
Algorithms: Parallel and Sequential

Umut A. Acar and Guy E. Blelloch

May 2022

2

c© 2019 Umut A. Acar and Guy E. Blelloch

All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the copyright holders
(authors) except for the use of brief quotations in a book review.

Umut A. Acar
Carnegie Mellon University
Department of Computer Science GHC 9231
Pittsburgh PA 15213 USA

Guy E. Blelloch
Carnegie Mellon University
Department of Computer Science GHC 9211
Pittsburgh PA 15213 USA

Contents

1 Introduction 1

2 Parallelism 2

1 Parallel Hardware . 2

2 Parallel Software . 4

3 Work, Span, Parallel Time . 5

3.1 Work and Span . 5

3.2 Work Efficiency . 7

3 Specification, Problem, and Implementation 8

1 Algorithm Specification . 8

2 Data Structure Specification . 9

3 Problem . 9

4 Implementation . 10

4 Genome Sequencing (An Example) 12

1 Genome Sequencing Problem . 12

1.1 Background . 12

1.2 Sequencing Methods . 13

3

4 CONTENTS

1.3 Genome Sequencing Problem . 15

1.4 Understanding the Structure of the Problem 17

2 Algorithms for Genome Sequencing . 18

2.1 Brute Force . 18

2.2 Brute Force Reloaded . 19

2.3 Shortest Superstrings by Algorithmic Reduction 21

2.4 Traveling Salesperson Problem . 21

2.5 Reducing Shortest Superstrings to TSP 22

2.6 Greedy Algorithm . 24

3 Concluding Remarks . 27

I Background 29

5 Sets and Relations 30

1 Sets . 30

2 Relations . 32

6 Graph Theory 33

1 Basic Definitions . 33

2 Weighted Graphs . 36

3 Subgraphs . 37

4 Connectivity . 38

5 Graph Partition . 39

6 Trees . 40

CONTENTS 5

II A Language for Specifying Algorithms 42

7 Introduction 43

8 Functional Algorithms 45

1 Pure Functions . 45

1.1 Safe for Parallelism . 46

1.2 Persistence . 48

1.3 Benign Effects . 48

2 Functions as Values . 49

3 Functional Algorithms . 50

9 The Lambda Calculus 51

1 Syntax and Semantics . 51

2 Parallelism and Reduction Order . 52

10 The SPARC Language 54

1 Syntax and Semantics of SPARC . 54

III Concurrency 64

11 Threads, Concurrency, and Parallelism 65

1 Threads . 65

2 Concurrency and Parallelism . 66

3 Mutable State and Race Conditions . 69

12 Critical Sections and Mutual Exclusion 72

6 CONTENTS

IV Analysis of Algorithms 77

13 Introduction 78

14 Asymptotics 79

1 Basics . 79

2 Big-O, big-Omega, and big-Theta . 80

3 Some Conventions . 83

15 Cost Models 85

1 Machine-Based Cost Models . 85

1.1 RAM Model . 85

1.2 PRAM: Parallel Random Access Machine 86

2 Language Based Models . 87

2.1 The Work-Span Model . 88

2.2 Scheduling . 91

16 Recurrences 94

1 The Basics . 94

2 Some conventions . 95

3 The Tree Method . 97

4 The Brick Method . 98

5 Substitution Method . 103

6 Master Method . 105

CONTENTS 7

V Sequences 106

17 Introduction 107

1 Defining Sequences . 108

18 The Sequence Abstract Data Type 111

1 The Abstract Data Type . 111

2 Basic Functions . 113

3 Tabulate . 113

4 Map and Filter . 114

5 Subsequences . 115

6 Append and Flatten . 116

7 Update and Inject . 116

8 Collect . 118

9 Aggregation by Iteration . 119

10 Aggregation by Reduction . 121

11 Aggregation with Scan . 123

19 Array Sequences 126

1 A Parametric Implementation . 126

2 Implementing the Primitive Functions . 129

20 Cost of Sequences 132

1 Cost Specifications . 132

2 Array Sequences . 133

3 Tree Sequences . 139

4 List Sequences . 140

8 CONTENTS

21 Examples 142

1 Miscellaneous Examples . 142

2 Computing Primes . 146

22 Ephemeral and Single-Threaded Sequences 150

