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SML modules facilitate abstraction:

Specification: signature.

Implementation: structure.

SML modules allow us to control the “flow of information”:

Structures can hide auxiliary, implementation-specific 
components, not specified by signature.

Transparent ascription: for undefined type specified in 
signature, representation type chosen by structure is revealed.

Opaque ascription: for undefined type specified in signature, 
representation type chosen by structure is hidden.
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Type classes and functors:

Prescriptive signatures exhaustively specify a type's operations, 
typically using opaque ascription.

Descriptive signatures (aka type classes) expose a type 
parameter's operations, typically using transparent ascription.

A functor creates a structure, given a structure as an argument.

Functor arguments are typically type classes to prevent 
code redundancy.

Representation invariants:

Hidden consistency condition enforced by structure.
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A closer look at representation invariants:

Some code may necessarily violate the invariant.

Localize violation and characterize with weaker invariant.

Complement with code that re-establishes stronger invariant, 
when weaker invariant holds.

We'll explain these ideas on an example, further illustrating:

A functional implementation of balanced trees.

"Picture-guided programming" thanks to pattern matching.
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Let's reconsider our dictionary

6

structure BST : DICT = ...

Last time we implemented our dictionary as a binary search tree:

Representation invariant: tree is sorted on key (no duplicate keys)

Problem: insertion may result in an unbalanced tree and thus make 
lookup slow.

Implement dictionary as a red black tree!

datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict
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datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

code shown 
monochromatically

colors used for 
node coloring
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datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

red nodes
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datatype 'a dict = 
  Empty 
| Red of 'a dict * 'a entry * 'a dict 
| Black of 'a dict * 'a entry * 'a dict

empty nodes 
are black

we'll 
suppress them, 
moving forward
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nodes from the 

root 
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Red Black Tree (RBT) Invariant

13

This representation invariant ensures that tree is roughly balanced:

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

𝖽𝖾𝗉𝗍𝗁 ≤ 2𝗅𝗈𝗀2( |𝗇𝗈𝖽𝖾𝗌 | + 1)
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what color?

let's 
color it red, to preserve 

black height
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6 22
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19

what color?

let's 
color it red, to preserve 

black height

at the cost of a 
red-red violation
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but, there is a new 
red-red violation

let's rotate again
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Now, let's implement our dictionary!

41

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

Red Black Tree (RBT) invariant:

RBT invariant will become representation invariant of structure.

Recall, representation invariants are hidden consistency conditions, s.t.

All functions declared by structure

may assume representation invariant for input,

and must assert representation invariant for output.
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Now, let's implement our dictionary!

42

Tree is sorted according to an entry's key.A

A red node's children must be black.B

Black height: for any node, the number of black nodes along 
any path from the node to a leaf (empty) is the same.C

Red Black Tree (RBT) invariant:

Our implementation will even make use of a weaker invariant, which can 
be locally and temporarily violated, but is restored in the end.

A and C as above, 

A red node's children must be black, unless for a red root node, 
who may have one red child.B'

Almost RBT (ARBT) invariant:
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(* 
  restoreLeft : 'a dict -> 'a dict 

  REQUIRES: Either d is a RBT 
            or d's root is black, 
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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(1st clause)

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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(1st clause)

fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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fun 
  restoreLeft(Black(Red(Red(d1, x, d2), y, d3), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft(Black(Red(d1, x, Red(d2, y, d3)), z, d4)) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreLeft d = d
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(* 
  restoreRight : 'a dict -> 'a dict 

  REQUIRES: Either d is a RBT 
            or d's root is black, 
            its right child is an ARBT,  
            and its left child a RBT. 

  ENSURES:  restoreRight(d) is a RBT, 
            containing exactly the same entries as d, 
            and with the same black height as d. 
 *)
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(* 
  restoreRight : 'a dict -> 'a dict 

  REQUIRES: Either d is a RBT 
            or d's root is black, 
            its right child is an ARBT,  
            and its left child a RBT. 

  ENSURES:  restoreRight(d) is a RBT, 
            containing exactly the same entries as d, 
            and with the same black height as d. 
 *)

input may 
only satisfy weaker 

invariant

representation 
invariant established for 

output



fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d

Picture-guided implementation of restoreR 

57

z

y

x

1 2 3 4

x

z

y 4

2 3

1
restoreRight 
(2nd clause)
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fun 
  restoreRight(Black(d1, x, Red(d2, y, Red(d3, z, d4)))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight(Black(d1, x, Red(Red(d2, y, d3), z, d4))) = 
    Red(Black(d1, x, d2), y, Black(d3, z, d4)) 
 |restoreRight d = d
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signature DICT = 
sig 
  type key = string                 (* concrete  *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end
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Note: restoreLeft and restoreRight are not externally visible!



What else?

59

signature DICT = 
sig 
  type key = string                 (* concrete  *) 
  type 'a entry = key * 'a          (* concrete  *) 
  type 'a dict                      (* abstract  *) 
  val empty : 'a dict 
  val lookup : 'a dict -> key -> 'a option 
  val insert : 'a dict * 'a entry -> 'a dict 
end

Note: restoreLeft and restoreRight are not externally visible!

Let's implement insert next.
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(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)
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(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)

expects 
representation 

invariant

establishes 
representation invariant
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(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)

insert makes use 
of a locally defined helper 

function
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             ins(d) has the same black height as d. 
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(* insert: 'a dict * 'a entry -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  insert(d,e) is a RBT containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 

   ins: 'a dict -> 'a dict 
   REQUIRES: d is a RBT. 
   ENSURES:  ins(d) is a tree containing exactly 
             all the entries of d plus e, 
             with e replacing an entry of d, 
             if the keys are EQUAL. 
             ins(d) has the same black height as d. 
             Moreover, ins(Black(t)) is a RBT 
                       ins(Red(t)) is an ARBT. *)

may 
temporarily violate 

representation invariant
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fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end
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fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
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    (case ins d of 
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case of a red-red violation 
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fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end

re-color in 
case of a red-red violation 

at the root

RBT representation invariant preserved.
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fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end
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fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end



Let's implement insert

66

fun insert (d, e as (k, v)) = 
  let 
    fun ins ... (* will write shortly *) 
  in 
    (case ins d of 
       Red(t as (Red (_), _, _)) => Black t 
     | Red(t as (_, _, Red(_)))  => Black t 
     | d' => d') 
  end recall layered pattern 

matching!
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fun ins (Empty) = Red(Empty, e, Empty) 
  | ins (Black(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Black(l, e, r) 
    | LESS => Black(ins l, e', r) 
    | GREATER => Black(l, e', ins r)) 
  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))
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fun ins (Empty) = Red(Empty, e, Empty) 
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recall: weaker 
invariant still guarantees 

black height
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  | ins (Red(l, e' as (k',_), r)) = 
    (case String.compare (k, k') of 
      EQUAL => Red(l, e, r) 
    | LESS => Red(ins l, e', r) 
    | GREATER => Red(l, e', ins r))

Should we call the restore functions here too?

No, restore functions require black roots.

Moreover, l and r must have black roots by the pre-condition.

And, we get back an RBT by the post-condition.
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Look at lecture code for function lookup.

Uses SML's and construct for mutually recursive functions.

We use opaque ascription for our RBT structure.

Encapsulates and protects representation invariant.

Experiment with the code to see hiding at play!



That's all for today.
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