
15-150 Fall 2024
Lecture 18

Parallelism
Cost Seman:cs and Sequences

today

• Parallelism and func:onal style

• Cost seman:cs

• Brent’s Theorem and speed-ups

• Sequences: an abstract type with
efficient parallel opera,ons

parallelism
Exploi:ng mul,ple processors

Evalua:ng independent code simultaneously

• low-level implementa:on

• scheduling work onto processors, tell each
processor to do at each :me step

• high-level planning

• designing code abstractly

• without baking in a schedule

our approach
Deal with scheduling implicitly

•Programmer specifies what to do

•Compiler determines how to schedule the work

Our thesis: this approach to parallelism will prevail..

(and 15-210 builds on these ideas...)

func4onal benefits
• No side effects, so…

evalua,on order doesn’t affect correctness

• Can build abstract types that support
efficient parallel-friendly opera:ons

• Can use work and span to predict
poten:al for parallel speed-up

• Work and span are independent of
scheduling details

caveat
• In prac:ce, it’s hard to achieve speed-up

• Current language implementa:ons
don’t make it easy

• Problems include:

• scheduling overhead

• locality of data (cache problems)

• run:me sensi:ve to scheduling choices

what can programmers do?

• Lists bake in sequen:al evalua:on. Trees
don’t.

• Today, we introduce sequences that have a
linear structure like lists but offer
parallelism of trees.

• Reason about :me complexity using work
and span

Cost seman4cs
We already introduced work and span

• Work es:mates the sequen,al running :me
on a single processor

• Span takes account of data dependency,
es:mates the parallel running :me
with unlimited processors

Cost seman4cs
• We showed how to calculate work and span for

recursive func,ons with recurrence rela)ons

• Now we introduce cost graphs,
another tool to deal with work and span

• Cost graphs also allow us to talk about schedules...

• ... and the poten:al for speed-up

Cost graphs
A cost graph is a series-parallel graph

• a directed acyclic graph, with source
and sink

• nodes represent units of work

• edges represent data dependencies

• branching indicates poten,al
parallelism

(constant :me)

series-parallel graphs
.

a single node

G2

G1

sequen:al
composi:on

G2

.

.
G1

parallel
composi:on

(n-ary parallelism allowed)

example
(1+2) * 3

(Edges are implicitly directed downward)

｛(1+2) ｝(1+2) * 3

... . .

..1 2 3

work and span

• The work is the number of nodes

• The span is the length of the longest path
from source to sink

of a cost graph

span(G) ≤ work(G)

= span G1 + span G2 + c

sequen)al code … add the span

= max(span G1 , span G2) + c

parallel code … max the span

span

span
G2

G1

span G2

.

.
G1

parallel
composi:on

sources and sinks
• Some:mes we omit them from pictures

• No loss of generality

• easy to put them in

• No difference, asympto:cally

• a single node represents an addi:ve
constant amount of work and span

• Allows easier explana:on of execu,on

example
(1+2) * 3

work = 7 span = 5

... . .

.. 2 31

Brent’s Theorem
An expression with work w and span s
can be evaluated on a p-processor machine
in time Ω(max(w/p, s)).

Op:mal schedule using p processors:
 Do (up to) p units of work each round

Total work to do is w
Needs at least s steps

scheduling
• p pebbles, with p the number of processors

• Start with one pebble on cost graph G’s
source

• Pucng a pebble on a node visits the node

• At each :me step, pick up all pebbles and put
at most p on the graph, no more than one per
node. Can only put a pebble on an unvisited
model all of whose ancestors have been
visited.

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

h i

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

h i

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

h i

e J

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

h i

e j

a

b

d

e

g

h

j

f

ic

This could be a cost graph for (1+2) * (3+4)

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

h i

e j

f(idle)

a

b

d

e

g

h

j

f

ic

work =

processors

tim
e

1 2

1

2

3

4

5

6

a (idle)

b g

c d

h i

e j

f(idle)

span =
10
5

next
• Exploi:ng parallelism in ML

• A signature for parallel collec,ons

• Cost analysis of implementa:ons

• Cost benefits of parallel algorithm design

sequences
signature SEQ =
sig
 type 'a seq (* abstract *)
 exception Range of string
 val empty : unit ->'a seq
 val tabulate : (int -> 'a) -> int -> 'a seq
 val length : 'a seq -> int
 val nth : 'a seq -> int -> 'a
 val map : ('a -> 'b) -> 'a seq ->'b seq
 val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
 val mapreduce : ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
 val filter: ('a -> bool) -> 'a seq -> 'a seq
end

implementa4ons
• Many ways to implement the signature

• lists, balanced trees, arrays, ...

• For each one, can give a cost analysis

• There may be implementa:on trade-offs

• arrays: item access is O(1)

• trees: item access is O(log n)

Seq :SEQ
• An abstract parameterized type of sequences

• Think of a sequence as a parallel collec,on

• With parallel-friendly opera:ons

• constant-,me access to items

• efficient map and reduce

sequence values

• We use math nota:on like

⟨v0, ..., vn-1⟩

⟨ ⟩

for sequence values

is a value of type int seq⟨1, 2, 4, 8⟩

A value of type t seq
is a sequence of values of type t

Reminder:
A client would
write t Seq.seq

equivalence
• Two sequence values are extensionally

equivalent iff they have the same length
and have extensionally equivalent items at all
posi:ons

⟨v0, ..., vn-1⟩ ⟨u0, ..., um-1⟩

if and only if
n = m and for all i, vi ≅ ui

≅

opera4ons
For our given structure Seq : SEQ, we specify

• the (extensional) behavior

• the cost seman,cs

of each opera:on

Other implementa:ons of SEQ may achieve
different work and span profiles

Learn to choose wisely!