1 Persistent and Emphemeral Implementations 150

2 Ephemeral Sequences . 151

3 Single-Threaded Sequences . 152

3.1 Implementation . 153

23 Tree Sequences 155

1 Primitive Tree Sequences . 155

2 Parametric Implementation of Tree Sequences 157

VI Algorithm Design And Analysis 160

24 Introduction 161

25 Basic Techniques 162

1 Algorithmic Reduction . 162

2 Brute Force . 163

26 Divide and Conquer 167

1 Divide and Conquer . 167

2 Merge Sort . 170

3 Sequence Scan . 171

4 Euclidean Traveling Salesperson Problem . 172

CONTENTS 9

5 Divide and Conquer with Reduce . 175

27 Contraction 176

1 Contraction Technique . 176

2 Reduce with Contraction . 177

3 Scan with Contraction . 179

28 Maximum Contiguous Subsequence Sum 182

1 The Problem . 182

2 Brute Force . 184

3 Applying Reduction . 186

3.1 Auxiliary Problems . 187

3.2 Reduction to MCSSS . 189

3.3 Reduction to MCSSE . 189

4 Divide And Conquer . 192

4.1 A First Solution . 192

4.2 Divide And Conquer with Strengthening 196

VII Probability 201

29 Introduction 202

30 Probability Spaces 203

1 Probability Spaces and Events . 203

2 Properties of Probability Spaces . 205

2.1 The Union Bound . 205

2.2 Conditional Probability . 206

10 CONTENTS

2.3 Law of Total Probability . 206

2.4 Independence . 207

31 Random Variables 209

1 Probability Mass Function . 210

2 Bernoulli, Binomial, and Geometric RVs . 211

3 Functions of Random Variables . 212

4 Conditioning . 213

5 Independence . 214

32 Expectation 215

1 Definitions . 215

2 Composing Expectations . 217

3 Linearity of Expectations . 217

4 Conditional Expectation . 219

5 Variance and Standard Deviation . 219

6 Markov’s Inequality . 219

7 Chebyshev’s Inequality . 220

8 Chernoff Bounds . 221

33 A Darts Game 222

1 Fixed Success Probability . 222

2 Expected Size . 226

VIII Randomization 228

34 Introduction 229

CONTENTS 11

1 Randomized Algorithms . 229

1.1 Advantages of Randomization . 230

1.2 Disadvantages of Randomization . 232

2 Analysis of Randomized Algorithms . 232

35 Order Statistics 234

1 The Order Statistics Problem . 234

2 Randomized Algorithm for Order Statistics 234

3 Analysis . 236

3.1 Analysis with the Dart Game . 236

3.2 A Direct Analysis . 237

4 Exercises . 241

36 The Quick Sort Algorithm 242

1 Quicksort . 242

2 Analysis of Quicksort . 244

2.1 Analysis with the Dart Game . 245

2.2 A Direct Analysis . 246

2.3 Alternative Analysis of Quicksort . 252

3 Concluding Remarks . 253

IX Binary Search Trees 254

37 Introduction 255

1 Motivation . 255

2 Preliminaries . 256

12 CONTENTS

3 Searching a BST . 259

4 Balancing BSTs . 260

5 An Interface for Sets . 261

38 Parametric BSTs 266

1 The Parametric Data Type . 266

2 Algorithms based on joinMid . 267

3 Parallel Functions . 270

4 Cost Specification . 272

4.1 Cost of Union, Intersection, and Difference 273

39 Treaps 279

1 Treap Properties . 279

2 Height Analysis of Treaps . 281

3 The Treap Data Structure . 281

40 Augmenting Binary Search Trees 284

1 Augmenting with Values . 284

2 Augmenting with Size . 284

2.1 Example: Rank and Select in BSTs . 286

3 Augmenting with Reduced Values . 287

X Sets and Tables 290

41 Sets 291

1 Motivation . 291

2 Sets ADT . 292

CONTENTS 13

3 Cost of Sets . 295

42 Tables 298

1 Interface . 298

2 Cost Specification for Tables . 302

43 Ordering and Augmentation 303

1 Ordered Sets Interface . 303

2 Cost specification: Ordered Sets . 305

3 Interface: Augmented Ordered Tables . 305

