
Modules II

15-150
Lecture 17: !"!, 2024

Stephanie Balzer
Carnegie Mellon University

 1

Announcement: midterm II

When and where:
• Thursday, November 7, 11:00am—12:20pm.
• MM 103 (Sections A—D), PH 100 (Sections E—L).

Scope:
• Lectures: 1—15.
• Labs: 1—8 and midterm review section of Lab 10.
• Assignments: up to including Exceptions/Regex.

What you may have on your desk:
• Writing utensils, we provide paper, something to drink/eat, tissues.
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset.
• No cell phones, laptops, or any other smart devices.

2

Be on time; next
lecture starts at 12:30pm!

Recap

3

Abstraction through separating specification from implementation:

Allows us to hide implementation details from the client.

Representation independence: the client becomes
independent of the choice of internal representation.

Implementation: internal choice of how to deliver promise.

Specification: externally visible promise deliver.

Any two implementations that satisfy specifications are
indistinguishable to the client and thus equal.

Facilitates modular reasoning (component-wise reasoning).

Recap

4

SML modules facilitate abstraction:

Specification: signature.

Implementation: structure.

SML modules allow us to control the “flow of information”:

Structures can hide auxiliary, implementation-specific
components, not specified by signature.

Transparent ascription: for undefined type specified in
signature, representation type chosen by structure is revealed.

Opaque ascription: for undefined type specified in signature,
representation type chosen by structure is hidden.

Today

5

Functors (aka functions on structures).

Type classes (aka descriptive signatures).

Deeper exploration of transparent and opaque ascription.

Let’s resume our dictionary example!

Correspondence:

specification
implementation
mapping

signature
structure
functor

type
value
function

loosely

Example: dictionary

6

A dictionary is a collection of pairs of the form

(key, value)

where all keys must be unique within a dictionary.

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * 'a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Let’s use strings as keys for now

Permit value type to
be polymorphic

Example: dictionary

7

A dictionary is a collection of pairs of the form

(key, value)

where all keys must be unique within a dictionary.

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * 'a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Example: dictionary

8

A dictionary is a collection of pairs of the form

(key, value)

where all keys must be unique within a dictionary.

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * 'a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Replace entry, if key already exists

Search tree representation of dictionary

9

Implementation: represent dictionary as a binary search tree, where

Representation invariant:

(key, value)
are stored in nodes.

Tree must be sorted.

Keys must be unique.

All functions declared by structure

may assume that received tree is sorted,

and must assert that returned tree is sorted.

(Similarly for key uniqueness.)

Search tree representation of dictionary

10

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * ‘a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct
 type key = string
 type 'a entry = key * 'a
 datatype 'a tree =
 Empty | Node of 'a tree * 'a entry * 'a tree
 type 'a dict = 'a tree
 val empty = Empty
 fun lookup ...
 fun insert ...
end

Explore :>

Transparent ascription can be useful for debugging purposes.

Search tree representation of dictionary

11

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * ‘a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct
 type key = string
 type 'a entry = key * 'a
 datatype 'a tree =
 Empty | Node of 'a tree * 'a entry * 'a tree
 type 'a dict = 'a tree
 val empty = Empty
 fun lookup ...
 fun insert ...
end

forced by signature

Search tree representation of dictionary

12

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * ‘a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct
 type key = string
 type 'a entry = key * 'a
 datatype 'a tree =
 Empty | Node of 'a tree * 'a entry * 'a tree
 type 'a dict = 'a tree
 val empty = Empty
 fun lookup ...
 fun insert ...
end

Because datatype is not declared in signature, constructors (and
thus pattern matching) are not available outside signature.

But bindings externally visible due to transparent ascription.

Search tree representation of dictionary

13

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * ‘a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct
 type key = string
 type 'a entry = key * 'a
 datatype 'a tree =
 Empty | Node of 'a tree * 'a entry * 'a tree
 type 'a dict = 'a tree
 val empty = Empty
 fun lookup ...
 fun insert ...
end

Search tree representation of dictionary

14

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * ‘a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

structure BST : DICT =
struct
 type key = string
 type 'a entry = key * 'a
 datatype 'a tree =
 Empty | Node of 'a tree * 'a entry * 'a tree
 type 'a dict = 'a tree
 val empty = Empty
 fun insert ...
 fun lookup ...
end

explore next!

