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Announcement: midterm II

When and where: 
• Thursday, November 7, 11:00am—12:20pm. 
• MM 103 (Sections A—D), PH 100 (Sections E—L). 

Scope: 
• Lectures: 1—15. 
• Labs: 1—8 and midterm review section of Lab 10. 
• Assignments: up to including Exceptions/Regex. 

What you may have on your desk: 
• Writing utensils, we provide paper, something to drink/eat, tissues. 
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset. 
• No cell phones, laptops, or any other smart devices.
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Be on time; next 
lecture starts at 12:30pm!



Recap
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Abstraction through separating specification from implementation:

Allows us to hide implementation details from the client.

Representation independence: the client becomes 
independent of the choice of internal representation.

Implementation: internal choice of how to deliver promise.

Specification: externally visible promise deliver.

Any two implementations that satisfy specifications are 
indistinguishable to the client and thus equal.

Facilitates modular reasoning (component-wise reasoning).



Recap
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SML modules facilitate abstraction:

Specification: signature.

Implementation: structure.

SML modules allow us to control the “flow of information”:

Structures can hide auxiliary, implementation-specific 
components, not specified by signature.

Transparent ascription: for undefined type specified in 
signature, representation type chosen by structure is revealed.

Opaque ascription: for undefined type specified in signature, 
representation type chosen by structure is hidden.



Today
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Functors (aka functions on structures).

Type classes (aka descriptive signatures).

Deeper exploration of transparent and opaque ascription.

Let’s resume our dictionary example!

Correspondence:

specification
implementation
mapping

signature
structure
functor

type
value
function

loosely



Example: dictionary
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A dictionary is a collection of pairs of the form

(key, value)

where all keys must be unique within a dictionary.

signature DICT = 
sig 
  type key = string                 (* concrete type *) 
  type 'a entry = key * 'a          (* concrete type *) 
  type 'a dict                      (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Let’s use strings as keys for now

Permit value type to 
be polymorphic



Example: dictionary
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A dictionary is a collection of pairs of the form

(key, value)

where all keys must be unique within a dictionary.

signature DICT = 
sig 
  type key = string                 (* concrete type *) 
  type 'a entry = key * 'a          (* concrete type *) 
  type 'a dict                      (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end



Example: dictionary
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A dictionary is a collection of pairs of the form

(key, value)

where all keys must be unique within a dictionary.

signature DICT = 
sig 
  type key = string                 (* concrete type *) 
  type 'a entry = key * 'a          (* concrete type *) 
  type 'a dict                      (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Replace entry, if key already exists



Search tree representation of dictionary
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Implementation: represent dictionary as a binary search tree, where

Representation invariant:

(key, value)
are stored in nodes.

Tree must be sorted.

Keys must be unique.

All functions declared by structure

may assume that received tree is sorted,

and must assert that returned tree is sorted.

(Similarly for key uniqueness.)



Search tree representation of dictionary
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signature DICT = 
sig 
  type key = string        (* concrete type *) 
  type 'a entry = key * ‘a (* concrete type *) 
  type 'a dict             (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

structure BST : DICT = 
struct 
  type key = string 
  type 'a entry = key * 'a 
  datatype 'a tree = 
    Empty | Node of 'a tree * 'a entry * 'a tree 
  type 'a dict = 'a tree 
  val empty = Empty 
  fun lookup ... 
  fun insert ... 
end

Explore :>

Transparent ascription can be useful for debugging purposes.



Search tree representation of dictionary
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signature DICT = 
sig 
  type key = string        (* concrete type *) 
  type 'a entry = key * ‘a (* concrete type *) 
  type 'a dict             (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

structure BST : DICT = 
struct 
  type key = string 
  type 'a entry = key * 'a 
  datatype 'a tree = 
    Empty | Node of 'a tree * 'a entry * 'a tree 
  type 'a dict = 'a tree 
  val empty = Empty 
  fun lookup ... 
  fun insert ... 
end

forced by signature



Search tree representation of dictionary

12

signature DICT = 
sig 
  type key = string        (* concrete type *) 
  type 'a entry = key * ‘a (* concrete type *) 
  type 'a dict             (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

structure BST : DICT = 
struct 
  type key = string 
  type 'a entry = key * 'a 
  datatype 'a tree = 
    Empty | Node of 'a tree * 'a entry * 'a tree 
  type 'a dict = 'a tree 
  val empty = Empty 
  fun lookup ... 
  fun insert ... 
end

Because datatype is not declared in signature, constructors (and 
thus pattern matching) are not available outside signature.

