
15-150 Fall 2024 
Lecture 18 

Parallelism 
Cost Seman:cs and Sequences 



today

• Parallelism and func:onal style 

• Cost seman:cs 

• Brent’s Theorem and speed-ups 

• Sequences: an abstract type with                  
efficient parallel opera,ons



parallelism
Exploi:ng mul,ple processors 

Evalua:ng independent code simultaneously 

• low-level implementa:on 

• scheduling work onto processors, tell each 
processor to do at each :me step 

• high-level planning 

• designing code abstractly 

• without baking in a schedule



our approach
Deal with scheduling implicitly 

•Programmer specifies what to do 

•Compiler determines how to schedule the work

Our thesis: this approach to parallelism will prevail..

(and 15-210 builds on these ideas...)



func4onal benefits
• No side effects, so…                             

evalua,on order doesn’t affect correctness 

• Can build abstract types that support        
efficient parallel-friendly opera:ons 

• Can use work and span to predict          
poten:al for parallel speed-up 

• Work and span are independent of 
scheduling details 



caveat
• In prac:ce, it’s hard to achieve speed-up  

• Current language implementa:ons       
don’t make it easy 

• Problems include: 

• scheduling overhead 

• locality of data (cache problems) 

• run:me sensi:ve to scheduling choices



what can programmers do?

• Lists bake in sequen:al evalua:on. Trees 
don’t. 

• Today, we introduce sequences that have a 
linear structure like lists but offer 
parallelism of trees. 

• Reason about :me complexity using work 
and span



Cost seman4cs
We already introduced work and span 

• Work es:mates the sequen,al running :me      
on a single processor  

• Span takes account of data dependency,     
es:mates the parallel running :me                 
with unlimited processors



Cost seman4cs
• We showed how to calculate work and span  for 

recursive func,ons with recurrence rela)ons 

• Now we introduce cost graphs,                            
another tool to deal with work and span  

• Cost graphs also allow us to talk about schedules... 

• ... and the poten:al for speed-up



Cost graphs
A cost graph is a series-parallel graph 

• a directed acyclic graph, with source 
and sink 

• nodes represent units of work 

• edges represent data dependencies 

• branching indicates poten,al 
parallelism

(constant :me)



series-parallel graphs
.

a single node

G2

G1

sequen:al  
composi:on

G2

.

.
G1

parallel  
composi:on

(n-ary parallelism allowed)



example
(1+2) * 3

(Edges are implicitly directed downward)

｛(1+2) ｝(1+2) * 3

... . .

..1 2 3



work and span

• The work is the number of nodes  

• The span is the length of the longest path 
from source to sink

of a cost graph

span(G)  ≤  work(G)



= span G1 + span G2 + c

sequen)al code … add the span

= max(span G1 , span G2) + c

parallel code … max the span

span

span
G2

G1

span G2

.

.
G1

parallel  
composi:on



sources and sinks
• Some:mes we omit them from pictures 

• No loss of generality  

• easy to put them in 

• No difference, asympto:cally 

• a single node represents an addi:ve 
constant amount of work and span 

• Allows easier explana:on of execu,on



example
(1+2) * 3

work = 7 span = 5

... . .

.. 2 31



Brent’s Theorem
An expression with work w and span s 
can be evaluated on a p-processor machine 
in time Ω(max(w/p, s)).

Op:mal schedule using p processors: 
        Do (up to) p units of work each round

Total work to do is w  
Needs at least s steps



scheduling
• p pebbles, with p the number of processors 

• Start with one pebble on cost graph G’s 
source 

• Pucng a pebble on a node visits the node 

• At each :me step, pick up all pebbles and put 
at most p on the graph, no more than one per 
node. Can only put a pebble on an unvisited 
model all of whose ancestors have been 
visited.
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next
• Exploi:ng parallelism in ML 

• A signature for parallel collec,ons 

• Cost analysis of implementa:ons 

• Cost benefits of parallel algorithm design



sequences
signature SEQ =
sig
   type 'a seq  (* abstract *)
   exception Range of string
   val empty : unit ->'a seq
   val tabulate : (int -> 'a) -> int -> 'a seq
   val length : 'a seq -> int
   val nth : 'a seq -> int -> 'a
   val map : ('a -> 'b) -> 'a seq ->'b seq
   val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
   val mapreduce : ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
   val filter: ('a -> bool) -> 'a seq -> 'a seq
end



implementa4ons
• Many ways to implement the signature 

• lists, balanced trees, arrays, ... 

• For each one, can give a cost analysis 

• There may be implementa:on trade-offs 

• arrays: item access is O(1) 

• trees:  item access is O(log n)



Seq :SEQ
• An abstract parameterized type of sequences 

• Think of a sequence as a parallel collec,on 

• With parallel-friendly opera:ons 

• constant-,me access to items 

• efficient map and reduce



sequence values

• We use math nota:on like

⟨v0, ..., vn-1⟩

⟨ ⟩

for sequence values

is a value of type int seq⟨1, 2, 4, 8⟩

A value of type t seq  
is a sequence of values of type t

Reminder:   
A client would  
write t Seq.seq



equivalence
• Two sequence values are extensionally 

equivalent iff they have the same length                           
and have extensionally equivalent items at all 
posi:ons

⟨v0, ..., vn-1⟩ ⟨u0, ..., um-1⟩

if and only if
n = m and for all i, vi ≅ ui

≅



opera4ons
For our given structure Seq : SEQ, we specify           

• the (extensional) behavior  

• the cost seman,cs 

of each opera:on

Other implementa:ons of SEQ may achieve                   
different work and span profiles

Learn to choose wisely!