Search tree representation of dictionary

15

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))

Layered pattern
matching

Search tree representation of dictionary

16

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))

Search tree representation of dictionary

17

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))

Search tree representation of dictionary

18

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))Replace existing entry

with new one

Search tree representation of dictionary

19

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))

Search tree representation of dictionary

20

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))

Search tree representation of dictionary

21

(* ins : 'a dict * 'a entry -> 'a dict *)
fun insert (Empty, e) = Node(Empty, e, Empty)
 | insert (Node(lt, e’ as (k’,_), rt),

 e as (k,_)) =
 (case String.compare(k,k’) of
 EQUAL => Node(lt, e, rt)
 | LESS => Node(insert(lt,e), e’, rt)
 | GREATER => Node(lt, e’, insert(rt,e)))

Search tree representation of dictionary

22

(* lookup : 'a dict -> key -> 'a option *)
fun lookup tree key =
 let
 fun lk (Empty) = NONE
 | lk (Node(left, (k,v), right)) =
 (case String.compare(key,k) of
 EQUAL => SOME(v)
 | LESS => lk left
 | GREATER => lk right)
 in
 lk tree
 end

Search tree representation of dictionary

23

Let’s interact with BST:
val d = BST.insert(BST.insert(BST.insert(
 BST.empty,(“a",1)),("b",2)),("c",3))

What is the type of d?

int BST.dict

The binding for d will be revealed because of opaque ascription.
However, because the tree datatype is not declared in the signature,
a client cannot pattern match on its constructors.
Now consider: val look = BST.lookup d

What is the type of look?
BST.key -> int option

Search tree representation of dictionary

24

Let’s interact with BST:
val d = BST.insert(BST.insert(BST.insert(
 BST.empty,(“a",1)),("b",2)),("c",3))

What is the type of d?

int BST.dict

Now consider: val look = BST.lookup d

What is the type of look?
BST.key -> int option

Now consider: val x = look “e”
val y = look “a”

Bindings: [NONE/x, (SOME 1)/y]

Let’s reconsider our DICT signature

25

signature DICT =
sig
 type key = string (* concrete type *)
 type 'a entry = key * 'a (* concrete type *)
 type 'a dict (* abstract type *)
 val empty : 'a dict
 val lookup :
 val insert :
end

What if we needed keys other than strings?

We could try to make key polymorphic too.

Let’s reconsider our DICT signature

26

signature DICT =
sig
 type 'a key = 'a (* concrete type *)
 type ('a,'b) entry = 'a key * 'b (* concrete type *)
 type ('a,'b) dict (* abstract type *)
 val empty : ('a,'b) dict
 val lookup :
 val insert :
end

What if we needed keys other than strings?

We could try to make key polymorphic too.

Let’s reconsider our DICT signature

27

signature DICT =
sig
 type 'a key = 'a (* concrete type *)
 type ('a,'b) entry = 'a key * 'b (* concrete type *)
 type ('a,'b) dict (* abstract type *)
 val empty : ('a,'b) dict
 val lookup :
 val insert :
end

How to implement now?

Used String.compare

What if we needed keys other than strings?

We could try to make key polymorphic too.

Keys should become comparable!

Let’s reconsider our DICT signature

28

lookup:

insert:

Keys should become comparable!

Let’s reconsider our DICT signature

29

lookup: ('a *'a -> order) -> ('a,'b) dict -> ‘a ->'b option

insert: ('a *'a -> order) -> (('a,'b) dict * ('a,'b) entry)
 -> ('a,'b) dict

Keys should become comparable!

Require a comparison function as an argument.

Restricts polymorphism of keys!