But bindings externally visible due to transparent ascription.



Search tree representation of dictionary
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signature DICT = 
sig 
  type key = string        (* concrete type *) 
  type 'a entry = key * ‘a (* concrete type *) 
  type 'a dict             (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

structure BST : DICT = 
struct 
  type key = string 
  type 'a entry = key * 'a 
  datatype 'a tree = 
    Empty | Node of 'a tree * 'a entry * 'a tree 
  type 'a dict = 'a tree 
  val empty = Empty 
  fun lookup ... 
  fun insert ... 
end



Search tree representation of dictionary
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signature DICT = 
sig 
  type key = string        (* concrete type *) 
  type 'a entry = key * ‘a (* concrete type *) 
  type 'a dict             (* abstract type *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

structure BST : DICT = 
struct 
  type key = string 
  type 'a entry = key * 'a 
  datatype 'a tree = 
    Empty | Node of 'a tree * 'a entry * 'a tree 
  type 'a dict = 'a tree 
  val empty = Empty 
  fun insert ... 
  fun lookup ... 
end

explore next!



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))

Layered pattern 
matching



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))Replace existing entry 

with new one



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))



Search tree representation of dictionary
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(* ins : 'a dict * 'a entry -> 'a dict *) 
fun insert (Empty, e) = Node(Empty, e, Empty) 
  | insert (Node(lt, e’ as (k’,_), rt), 

          e as (k,_)) = 
      (case String.compare(k,k’) of 
        EQUAL => Node(lt, e, rt) 
        | LESS => Node(insert(lt,e), e’, rt) 
        | GREATER => Node(lt, e’, insert(rt,e)))



Search tree representation of dictionary
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(* lookup : 'a dict -> key -> 'a option *) 
fun lookup tree key = 
 let 
    fun lk (Empty) = NONE 
    | lk (Node(left, (k,v), right)) = 
      (case String.compare(key,k) of 
        EQUAL => SOME(v) 
        | LESS => lk left 
        | GREATER => lk right) 
  in 
    lk tree 
  end



Search tree representation of dictionary
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Let’s interact with BST:
val d = BST.insert(BST.insert(BST.insert( 
          BST.empty,(“a",1)),("b",2)),("c",3))

What is the type of d?

int BST.dict

The binding for d will be revealed because of opaque ascription. 
However, because the tree datatype is not declared in the signature, 
a client cannot pattern match on its constructors.
Now consider: val look = BST.lookup d

What is the type of look?
BST.key -> int option



Search tree representation of dictionary
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Let’s interact with BST:
val d = BST.insert(BST.insert(BST.insert( 
          BST.empty,(“a",1)),("b",2)),("c",3))

What is the type of d?

int BST.dict

Now consider: val look = BST.lookup d

What is the type of look?
BST.key -> int option

Now consider: val x = look “e” 
val y = look “a”

Bindings: [NONE/x, (SOME 1)/y]



Let’s reconsider our DICT signature
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signature DICT = 
sig 
  type key = string                 (* concrete type *) 
  type 'a entry = key * 'a          (* concrete type *) 
  type 'a dict                      (* abstract type *) 
  val empty : 'a dict 
  val lookup : 
  val insert : 
end

What if we needed keys other than strings?

We could try to make key polymorphic too.



Let’s reconsider our DICT signature
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signature DICT = 
sig 
  type 'a key = 'a                 (* concrete type *) 
  type ('a,'b) entry = 'a key * 'b (* concrete type *) 
  type ('a,'b) dict                (* abstract type *) 
  val empty : ('a,'b) dict 
  val lookup : 
  val insert : 
end

What if we needed keys other than strings?

We could try to make key polymorphic too.



Let’s reconsider our DICT signature
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signature DICT = 
sig 
  type 'a key = 'a                 (* concrete type *) 
  type ('a,'b) entry = 'a key * 'b (* concrete type *) 
  type ('a,'b) dict                (* abstract type *) 
  val empty : ('a,'b) dict 
  val lookup : 
  val insert : 
end

How to implement now?

