(5).

Staging

64

How long do the 3 lines above take?

Remember, the declaration of g created the following binding:

[(fn x => fn y => let val z = hc(x) in z+y end)/g]

In declaring val g5 = g(5) , one evaluates
[(fn x => fn y => let val z = hc(x) in z+y end)/g] g(5)
==> (fn x => fn y => let val z = hc(x) in z+y end) (5)
==> [5/x] fn y => let val z = hc(x) in z+y end

This is the closure
returned by g(5).

The horrible
computation has not yet

happened :-(

Staging

65

Staging

65

We now have the following binding:

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y (for some integer n)

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)10 months!

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Similarly, g5(3) will take 10 months.

10 months!

Staging

65

We now have the following binding:

fn y => let val z = hc(x) in z+y end

env[g5][5/x] /
Evaluating g5(2)

==> [5/x, 2/y] let val z = hc(x) in z+y end
==> [5/x, 2/y, n/z] z+y
==> n

(for some integer n)

Similarly, g5(3) will take 10 months.

Defining g in place of f has not yet helped!

10 months!

Staging

66

Staging

66

Recall the lambda expression for g:

Staging

66

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Staging

66

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Staging

66

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Horrible
computation hidden

underneath inner lambda.

Staging

66

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this
computation here.

Horrible
computation hidden

underneath inner lambda.

Staging

66

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this
computation here.

Move is valid because the computation does not depend on y.

Horrible
computation hidden

underneath inner lambda.

Staging

66

Recall the lambda expression for g:

fn x => fn y => let val z = hc(x) in z+y end

Let’s move this
computation here.

Move is valid because the computation does not depend on y.

Such rearrangement of code — putting it in the “right spot” —
we refer to as staging.

Horrible
computation hidden

underneath inner lambda.

Staging

67

Staging

67

Let’s stage properly:

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *),

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define

,

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

h5 (3)

Inner lambda free
of hc(x)!

Staging

67

Let’s stage properly:
fun h (x:int) : int -> int =
 let
 val z : int = horriblecomputation(x)
 in
 (fn y : int => z + y)
 end

Now the type of h is (* h : int -> int -> int *)
so we can define val h5 : int -> int = h(5)

,

and then evaluate h5 (2)

h5 (3)

How long do the 3 lines above take?

Inner lambda free
of hc(x)!

Staging

68

How long do the 3 lines above take?

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

Staging

68

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

69

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

69

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months! This is a lambda, and
thus s a value!

Staging

70

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

70

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months!

Staging

70

How long do the 3 lines above take?

Remember, the declaration of h created the following binding:

[(fn x => let val z = hc(x) in fn y => z+y end)/h]

In declaring val h5 = h(5) , one evaluates
[(fn x => let val z = hc(x) in fn y => z+y end)/h] h(5)
==> (fn x => let val z = hc(x) in fn y => z+y end) (5)
==> [5/x] let val z = hc(x) in fn y => z+y end
==> [5/x, n/z] fn y => z+y (for some integer n)

10 months! This is the closure
returned by h(5).

Staging

71

Staging

71

We now have the following binding:

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)quick!

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Similarly, h5(3) will be very quick.

quick!

Staging

71

We now have the following binding:

fn y => z+y

env[h5][5/x, n/z] /
Evaluating h5(2)

==> [5/x, n/z, 2/y] z+y
==> n’ (for some integer n’)

Similarly, h5(3) will be very quick.

Factoring hc(x) out of the inner lambda has improved efficiency!

quick!

Staging

72

Staging

72

Summary:

Staging

72

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

Staging

72

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months

Staging

72

Summary:

f (5,2)

f (5,3)
> 10 months

> 10 months

val g5 = g(5)

g5 (2)
fast

> 10 months
g5 (3) > 10 months

val h5 = h(5)

h5 (2)
> 10 months

fast
h5 (3) fast

More combinators!

73

More combinators!

73

Recall function composition:

More combinators!

73

X Y Z

g f

f ⚬ g
:’c :’b

:’a

infix o
fun f o g = fn x => f(g(x))

Recall function composition:

More combinators!

73

X Y Z

g f

f ⚬ g
:’c :’b

:’a

infix o
fun f o g = fn x => f(g(x))

Examples:

fun incr x = x + 1
fun double x = 2 * x

Recall function composition:

More combinators!

73

X Y Z

g f

f ⚬ g
:’c :’b

:’a

infix o
fun f o g = fn x => f(g(x))

Examples:

fun incr x = x + 1
fun double x = 2 * x

Recall function composition:

Combinators are functions that combine small pieces of code
into larger pieces of code.