Let’s update our BST structure accordingly

30

structure BST : DICT =
struct
 type 'a key = ‘a

 type ('a,'b) entry = 'a key * 'b

 datatype ('a,'b) dict = Empty | Node of
 ('a,'b) dict * ('a,'b) entry * ('a,'b) dict

 val empty = Empty

 fun insert cmp d k =

 fun lookup cmp (d, k) =
end

As specified by signature

Let’s update our BST structure accordingly

31

structure BST : DICT =
struct
 type 'a key = ‘a

 type ('a,'b) entry = 'a key * 'b

 datatype ('a,'b) dict = Empty | Node of
 ('a,'b) dict * ('a,'b) entry * ('a,'b) dict

 val empty = Empty

 fun insert cmp d k =

 fun lookup cmp (d, k) =
end

Again, binary search tree
as representation type.

This time, with polymorphic key.

Let’s update our BST structure accordingly

32

structure BST : DICT =
struct
 type 'a key = ‘a

 type ('a,'b) entry = 'a key * 'b

 datatype ('a,'b) dict = Empty | Node of
 ('a,'b) dict * ('a,'b) entry * ('a,'b) dict

 val empty = Empty

 fun insert cmp d k =

 fun lookup cmp (d, k) =
end

As before.

Let’s update our BST structure accordingly

33

structure BST : DICT =
struct
 type 'a key = 'a

 type ('a,'b) entry = 'a key * 'b

 datatype ('a,'b) dict = Empty | Node of
 ('a,'b) dict * ('a,'b) entry * ('a,'b) dict

 val empty = Empty

 fun insert cmp d k =

 fun lookup cmp (d, k) =
end Bodies of insert and

lookup now use cmp instead of
String.compare.

Let’s update our BST structure accordingly

34

structure BST : DICT =
struct
 type 'a key = 'a

 type ('a,'b) entry = 'a key * 'b

 datatype ('a,'b) dict = Empty | Node of
 ('a,'b) dict * ('a,'b) entry * ('a,'b) dict

 val empty = Empty

 fun insert cmp d k =

 fun lookup cmp (d, k) =
end

Does this do the trick?

Let’s update our BST structure accordingly

35

 fun insert cmp d k =

 fun lookup cmp (d, k) =

Does this do the trick?

Let’s update our BST structure accordingly

36

 fun insert cmp d k =

 fun lookup cmp (d, k) =

Does this do the trick? Well, not quite.

What if a client provides different cmp functions to insert than
to lookup, for example?

Let’s update our BST structure accordingly

37

Does this do the trick? Well, not quite.

What if a client provides different cmp functions to insert than
to lookup, for example?

3

1 4

2

For example, a client creates the following tree using insert and
Int.compare:

For lookup of 1, the client now uses:

fun cmp (x,y) = Int.compare (y,x)

1 won’t be found!

Let’s update our BST structure accordingly

38

Does this do the trick? Well, not quite.

What if a client provides different cmp functions to insert than
to lookup, for example?

Can we enforce the invariant, that all operations use the same
comparison function by typing?

Yes, but we need type classes for this!

Type classes

39

Type class

A signature specifying a type and associated operations.

No expectation that specification is exhaustive.

Example: signature ORDERED =
sig
 type t (* parameter *)
 val compare : t * t -> order
end

Signature ORDERED specifies an “ordered type class” to consist of a
type t along with a comparison function compare for t.

Type classes

40

Example: signature ORDERED =
sig
 type t (* parameter *)
 val compare : t * t -> order
end

Even though t is not concrete, it is not abstract.

We expect t to be some already existing type, hence use the
comment parameter.
Signature ORDERED is said to be descriptive.

Signature DICT is in contrast prescriptive, defining an abstract
type with all its operations, exhaustively.

Type classes

41

Even though t is not concrete, it does not have to be abstract.

We expect t to be some already existing type, hence use the
comment parameter.
Signature ORDERED is said to be descriptive.

Signature DICT is in contrast prescriptive, defining an abstract
type with all its operations, exhaustively.

We tend to use transparent ascription for descriptive signatures
(aka type classes), and opaque ascription for prescriptive
signatures.

Perspective of types in signatures

42

Concrete:
Signature dictates representation type, which is thus visible to client.

Abstract:
Signature hides representation type. Client code must work regardless
of the representation type chosen by structure.

Parameter:
Client supplies the type, implementation must work with whatever the
clients supplies.