Used String.compare

What if we needed keys other than strings?

We could try to make key polymorphic too.

Keys should become comparable!



Let’s reconsider our DICT signature
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lookup: 

insert:

Keys should become comparable!



Let’s reconsider our DICT signature
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lookup: ('a *'a -> order) -> ('a,'b) dict -> ‘a ->'b option 

insert: ('a *'a -> order) -> (('a,'b) dict * ('a,'b) entry) 
                          -> ('a,'b) dict

Keys should become comparable!

Require a comparison function as an argument.

Restricts polymorphism of keys!



Let’s update our BST structure accordingly
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structure BST : DICT = 
struct 
  type 'a key = ‘a 

  type ('a,'b) entry = 'a key * 'b 

  datatype ('a,'b) dict = Empty | Node of 
             ('a,'b) dict * ('a,'b) entry * ('a,'b) dict 

  val empty = Empty 

  fun insert cmp d k = 

  fun lookup cmp (d, k) = 
end

As specified by signature



Let’s update our BST structure accordingly
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structure BST : DICT = 
struct 
  type 'a key = ‘a 

  type ('a,'b) entry = 'a key * 'b 

  datatype ('a,'b) dict = Empty | Node of 
             ('a,'b) dict * ('a,'b) entry * ('a,'b) dict 

  val empty = Empty 

  fun insert cmp d k = 

  fun lookup cmp (d, k) = 
end

Again, binary search tree 
as representation type.

This time, with polymorphic key.



Let’s update our BST structure accordingly
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structure BST : DICT = 
struct 
  type 'a key = ‘a 

  type ('a,'b) entry = 'a key * 'b 

  datatype ('a,'b) dict = Empty | Node of 
             ('a,'b) dict * ('a,'b) entry * ('a,'b) dict 

  val empty = Empty 

  fun insert cmp d k = 

  fun lookup cmp (d, k) = 
end

As before.



Let’s update our BST structure accordingly
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structure BST : DICT = 
struct 
  type 'a key = 'a 

  type ('a,'b) entry = 'a key * 'b 

  datatype ('a,'b) dict = Empty | Node of 
             ('a,'b) dict * ('a,'b) entry * ('a,'b) dict 

  val empty = Empty 

  fun insert cmp d k = 

  fun lookup cmp (d, k) = 
end Bodies of insert and 

lookup now use cmp instead of 
String.compare.



Let’s update our BST structure accordingly
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structure BST : DICT = 
struct 
  type 'a key = 'a 

  type ('a,'b) entry = 'a key * 'b 

  datatype ('a,'b) dict = Empty | Node of 
             ('a,'b) dict * ('a,'b) entry * ('a,'b) dict 

  val empty = Empty 

  fun insert cmp d k = 

  fun lookup cmp (d, k) = 
end

Does this do the trick?



Let’s update our BST structure accordingly
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  fun insert cmp d k = 

  fun lookup cmp (d, k) =

Does this do the trick?



Let’s update our BST structure accordingly
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  fun insert cmp d k = 

  fun lookup cmp (d, k) =

Does this do the trick?  Well, not quite.

What if a client provides different cmp functions to insert than 
to lookup, for example?



Let’s update our BST structure accordingly
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Does this do the trick?  Well, not quite.

What if a client provides different cmp functions to insert than 
to lookup, for example?

3

1 4

2

For example, a client creates the following tree using insert and 
Int.compare:

For lookup of 1, the client now uses:

fun cmp (x,y) = Int.compare (y,x)

1 won’t be found!



Let’s update our BST structure accordingly
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Does this do the trick?  Well, not quite.

What if a client provides different cmp functions to insert than 
to lookup, for example?

Can we enforce the invariant, that all operations use the same 
comparison function by typing?

Yes, but we need type classes for this!



Type classes
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Type class

A signature specifying a type and associated operations.

No expectation that specification is exhaustive.

Example: signature ORDERED = 
sig 
  type t     (* parameter *) 
  val compare : t * t -> order 
end

Signature ORDERED specifies an “ordered type class” to consist of a 
type t along with a comparison function compare for t.



