15-150 Fall 2024 Lecture 18

Parallelism Cost Semantics and Sequences

today

• Parallelism and functional style

- **Cost semantics**
- Brent's Theorem and speed-ups
- Sequences: an abstract type with *efficient parallel operations*

parallelism

Exploiting *multiple processors*

Evaluating *independent* code *simultaneously*

- low-level implementation
	- *scheduling* work onto processors, tell each processor to do at each time step
- high-level planning
	- designing code *abstractly*
	- without *baking in a schedule*

our approach

Deal with scheduling implicitly

- •Programmer specifies **what** to do
- •Compiler determines **how** to schedule the work

Our thesis: this approach to parallelism will *prevail..*

(and 15-210 builds on these ideas...)

functional benefits

- No side effects, so... *evaluation order* doesn't affect *correctness*
- Can build *abstract types* that support efficient *parallel-friendly* operations
- Can use *work* and *span* to predict potential for *parallel speed-up*
	- Work and span are *independent* of scheduling details

caveat

- In practice, it's hard to achieve speed-up
- Current language implementations don't make it easy
- Problems include:
	- **•** scheduling overhead
	- locality of data (cache problems)
	- runtime sensitive to scheduling choices

what can programmers do?

- Lists bake in sequential evaluation. Trees don't.
- Today, we introduce sequences that have a linear structure like lists but offer parallelism of trees.
- Reason about time complexity using work and span

Cost semantics

We already introduced *work* and *span*

- *Work* estimates the *sequential* running time on a *single* processor
- *Span* takes account of data dependency, estimates the *parallel* running time with *unlimited* processors

Cost semantics

- We showed how to calculate *work* and *span* for *recursive functions* with *recurrence relations*
- Now we introduce *cost graphs,* another tool to deal with work and span
- Cost graphs also allow us to talk about *schedules...*
- *...* and the potential for *speed-up*

Cost graphs

- A *cost graph* is a *series-parallel graph*
	- ^a *directed* acyclic graph, with *source* and *sink* (constant time)
	- nodes represent *units of work*
	- edges represent *data dependencies*
	- branching indicates *potential parallelism*

series-parallel graphs

(n-ary parallelism allowed)

(Edges are implicitly directed downward)

work and span

of a cost graph

- The *work* is the *number of nodes*
- The *span* is the *length of the longest path* from *source* to *sink*

span(G) ≤ *work*(G)

span

sources and sinks

- Sometimes we omit them from pictures
- No loss of generality
	- easy to put them in
- No difference, asymptotically
	- a single node represents an additive constant amount of work and span
- Allows easier explanation of *execution*

example

 $(1+2) * 3$

 $work = 7$ span = 5

Brent's Theorem

An expression with work **w** and span **s** can be evaluated on a **p**-processor machine in time Ω (max(**w**/**p**, **s**)).

> Optimal schedule using **p** processors: Do (up to) **p** units of work each round Total work to do is **w** Needs at least **s** steps

scheduling

- p pebbles, with p the number of processors
- Start with one pebble on cost graph G's source
- Putting a pebble on a node visits the node
- At each time step, pick up all pebbles and put at most p on the graph, no more than one per node. Can only put a pebble on an unvisited model all of whose ancestors have been visited.

time

next

- Exploiting parallelism in ML
- A signature for *parallel collections*
- *Cost analysis* of implementations
- *Cost benefits* of parallel algorithm design

sequences

```
signature SEQ =
sig
   type 'a seq (* abstract *)
   exception Range of string
  val empty : unit ->'a seq
  val tabulate : (int -> 'a) -> int -> 'a seq
  val length : 'a seq -> int
  val nth : 'a seq -> int -> 'a
   val map : ('a -> 'b) -> 'a seq ->'b seq
   val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
   val mapreduce : ('a -> 'b) -> 'b -> ('b * 'b -> 'b) -> 'a seq -> 'b
   val filter: ('a -> bool) -> 'a seq -> 'a seq
end
```
implementations

- Many ways to implement the signature
	- lists, balanced trees, arrays, ...
- For each one, can give a *cost analysis*
- There may be implementation *trade-offs*
	- *arrays: item access is O(1)*
	- *trees: item access is O(log n)*

Seq :SEQ

- An abstract parameterized type of *sequences*
- Think of a sequence as a *parallel collection*
- With *parallel-friendly* operations
	- *constant-time* access to items
	- *efficient* map and reduce

sequence values

A value of type t seq is a sequence of values of type t

• We use math notation like

 $\langle V_0, \ldots, V_{n-1} \rangle$ $\langle \ \rangle$

Reminder: A client would write t Seq.seq

for sequence values

 $\langle 1, 2, 4, 8 \rangle$ is a value of type int seq

equivalence

• Two sequence values are *extensionally equivalent* iff they have the same length and have extensionally equivalent items at all positions

 $\langle V_0, ..., V_{n-1} \rangle \cong \langle U_0, ..., U_{m-1} \rangle$ if and only if $n = m$ and for all i, $v_i \approx u_i$

operations

For our given structure Seq : SEQ, we specify

- the (extensional) *behavior*
- the *cost semantics*

of each operation

Other implementations of SEQ may achieve *different* work and span profiles

Learn to choose wisely!