Different ways of implementing ORDERED

43

signature ORDERED =
sig
 type t (* parameter *)
 val compare : t * t -> order
end

structure IntLt : ORDERED =
struct
 type t = int
 val compare = Int.compare
end

structure IntGt : ORDERED =
struct
 type t = int
 fun compare(x,y) = Int.compare(y,x)
end

structure StringLt : ORDERED =
struct
 type t = string
 val compare = String.compare
end

Different ways of implementing ORDERED

44

signature ORDERED =
sig
 type t (* parameter *)
 val compare : t * t -> order
end

structure IntLt : ORDERED =
struct
 type t = int
 val compare = Int.compare
end

structure IntGt : ORDERED =
struct
 type t = int
 fun compare(x,y) = Int.compare(y,x)
end

structure StringLt : ORDERED =
struct
 type t = string
 val compare = String.compare
end

Different ways of implementing ORDERED

45

signature ORDERED =
sig
 type t (* parameter *)
 val compare : t * t -> order
end

structure IntLt : ORDERED =
struct
 type t = int
 val compare = Int.compare
end

structure IntGt : ORDERED =
struct
 type t = int
 fun compare(x,y) = Int.compare(y,x)
end

structure StringLt : ORDERED =
struct
 type t = string
 val compare = String.compare
end

Redefine DICT using type class ORDERED

46

signature DICT =
sig
 type key = string (* concrete *)
 type 'a entry = key * 'a (* concrete *)
 type 'a dict (* abstract *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Use type class as a
parameter

Redefine DICT using type class ORDERED

47

signature DICT =
sig
 structure Key = ORDERED (* parameter *)
 type 'a entry = key * 'a (* concrete *)
 type 'a dict (* abstract *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Any structure implementing DICT will comprise a sub-structure
implementing ORDERED.

Redefine DICT using type class ORDERED

48

signature DICT =
sig
 structure Key = ORDERED (* parameter *)
 type 'a entry = key * 'a (* concrete *)
 type 'a dict (* abstract *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Any structure implementing DICT will comprise a sub-structure
implementing ORDERED.

Use type class’ type t

Redefine DICT using type class ORDERED

49

signature DICT =
sig
 structure Key = ORDERED (* parameter *)
 type 'a entry = Key.t * 'a (* concrete *)
 type 'a dict (* abstract *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Any structure implementing DICT will comprise a sub-structure
implementing ORDERED.

Redefine DICT using type class ORDERED

50

signature DICT =
sig
 structure Key = ORDERED (* parameter *)
 type 'a entry = Key.t * 'a (* concrete *)
 type 'a dict (* abstract *)
 val empty : 'a dict
 val lookup : 'a dict -> key -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Any structure implementing DICT will comprise a sub-structure
implementing ORDERED.

Use type class’ type t

Redefine DICT using type class ORDERED

51

signature DICT =
sig
 structure Key = ORDERED (* parameter *)
 type 'a entry = Key.t * 'a (* concrete *)
 type 'a dict (* abstract *)
 val empty : 'a dict
 val lookup : 'a dict -> Key.t -> 'a option
 val insert : 'a dict * 'a entry -> 'a dict
end

Any structure implementing DICT will comprise a sub-structure
implementing ORDERED.

Let’s define dictionaries with different keys!

52

Using our structures defined earlier implementing type class ORDERED,
we can define dictionary structures with different keys:
structure IntLtDict : DICT =
struct
 structure Key = IntLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

Let’s define dictionaries with different keys!

53

Using our structures defined earlier implementing type class ORDERED,
we can define dictionary structures with different keys:
structure IntLtDict : DICT =
struct
 structure Key = IntLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

Let’s define dictionaries with different keys!

54

Using our structures defined earlier implementing type class ORDERED,
we can define dictionary structures with different keys:
structure IntLtDict : DICT =
struct
 structure Key = IntLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

structure IntGtDict : DICT =
struct
 structure Key = IntGt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

Let’s define dictionaries with different keys!