Type classes
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Example: signature ORDERED = 
sig 
  type t     (* parameter *) 
  val compare : t * t -> order 
end

Even though t is not concrete, it is not abstract.

We expect t to be some already existing type, hence use the 
comment parameter.
Signature ORDERED is said to be descriptive.

Signature DICT is in contrast prescriptive, defining an abstract 
type with all its operations, exhaustively.



Type classes
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Even though t is not concrete, it does not have to be abstract.

We expect t to be some already existing type, hence use the 
comment parameter.
Signature ORDERED is said to be descriptive.

Signature DICT is in contrast prescriptive, defining an abstract 
type with all its operations, exhaustively.

We tend to use transparent ascription for descriptive signatures 
(aka type classes), and opaque ascription for prescriptive 
signatures.



Perspective of types in signatures
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Concrete:
Signature dictates representation type, which is thus visible to client.

Abstract:
Signature hides representation type.  Client code must work regardless 
of the representation type chosen by structure.

Parameter:
Client supplies the type, implementation must work with whatever the 
clients supplies.



Different ways of implementing ORDERED
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signature ORDERED = 
sig 
  type t     (* parameter *) 
  val compare : t * t -> order 
end

structure IntLt : ORDERED = 
struct 
  type t = int 
  val compare = Int.compare 
end 

structure IntGt : ORDERED = 
struct 
  type t = int 
  fun compare(x,y) = Int.compare(y,x) 
end 

structure StringLt : ORDERED = 
struct 
  type t = string 
  val compare = String.compare 
end



Different ways of implementing ORDERED
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signature ORDERED = 
sig 
  type t     (* parameter *) 
  val compare : t * t -> order 
end

structure IntLt : ORDERED = 
struct 
  type t = int 
  val compare = Int.compare 
end 

structure IntGt : ORDERED = 
struct 
  type t = int 
  fun compare(x,y) = Int.compare(y,x) 
end 

structure StringLt : ORDERED = 
struct 
  type t = string 
  val compare = String.compare 
end



Different ways of implementing ORDERED
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signature ORDERED = 
sig 
  type t     (* parameter *) 
  val compare : t * t -> order 
end

structure IntLt : ORDERED = 
struct 
  type t = int 
  val compare = Int.compare 
end 

structure IntGt : ORDERED = 
struct 
  type t = int 
  fun compare(x,y) = Int.compare(y,x) 
end 

structure StringLt : ORDERED = 
struct 
  type t = string 
  val compare = String.compare 
end



Redefine DICT using type class ORDERED
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signature DICT = 
sig 
  type key = string                 (* concrete  *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Use type class as a 
parameter



Redefine DICT using type class ORDERED
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signature DICT = 
sig 
  structure Key = ORDERED           (* parameter *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Any structure implementing DICT will comprise a sub-structure 
implementing ORDERED.



Redefine DICT using type class ORDERED
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signature DICT = 
sig 
  structure Key = ORDERED           (* parameter *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Any structure implementing DICT will comprise a sub-structure 
implementing ORDERED.

Use type class’ type t



Redefine DICT using type class ORDERED
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signature DICT = 
sig 
  structure Key = ORDERED           (* parameter *) 
  type 'a entry = Key.t * 'a        (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Any structure implementing DICT will comprise a sub-structure 
implementing ORDERED.



Redefine DICT using type class ORDERED
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signature DICT = 
sig 
  structure Key = ORDERED           (* parameter *) 
  type 'a entry = Key.t * 'a        (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Any structure implementing DICT will comprise a sub-structure 
implementing ORDERED.

Use type class’ type t



Redefine DICT using type class ORDERED
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signature DICT = 
sig 
  structure Key = ORDERED           (* parameter *) 
  type 'a entry = Key.t * 'a        (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> Key.t -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Any structure implementing DICT will comprise a sub-structure 
implementing ORDERED.