44 Example: Indexing and Searching 307

XI Priority Queues 311

45 Priority Queues 312

1 Implementing Priority Queues . 313

2 Meldable Priority Queues . 315

2.1 Leftist Heaps . 318

XII Hashing 322

46 Foundations 323

1 Introduction . 323

2 Hash Functions . 326

3 Universal Hashing . 329

47 Hash Tables 333

14 CONTENTS

1 Nested Tables . 334

1.1 A Parametric Design . 334

1.2 Separate Chaining . 336

1.3 Perfect Hashing . 337

2 Flat Tables or Open Addressing . 340

2.1 A Parametric Implementation of Flat Tables 340

2.2 Linear Probing . 343

2.3 Quadratic Probing . 344

2.4 Double Hashing . 345

3 Concluding Remarks . 346

XIII Dynamic Programming 347

48 Introduction 348

49 Two Problems 354

1 Subset Sums . 354

2 Minimum Edit Distance . 357

50 Optimal Binary Search Trees 362

51 Implementing Dynamic Programming 367

1 Bottom-Up Method . 367

2 Top-Down Method: Memoization . 370

CONTENTS 15

XIV Graphs 373

52 Graphs and their Representation 374

1 Graphs and Relations . 374

2 Applications of Graphs . 375

3 Graphs Representations . 377

3.1 Edge Sets . 378

3.2 Adjacency Tables . 379

3.3 Adjacency Sequences . 380

3.4 Adjacency Matrices . 382

3.5 Representing Weighted Graphs . 384

53 Graph Search 386

1 Generic Graph Search . 386

2 Reachability . 388

3 Graph-Search Tree . 389

4 Priority-First Search (PFS) . 389

54 Breadth-First Search 391

1 BFS and Distances . 391

2 Sequential BFS . 392

2.1 Cost of Sequential BFS . 393

3 Parallel BFS . 395

3.1 Cost of Parallel BFS . 396

4 Shortest Paths and Shortest-Path Trees . 398

4.1 Cost with Sequences . 401

16 CONTENTS

55 Depth-First Search 403

1 DFS Reachability . 403

2 DFS Trees . 405

3 DFS Numbers . 407

4 Cost of DFS . 409

4.1 Parallel DFS . 410

5 Cycle Detection . 411

6 Topological Sort . 412

7 Strongly Connected Components (SCC) . 416

8 Discussions . 420

XV Shortest Paths 422

56 Introduction 423

1 Path Weights . 423

2 Shortest Path Problems . 425

3 The Sub-Paths Property . 425

57 Dijkstra’s Algorithm 428

1 Dijkstra’s Property . 428

2 Dijkstra’s Algorithm with Priority Queues . 431

3 Cost Analysis of Dijkstra’s Algorithm . 435

58 Bellman-Ford’s Algorithm 437

1 Graphs with Negative Edge Weights . 437

2 Bellman-Ford’s Algorithm . 439

CONTENTS 17

3 Cost Analysis . 443

59 Johnson’s Algorithm 446

XVI Graph Contraction and Applications 450

60 Introduction 451

1 Preliminaries . 451

2 Graph Contraction . 453

61 Edge Contraction 456

1 Edge Partition . 456

1.1 Analysis of Parallel Edge Partition . 459

2 Edge Contraction . 460

62 Star Contraction 462

1 Star Partition . 462

1.1 Analysis of Star Partition . 467

2 Star Contraction . 468

63 Graph Connectivity 471

1 Preliminaries . 471

2 Algorithms for Connectivity . 472

XVII Minimum Spanning Trees 476

64 Introduction 477

1 Spanning Trees . 477

18 CONTENTS

2 Minimum Spanning Trees . 478

3 Light-Edge Property . 480

4 Approximating Metric TSP via MST . 481

65 Sequential MST Algorithms 485

1 Prim’s Algorithm . 485

2 Kruskal’s Algorithm . 487

66 Parallel MST Algorithms 489

1 Boruvka’s Algorithm . 489

1.1 Algorithm Idea . 490

1.2 Boruvka’s Algorithm with Tree Contraction 492

1.3 Boruvka’s Algorithm with Star Contraction 493

Chapter 1

Introduction

This book aims to present techniques for problem solving using today’s computers, in-
cluding both sequentially and in parallel. For example, you might want to find the shortest