More combinators!

73

X Y Z

g f

f ⚬ g
:’c :’b

:’a

infix o
fun f o g = fn x => f(g(x))

Examples:

fun incr x = x + 1
fun double x = 2 * x

Recall function composition:

Combinators are functions that combine small pieces of code
into larger pieces of code.

We will view combinators are higher-order functions that expect
functions and return functions.

More combinators!

74

More combinators!

74

An abstract view of combinators:

More combinators!

74

An abstract view of combinators:

X

int

f g

More combinators!

74

An abstract view of combinators:

Space (set):

X

int

f g

More combinators!

74

An abstract view of combinators:

Integers

Space (set):

X

int

f g

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set):

X

int

f g

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set): Operations on elements:

X

int

f g

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set): Operations on elements:

X

int

f g

Operations on integers:
+, *, Int.min, …

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set): Operations on elements:

X

int

f g

Operations on integers:
+, *, Int.min, …

Operations on functions:
++, **, MIN, …

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set): Operations on elements:

X

int

f g

Operations on integers:
+, *, Int.min, …

Operations on functions:
++, **, MIN, …

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set): Operations on elements:

X

int

f g

Operations on integers:
+, *, Int.min, …

Operations on functions:
++, **, MIN, …

combinators

More combinators!

74

An abstract view of combinators:

Integer functions

Integers

Space (set): Operations on elements:

X

int

f g

Operations on integers:
+, *, Int.min, …

Operations on functions:
++, **, MIN, …

Combinators facilitate point-free programming.

combinators

More combinators!

75

Combinators facilitate point-free programming.

More combinators!

75

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g

More combinators!

75

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g

More combinators!

75

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
does not involve

function arguments

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a
point-specific equation:

.(f + g)(x) = f(x) + g(x)

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a
point-specific equation:

.(f + g)(x) = f(x) + g(x)

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a
point-specific equation:

.(f + g)(x) = f(x) + g(x)
combinator

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a
point-specific equation:

.(f + g)(x) = f(x) + g(x)
combinator

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a
point-specific equation:

.(f + g)(x) = f(x) + g(x)
combinator integer addition

More combinators!

76

In math, one may write the sum of two integer-valued functions in a
point-free way:

Combinators facilitate point-free programming.

.f + g
If someone asks “what does that mean?”, we would explain using a
point-specific equation:

.(f + g)(x) = f(x) + g(x)

In SML, we define combinators using point-specific equations and use
them for point-free programming.

combinator integer addition

Examples of combinators

77

Examples of combinators

77

Addition of functions:

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x)

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x) and subsequently write infix ++.

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x) and subsequently write infix ++.

Other forms of declarations are possible, e.g.,

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x) and subsequently write infix ++.

Other forms of declarations are possible, e.g.,
fun ++(f,g) = fn x => f(x) + g(x)

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x) and subsequently write infix ++.

Other forms of declarations are possible, e.g.,
fun ++(f,g) = fn x => f(x) + g(x)

What is the type of ++?

Examples of combinators

77

Addition of functions:

infix ++
fun (f ++ g) x = f(x) + g(x)

Alternatively, we could first declare
++(f,g) x = f(x) + g(x) and subsequently write infix ++.

Other forms of declarations are possible, e.g.,
fun ++(f,g) = fn x => f(x) + g(x)

What is the type of ++?
(* (op ++) : ('a -> int) * ('a -> int) -> 'a -> int *)

Examples of combinators

78

Examples of combinators

78

And more combinators:

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

We can combine these function values:

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

We can combine these function values:
fun quadratic = square ++ double

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

We can combine these function values:
fun quadratic = square ++ double

Observe: quadratic fn x => x * x + 2 * x≅

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

We can combine these function values:
fun quadratic = square ++ double

Observe: quadratic fn x => x * x + 2 * x≅

I.e., quadratic represents the function .x2 + 2x

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

We can combine these function values:
fun quadratic = square ++ double

Observe:

quadratic (3) 15↪

quadratic fn x => x * x + 2 * x≅

I.e., quadratic represents the function .x2 + 2x

Examples of combinators

78

And more combinators:

fun square x = x * x
fun double x = 2 * x

We can combine these function values:
fun quadratic = square ++ double

Observe:

quadratic (3) 15↪

quadratic fn x => x * x + 2 * x≅

I.e., quadratic represents the function .x2 + 2x

See lecture notes for more examples!