Let’s define dictionaries with different keys!
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Using our structures defined earlier implementing type class ORDERED, 
we can define dictionary structures with different keys:
structure IntLtDict : DICT = 
struct 
  structure Key = IntLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end



Let’s define dictionaries with different keys!
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Using our structures defined earlier implementing type class ORDERED, 
we can define dictionary structures with different keys:
structure IntLtDict : DICT = 
struct 
  structure Key = IntLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end



Let’s define dictionaries with different keys!
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Using our structures defined earlier implementing type class ORDERED, 
we can define dictionary structures with different keys:
structure IntLtDict : DICT = 
struct 
  structure Key = IntLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end

structure IntGtDict : DICT = 
struct 
  structure Key = IntGt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end



Let’s define dictionaries with different keys!
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Using our structures defined earlier implementing type class ORDERED, 
we can define dictionary structures with different keys:
structure IntLtDict : DICT = 
struct 
  structure Key = IntLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end

structure IntGtDict : DICT = 
struct 
  structure Key = IntGt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end



Let’s define dictionaries with different keys!
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Using our structures defined earlier implementing type class ORDERED, 
we can define dictionary structures with different keys:
structure IntLtDict : DICT = 
struct 
  structure Key = IntLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end

structure IntGtDict : DICT = 
struct 
  structure Key = IntGt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end



Let’s define dictionaries with different keys!
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structure IntLtDict : DICT = 
struct 
  structure Key = IntLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end
structure IntGtDict : DICT = 
struct 
  structure Key = IntGt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end
structure StringLtDict : DICT = 
struct 
  structure Key = StringLt 
  (* code as before but now using Key.t instead of key 
     and Key.compare instead of String.compare *) 
end

Only differ in Key!



Is that it?
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Have we solved the problem of inserting with one comparison 
function but looking up elements with a different one?

Can we avoid rewriting (copying & pasting) the same code over 
and over when implementing dictionaries with different keys?



Is that it?
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Have we solved the problem of inserting with one comparison 
function but looking up elements with a different one?

For example, could we accidentally insert into a dictionary using 
IntLtDict.insert but then lookup using IntGtDict.lookup?

After all, IntLtDict.Key.t and IntGtDict.Key.t are both int.

No, this is not possible! IntGtDict.dict and IntLtDict.dict 
are different types.

ML type checker will thus prevent intermingling of dictionaries.

Remark: Had we implemented dict in terms of a representation type 
available in the client’s scope, we should have used opaque ascription!



Is that it?
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Have we solved the problem of inserting with one comparison 
function but looking up elements with a different one?

YES!

Can we avoid rewriting (copying & pasting) the same code over 
and over when implementing dictionaries with different keys?

YES, but we need to use a functor for this!

A functor creates a structure, given a structure as an argument.

Let’s write a functor that creates a structure ascribing to DICT, given a 
structure ascribing to ORDERED as an argument.



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end

Argument structure, of 
type ORDERED

Note: ":" denotes typing, 
not ascription mode.



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end

Structured 
returned, transparently 

ascribing to DICT

Denotes ascription mode, 
as usual.



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end



Avoid the bloat with a functor!
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end

structure IntLtDict = TreeDict(IntLt) 
structure IntGtDict = TreeDict(IntGt) 
structure StringLtDict = TreeDict(StringLt)

Now, we can define our earlier dictionaries as:
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functor TreeDict (K : ORDERED) : DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end

Let's use opaque 
ascription instead!
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functor TreeDict (K : ORDERED) :> DICT = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end

But now we hide the representation type for Key.t.

But we want it to be known that Key.t is the same as the input 
key K.t!

To rectify this, we need to add a where clause.
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functor TreeDict (K : ORDERED) :> DICT 
                   where type Key.t = K.t = 
struct 
  structure Key = K 
  type 'a entry = Key.t * 'a 
  datatype 'a dict = ... 
  (* code as before, but using Key.t and Key.compare *) 
end

But now we hide the representation type for Key.t.

But we want it to be known that Key.t is the same as the input 
key K.t!

To rectify this, we need to add a where clause.
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Prescriptive signatures exhaustively specify a type's operations, 
typically using opaque ascription.

Descriptive signatures (aka type classes) expose a type 
parameter's operations, typically using transparent ascription.

A functor creates a structure, given a structure as an argument.

Functor arguments are typically type classes to prevent 
code redundancy.

A word on syntax:
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A word on syntax:

Functors only take a single structure as an argument.

Multiple argument structures can be passed using nested 
structures or using specialized syntax.

More on this in labs and homework.

Similarly, multiple where clauses are supported, using different 
syntactic forms.

More on this in labs and homework.



That's all for today.  Happy !"!!
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