• Type can be t seq for any type t

• Cost graph                        

empty () returns ⟨⟩

.

.
work and span O(1)



• If Gi is cost graph for f(i),                         the 
cost graph for tabulate f n is

If f is O(1),  the work for tabulate f n is O(n)

If f is O(1),  the span for tabulate f n is O(1)

tabulate f n ≅ ⟨f 0, ..., f(n-1)⟩

.

.
G0 G1 …      Gn-1



examples

• tabulate (fn x:int => x) 6

• tabulate (fn x:int => x*x) 6
⟨0, 1, 2, 3, 4, 5⟩

⟨0, 1, 4, 9, 16, 25⟩

tabulate f n ≅ ⟨f 0, ..., f(n-1)⟩



• Work is O(1) 

• Span is O(1) 

• Cost graph is
.

.

nth ⟨v0, ..., vn-1⟩  i ≅ vi                    if 0 ≤ i < n          
                            ≅ raise Range     otherwise

Contrast:   List.nth  
      work, span O(n)



• Work is O(1) 

• Span is O(1) 

• Cost graph is .
.

Contrast:   List.length [v0,…,vn-1] ≅ n 
            work, span O(n)

length ⟨v0, ..., vn-1⟩ ≅ n



• If f is constant :me, map f ⟨v0, ..., vn-1⟩ has 
work O(n), span O(1) 

(contrast with List.map)

 map f ⟨v0, ..., vn-1⟩ has cost graph

map f ⟨v0, ..., vn-1⟩ ≅ ⟨f v0, ..., f vn-1⟩

.

.
G0 G1 …      Gn-1

where each Gi  
is cost graph for f vi



reduce is used to combine a sequence  

reduce : ('a * 'a -> 'a) -> 'a ->'a seq -> 'a  

    Compare it with 

   

reduce



reduce

where g is an associa,ve func:on with a base value z 
where we represent g with the infix operator  

• g : t * t -> t is associa)ve iff for all x1,x2,x3:t   

                  g(x1, g(x2, x3)) = g(g(x1, x2), x3) 

• Some:mes we will assume that z is an iden,ty 
element for g, i.e. for all x:t,   g(x,z) = x 

reduce g z ⟨v0, ..., vn-1⟩

 ('a * 'a -> 'a) -> 'a ->'a seq -> 'a 

.≅ v0 v1 . vn-1 . z... 

.

reduce g z ⟨v0, ..., vn-1⟩ .≅ v0 v1 . vn-1... 
reduce g z ⟨⟩ ≅ z



v0

.
v1 v2

.
v3 vn-1

.
z

. .

.

reduce g z ⟨v0, ..., vn-1⟩ .≅ v0 v1 . vn-1 . z... 

work is O(n)

span is O(log n)

assuming g is O(1)



mapreduce f z g ⟨v0, ..., vn⟩ ≅

has work O(n)

and span O(log n)

(f v0) . . (f vn-1) . z…

assuming f and g are O(1)



filter p s ≅ s'

Assuming p is O(1), has work O(n)

and span O(log n)

with s' a sequence consis:ng of all xi in s such that  
p(xi) ≅ true. The order of retained elements in s' is the 

same as in s



mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z 

val singleton : 'a -> 'a seq   (* gives a single element    
                   sequence *)

val append : 'a seq  * 'a seq -> 'a seq  

fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
           let val nothing  = empty ()
                fun keep x = if p (x) then singleton x
                                     else nothing
           in
             
           end

________________ mapreduce keep nothing append



fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
           let val nothing  = empty ()
                fun keep x = if p (x) then singleton x
                                     else nothing
           in
             
           end

S(n) = O(log n), W(n) = O(n log n) assuming append has span O(1) 

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z 

val singleton : 'a -> 'a seq   (* gives a single element    
                   sequence *)

val append : 'a seq  * 'a seq -> 'a seq  

 mapreduce keep nothing append



Example: count

fun sum (s : int Seq.seq) : int =    

fun count (class: room) : int = sum
                      

type row = int Seq.seq 
type room = row Seq.seq

________________

________________



Example: count

fun sum (s : int Seq.seq) : int =    

fun count (class: room) : int = sum
                      

type row = int Seq.seq 
type room = row Seq.seq

________________

using map

Seq.reduce (op +) 0 s



Example: count

fun sum (s : int Seq.seq) : int =    

fun count (class: room) : int = sum
                      

type row = int Seq.seq 
type room = row Seq.seq

(Seq.map sum class)

Seq.reduce (op +) 0 s



analysis

count s = sum ⟨t0, ..., tm-1⟩ 
Let ti = sum rowi

work is O(mn) 
span  is O(log n+ log m)

sum ⟨t0, ..., tm-1⟩

log2 n

log2 m

cost graph of 
sum (map sum s)

sum row1

.

.
... sum rowm-1

m rows of length n each



Alterna4vely

fun sum (s : int Seq.seq) : int =  Seq.reduce (op +) 0 s

fun count (class: room) : int = 
                      Seq.mapreduce                                

type row = int Seq.seq 
type room = row Seq.seq

using mapreduce

_____________sum 0 (op +) class

mapreduce f z g ⟨v1, ..., vn⟩ = (f v1) g ... g (f vn) g z 