• Type can be t seq for any type t

• Cost graph

empty () returns ⟨⟩

.

.
work and span O(1)

• If Gi is cost graph for f(i), the
cost graph for tabulate f n is

If f is O(1), the work for tabulate f n is O(n)

If f is O(1), the span for tabulate f n is O(1)

tabulate f n ≅ ⟨f 0, ..., f(n-1)⟩

.

.
G0 G1 … Gn-1

examples

• tabulate (fn x:int => x) 6

• tabulate (fn x:int => x*x) 6
⟨0, 1, 2, 3, 4, 5⟩

⟨0, 1, 4, 9, 16, 25⟩

tabulate f n ≅ ⟨f 0, ..., f(n-1)⟩

• Work is O(1)

• Span is O(1)

• Cost graph is
.

.

nth ⟨v0, ..., vn-1⟩ i ≅ vi if 0 ≤ i < n
 ≅ raise Range otherwise

Contrast: List.nth
 work, span O(n)

• Work is O(1)

• Span is O(1)

• Cost graph is .
.

Contrast: List.length [v0,…,vn-1] ≅ n
 work, span O(n)

length ⟨v0, ..., vn-1⟩ ≅ n

• If f is constant :me, map f ⟨v0, ..., vn-1⟩ has
work O(n), span O(1)

(contrast with List.map)

 map f ⟨v0, ..., vn-1⟩ has cost graph

map f ⟨v0, ..., vn-1⟩ ≅ ⟨f v0, ..., f vn-1⟩

.

.
G0 G1 … Gn-1

where each Gi
is cost graph for f vi

reduce is used to combine a sequence

reduce : ('a * 'a -> 'a) -> 'a ->'a seq -> 'a

 Compare it with

reduce

reduce

where g is an associa,ve func:on with a base value z
where we represent g with the infix operator

• g : t * t -> t is associa)ve iff for all x1,x2,x3:t

 g(x1, g(x2, x3)) = g(g(x1, x2), x3)

• Some:mes we will assume that z is an iden,ty
element for g, i.e. for all x:t, g(x,z) = x

reduce g z ⟨v0, ..., vn-1⟩

 ('a * 'a -> 'a) -> 'a ->'a seq -> 'a

.≅ v0 v1 . vn-1 . z...

.

reduce g z ⟨v0, ..., vn-1⟩ .≅ v0 v1 . vn-1...
reduce g z ⟨⟩ ≅ z

v0

.
v1 v2

.
v3 vn-1

.
z

. .

.

reduce g z ⟨v0, ..., vn-1⟩ .≅ v0 v1 . vn-1 . z...

work is O(n)

span is O(log n)

assuming g is O(1)

mapreduce f z g ⟨v0, ..., vn⟩ ≅

has work O(n)

and span O(log n)

(f v0) . . (f vn-1) . z…

assuming f and g are O(1)

filter p s ≅ s'

Assuming p is O(1), has work O(n)

and span O(log n)

with s' a sequence consis:ng of all xi in s such that
p(xi) ≅ true. The order of retained elements in s' is the

same as in s

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z

val singleton : 'a -> 'a seq (* gives a single element
 sequence *)

val append : 'a seq * 'a seq -> 'a seq

fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
 let val nothing = empty ()
 fun keep x = if p (x) then singleton x
 else nothing
 in

 end

________________ mapreduce keep nothing append

fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
 let val nothing = empty ()
 fun keep x = if p (x) then singleton x
 else nothing
 in

 end

S(n) = O(log n), W(n) = O(n log n) assuming append has span O(1)

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z

val singleton : 'a -> 'a seq (* gives a single element
 sequence *)

val append : 'a seq * 'a seq -> 'a seq

 mapreduce keep nothing append

Example: count

fun sum (s : int Seq.seq) : int =

fun count (class: room) : int = sum

type row = int Seq.seq
type room = row Seq.seq

Example: count

fun sum (s : int Seq.seq) : int =

fun count (class: room) : int = sum

type row = int Seq.seq
type room = row Seq.seq

using map

Seq.reduce (op +) 0 s

Example: count

fun sum (s : int Seq.seq) : int =

fun count (class: room) : int = sum

type row = int Seq.seq
type room = row Seq.seq

(Seq.map sum class)

Seq.reduce (op +) 0 s

analysis

count s = sum ⟨t0, ..., tm-1⟩
Let ti = sum rowi

work is O(mn)
span is O(log n+ log m)

sum ⟨t0, ..., tm-1⟩

log2 n

log2 m

cost graph of
sum (map sum s)

sum row1

.

.
... sum rowm-1

m rows of length n each

Alterna4vely

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

fun count (class: room) : int =
 Seq.mapreduce

type row = int Seq.seq
type room = row Seq.seq

using mapreduce

_____________sum 0 (op +) class

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z