path from where you are now to the nearest café by using your computer. The primary
concerns will likely include correctness (the path found indeed should end at the nearest
café), efficiency (that your computer consumed a relatively small amount of energy), and
performance (the answer was computed reasonable quickly).

This book covers different aspects of problem solving with computers such as

• defining precisely the problem you want to solve,

• learning the different algorithm-design techniques for solving problems,

• designing abstract data types and the data structures that implement them, and

• analyzing and comparing the cost of algorithms and data structures.

Remark. We are concerned both with parallel algorithms (algorithms that can perform mul-
tiple actions at the same time) and sequential algorithms (algorithms that perform a single
action at a time). In our approach, however, sequential and parallel algorithms are not
particularly different.

1

Chapter 2

Parallelism

The term “parallelism” or “parallel computing” refers to the ability to run multiple com-
putations (tasks) at the same time. Today parallelism is available in all computer systems,
and at many different scales starting with parallelism in the nano-circuits that implement
individual instructions, and working the way up to parallel systems that occupy large data
centers.

1 Parallel Hardware

Multicore Chips. Since the early 2000s hardware manufacturers have been placing mul-
tiple processing units, often called “cores”, onto a single chip. These cores can be general
purpose processors, or more special purpose processors, such as those found in Graphics
Processing Units (GPUs). Each core can run in parallel with the others. Today (in year
2018), multicore chips are used in essentially all computing devices ranging from mobile
phones to desktop computers and servers.

Large-Scale Parallelism. At the larger scale, many computers can be connected by a net-
work and used together to solve large problems. For example, when you perform a simple
search on the Internet, you engage a data center with thousands of computers in some part
of the world, likely near your geographic location. Many of these computers (perhaps as
many as hundreds, if not thousands) take up your query and sift through data to give you
an accurate response as quickly as possible. Because each computer can itself be parallel
(e.g., built with multicore chips), the scale of parallelism can be quite large, e.g., in the
thousands.

2

1. PARALLEL HARDWARE 3

Fundamental Reasons for Why Parallelism Matters. There are several reasons for why
parallelism has become prevalent over the past decade.

First, parallel computing is simply faster than sequential computing. This is important,
because many tasks must be completed quickly to be of use. For example, to be useful, an
Internet search should complete in “interactive speeds” (usually below 100 milliseconds).
Similarly, a weather-forecast simulation is essentially useless if it cannot be completed in
time.

The second reason is efficiency in terms of energy usage. Due to basic physics, perform-
ing a computation twice as fast sequentially requires eight times as much energy (energy
consumption is a cubic function of clock frequency). With parallelism we don’t need to
use more energy than sequential computation, because energy is determined by the total
amount of computation (work).

These two factors—time and energy—have become increasingly important in the last decade.