55

Using our structures defined earlier implementing type class ORDERED,
we can define dictionary structures with different keys:
structure IntLtDict : DICT =
struct
 structure Key = IntLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

structure IntGtDict : DICT =
struct
 structure Key = IntGt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

Let’s define dictionaries with different keys!

56

Using our structures defined earlier implementing type class ORDERED,
we can define dictionary structures with different keys:
structure IntLtDict : DICT =
struct
 structure Key = IntLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

structure IntGtDict : DICT =
struct
 structure Key = IntGt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

Let’s define dictionaries with different keys!

57

structure IntLtDict : DICT =
struct
 structure Key = IntLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end
structure IntGtDict : DICT =
struct
 structure Key = IntGt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end
structure StringLtDict : DICT =
struct
 structure Key = StringLt
 (* code as before but now using Key.t instead of key
 and Key.compare instead of String.compare *)
end

Only differ in Key!

Is that it?

58

Have we solved the problem of inserting with one comparison
function but looking up elements with a different one?

Can we avoid rewriting (copying & pasting) the same code over
and over when implementing dictionaries with different keys?

Is that it?

59

Have we solved the problem of inserting with one comparison
function but looking up elements with a different one?

For example, could we accidentally insert into a dictionary using
IntLtDict.insert but then lookup using IntGtDict.lookup?

After all, IntLtDict.Key.t and IntGtDict.Key.t are both int.

No, this is not possible! IntGtDict.dict and IntLtDict.dict
are different types.

ML type checker will thus prevent intermingling of dictionaries.

Remark: Had we implemented dict in terms of a representation type
available in the client’s scope, we should have used opaque ascription!

Is that it?

60

Have we solved the problem of inserting with one comparison
function but looking up elements with a different one?

YES!

Can we avoid rewriting (copying & pasting) the same code over
and over when implementing dictionaries with different keys?

YES, but we need to use a functor for this!

A functor creates a structure, given a structure as an argument.

Let’s write a functor that creates a structure ascribing to DICT, given a
structure ascribing to ORDERED as an argument.

Avoid the bloat with a functor!

61

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Argument structure, of
type ORDERED

Note: ":" denotes typing,
not ascription mode.

Avoid the bloat with a functor!

62

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Structured
returned, transparently

ascribing to DICT

Denotes ascription mode,
as usual.

Avoid the bloat with a functor!

63

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Avoid the bloat with a functor!

64

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Avoid the bloat with a functor!

65

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Avoid the bloat with a functor!

66

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Avoid the bloat with a functor!

67

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Avoid the bloat with a functor!

68

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

structure IntLtDict = TreeDict(IntLt)
structure IntGtDict = TreeDict(IntGt)
structure StringLtDict = TreeDict(StringLt)

Now, we can define our earlier dictionaries as:

Avoid the bloat with a functor!

69

functor TreeDict (K : ORDERED) : DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

Let's use opaque
ascription instead!

Avoid the bloat with a functor!

70

functor TreeDict (K : ORDERED) :> DICT =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

But now we hide the representation type for Key.t.

But we want it to be known that Key.t is the same as the input
key K.t!

To rectify this, we need to add a where clause.

Avoid the bloat with a functor!

71

functor TreeDict (K : ORDERED) :> DICT
 where type Key.t = K.t =
struct
 structure Key = K
 type 'a entry = Key.t * 'a
 datatype 'a dict = ...
 (* code as before, but using Key.t and Key.compare *)
end

But now we hide the representation type for Key.t.

But we want it to be known that Key.t is the same as the input
key K.t!

To rectify this, we need to add a where clause.

Summary

72

Prescriptive signatures exhaustively specify a type's operations,
typically using opaque ascription.

Descriptive signatures (aka type classes) expose a type
parameter's operations, typically using transparent ascription.

A functor creates a structure, given a structure as an argument.

Functor arguments are typically type classes to prevent
code redundancy.

A word on syntax:

Summary

73

A word on syntax:

Functors only take a single structure as an argument.

Multiple argument structures can be passed using nested
structures or using specialized syntax.

More on this in labs and homework.

Similarly, multiple where clauses are supported, using different
syntactic forms.

More on this in labs and homework.

That's all for today. Happy !"!!

74