empty () returns $\langle \rangle$

• Type can be t seq for any type t

.
.
.

|
|
|

• Cost graph

work and span O(1)

tabulate f $n \approx \langle f \ 0, \ ... , f(n-1) \rangle$

• If G_i is cost graph for $f(i)$, the cost graph for tabulate f n is

If f is $O(1)$, the work for tabulate f n is $O(n)$ If f is $O(1)$, the span for tabulate f n is $O(1)$

examples tabulate f $n \approx \langle f \ 0, \ ... , f(n-1) \rangle$

- tabulate (**fn** x:int => x) 6 $(0, 1, 2, 3, 4, 5)$
- tabulate (**fn** x :int \Rightarrow x^*x) 6 $(0, 1, 4, 9, 16, 25)$

nth $\langle v_0, ..., v_{n-1} \rangle$ i $\cong v_i$ if $0 \le i \le n$ ≅ **raise** Range otherwise

 \bullet Work is $O(1)$

• Span is O(1)

• Cost graph is

Contrast: List.nth work, span O(n)

.
.
.

.

 $length \langle v_0, ..., v_{n-1} \rangle \cong n$

 \bullet Work is $O(1)$

• Span is O(1)

• Cost graph is

Contrast: List.length $[v_0,...,v_{n-1}] \cong n$ work, span O(n)

.
.
.

.

map f
$$
\langle v_0, ..., v_{n-1} \rangle \cong \langle f v_0, ..., f v_{n-1} \rangle
$$

map f $\langle v_0, ..., v_{n-1} \rangle$ has cost graph

where each G_i is cost graph for f v_i

• If f is constant time, map $f \langle v_0, ..., v_{n-1} \rangle$ has work O(n), span O(1)

(contrast with List.map)

reduce

reduce is used to *combine* a *sequence*

reduce : $('a * 'a -> 'a) -> 'a -> 'a$ seq -> 'a Compare it with

reduce

$$
('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
$$

where g is an *associative* function with a base value z where g is an *ussociative* runction with a base ve reduce $g \cdot v_0, ..., v_{n-1} \ge v_0 \odot v_1 ... \odot v_{n-1} \odot v_2$

 \bullet g:t * t -> t is *associative* iff for all x_1, x_2, x_3 :t

 $g(x_1, g(x_2, x_3)) = g(g(x_1, x_2), x_3)$

• Sometimes we will assume that z is an *identity element* for g, i.e. for all x:t, $g(x,z) = x$ reduce $g \in \langle v_0, ..., v_{n-1} \rangle \cong v_0 \odot v_1 ... \odot v_{n-1}$ reduce g z $\langle \rangle$ \approx z

mapreduce $f z g \langle v_0, ..., v_n \rangle \cong (f v_0) \odot \cdots \odot (f v_{n-1}) \odot z$

has *work* O(n) and *span* O(log n) assuming f and g are O(1)

filter $p s \cong s'$

with S' a sequence consisting of all x_i in S such that $p(x_i)$ = true. The order of retained elements in S' is the same as in s

Assuming p is $O(1)$, has work $O(n)$

and span O(log n)

mapreduce f z g $\langle v_1, ..., v_n \rangle = (f v_1) g ... g (f v_n) g z$

```
val singleton : 'a -> 'a seq (* gives a single element 
                                sequence *)
val append : 'a seq * 'a seq -> 'a seq 
fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
       let val nothing = empty ()
          fun keep x = if p (x) then singleton x
                         else nothing
        in
          mapreduce keep nothing append
```
end

mapreduce f z g $\langle v_1, ..., v_n \rangle = (f v_1) g ... g (f v_n) g z$

```
fun filter (p: 'a -> bool) : 'a seq -> 'a seq =
       let val nothing = empty ()
          fun keep x = if p (x) then singleton x
                         else nothing
        in
        end
val singleton : 'a -> 'a seq (* gives a single element 
                                sequence *)
val append : 'a seq * 'a seq -> 'a seq 
          mapreduce keep nothing append
```
 $S(n) = O(log n)$, $W(n) = O(n log n)$ assuming append has span $O(1)$

Example: count

 $\mathcal{L}=\mathcal{$

 \mathcal{L}_max and \mathcal{L}_max are the set of \mathcal{L}_max

fun sum (s : int Seq.seq) : int =

type row = int Seq.seq **type** room = row Seq.seq

fun count (class: room) : int = sum

Example: count using map

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

 $\mathcal{L}=\mathcal{$

type row = int Seq.seq **type** room = row Seq.seq

fun count (class: room) : int = sum

Example: count

fun sum (s : int Seq.seq) : int = Seq.reduce (op +) 0 s

type row = int Seq.seq **type** room = row Seq.seq

fun count (class: room) : int = sum (Seq.map sum class)

analysis

count $s = sum \langle t_0, ..., t_{m-1} \rangle$ Let t_i = sum row; m rows of length n each

mapreduce f z g $\langle v_1, ..., v_n \rangle = (f v_1) g ... g (f v_n) g z$

Alternatively using mapreduce

fun sum $(s : int Seq.seq) : int = Seq.readuce (op +) 0 s$

type row = int Seq.seq **type** room = row Seq.seq

fun count (class: room) : int = Seq.mapreduce sum 0 (op +) class