Example 2.1. Using two parallel computers, we can perform a computation in half the
time of a sequential computer (operating at the same speed). To this end, we need to di-
vide the computation into two parallel sub-computations, perform them in parallel and
combine their results. This can require as little as half the time as the sequential computa-
tion. Because the total computation that we must do remains the same in both sequential
and parallel cases, the total energy consumed is also the same.

The above reasoning holds in theory. In practice, there are overheads to parallelism: the
speedup will be less than two-fold and more energy will be needed. For example, divid-
ing the computation and combining the results could lead to additional overhead. Such
overhead usually diminishes as the degree of parallelism increases but not always.

Example 2.2. As is historically popular in explaining algorithms, we can establish an anal-
ogy between parallel algorithms and cooking. As in a kitchen with multiple cooks, in
parallel algorithms you can do things in parallel for faster turnaround time. For example,
if you want to prepare 3 dishes with a team of cooks you can do so by asking each cook to
prepare one. Doing so will often be faster that using one cook. But there are some over-
heads, for example, the work has to be divided as evenly as possible. Obviously, you also
need more resources, e.g., each cook might need their own cooking pan.

Example 2.3 (Comparison to Sequential). One way to quantify the advantages of paral-
lelism is to compare its performance to sequential computation. The table below illustrates
the sort of performance improvements that can achieved today. These timings are taken
on a 32 core commodity server machine. In the table, the sequential timings use sequential
algorithms while the parallel timings use parallel algorithms. Notice that the speedup for
the parallel 32 core version relative to the sequential algorithm ranges from approximately
12 (minimum spanning tree) to approximately 32 (sorting).

4 CHAPTER 2. PARALLELISM

Application Sequential Parallel Parallel
P = 1 P = 32

Sort 107 strings 2.9 2.9 .095
Remove duplicates for 107 strings .66 1.0 .038
Minimum spanning tree for 107 edges 1.6 2.5 .14
Breadth first search for 107 edges .82 1.2 .046

2 Parallel Software

Challenges of Parallel Software. It would be convenient to use sequential algorithms on
parallel computers, but this does not work well because parallel computing requires a dif-
ferent way of organizing the computation. The fundamental difference is that in parallel
algorithms, computations must actually be independent to be performed in parallel. By in-
dependent we mean that computations do not depend on each other. Thus when designing
a parallel algorithm, we have to identify the underlying dependencies in the computation
and avoid creating unnecessary dependencies. This design challenge is an important focus
of this book.

Example 2.4. Going back to our cooking example, suppose that we want to make a frittata
in our kitchen with 4 cooks. Making a frittata is not easy. It involves cleaning and chopping
vegetables, beating eggs, sauteeing, as well as baking. For the frittata to be good, the cooks
must follow a specific receipe and pay attention to the dependencies between various tasks.
For example, vegetables cannot be sauteed before they are washed, and the eggs cannot be
fisked before they are broken!

Coding Parallel Algorithms. Another important challenge concerns the implementation
and use of parallel algorithms in the real world. The many forms of parallelism, ranging
from small to large scale, and from general to special purpose, have led to many different
programming languages and systems for coding parallel algorithms. These different pro-
gramming languages and systems often target a particular kind of hardware, and even a
particular kind of problem domain. As it turns out, one can easily spend weeks or even
months optimizing a parallel sorting algorithm on specific parallel hardware, such as a
multicore chip, a GPU, or a large-scale massively parallel distributed system.

Maximizing speedup by coding and optimizing an algorithm is not the goal of this book.
Instead, our goal is to cover general design principles for parallel algorithms that can be
applied in essentially all parallel systems, from the data center to the multicore chips on
mobile phones. We will learn to think about parallelism at a high-level, learning general
techniques for designing parallel algorithms and data structures, and learning how to ap-
proximately analyze their costs. The focus is on understanding when things can run in
parallel, and when not due to dependencies. There is much more to learn about paral-
lelism, and we hope you continue studying this subject.

Example 2.5. There are separate systems for coding parallel numerical algorithms on shared
memory hardware, for coding graphics algorithms on Graphical Processing Units (GPUs),

3. WORK, SPAN, PARALLEL TIME 5

and for coding data-analytics software on a distributed system. Each such system tends
to have its own programming interface, its own cost model, and its own optimizations,
making it practically impossible to take a parallel algorithm and code it once and for all
possible applications. Indeed, it can require a significant effort to implement even a simple
algorithm and optimize it to run well on a particular parallel system.

3 Work, Span, Parallel Time

This section describes the two measures—work and span—that we use to analyze algo-
rithms. Together these measures capture both the sequential time and the parallelism avail-
able in an algorithm. We typically analyze both of these asymptotically, using for example
the big-O notation.

3.1 Work and Span

Work. The work of an algorithm corresponds to the total number of primitive operations
performed by an algorithm. If running on a sequential machine, it corresponds to the
sequential time. On a parallel machine, however, work can be divided among multiple
processors and thus does not necessarily correspond to time.

The interesting question is to what extent can the work be divided and performed in par-
allel. Ideally we would like to divide the work evenly. If we had W work and P processors
to work on it in parallel, then even division would give each processor W

P fraction of the
work, and hence the total time would be W

P . An algorithm that achieves such ideal division
is said to have perfect speedup. Perfect speedup, however, is not always possible.

Example 2.6. A fully sequential algorithm, where each operation depends on prior opera-
tions leaves no room for parallelism. We can only take advantage of one processor and the
time would not be improved at all by adding more.

More generally, when executing an algorithm in parallel, we cannot break dependencies, if
a task depends on another task, we have to complete them in order.

Span. The second measure, span, enables analyzing to what extent the work of an algo-
rithm can be divided among processors. The span of an algorithm basically corresponds
to the longest sequence of dependences in the computation. It can be thought of as the
time an algorithm would take if we had an unlimited number of processors on an ideal
machine.

Definition 2.1 (Work and Span). We calculate the work and span of algorithms in a very
simple way that just involves composing costs across subcomputations. Basically we as-
sume that sub-computations are either composed sequentially (one must be performed

6 CHAPTER 2. PARALLELISM

after the other) or in parallel (they can be performed at the same time). We then calcu-
late the work as the sum of the work of the subcomputations. For span, we differentiate
between sequential and parallel composition: we calculate span as the sum of the span
of sequential subcomputations or maximum of the span of the parallel subcomputations.
More concretely, given two subcomputations with work W1 and W2 and span S1 and S2,
we can calculate the work and the span of their sequential and parallel composition as
follows. In calculating the overall work and span, the unit cost 1 accounts for the cost of
(parallel or sequential) composition.

W (Work) S (span)

Sequential composition 1 +W1 +W2 1 + S1 + S2

Parallel composition 1 +W1 +W2 1 + max(S1, S2)

Note. The intuition behind the definition of work and span is that work simply adds,
whether we perform computations sequentially or in parallel. The span, however, only
depends on the span of the maximum of the two parallel computations. It might help to
think of work as the total energy consumed by a computation and span as the minimum
possible time that the computation requires. Regardless of whether computations are per-
formed serially or in parallel, energy is equally required; time, however, is determined only
by the slowest computation.

Example 2.7. Suppose that we have 30 eggs to cook using 3 cooks. Whether all 3 cooks to
do the cooking or just one, the total work remains unchanged: 30 eggs need to be cooked.
Assuming that cooking an egg takes 5 minutes, the total work therefore is 150 minutes. The
span of this job corresponds to the longest sequence of dependences that we must follow.
Since we can, in principle, cook all the eggs at the same time, span is 5 minutes.

Given that we have 3 cooks, how much time do we actually need? It should be clear that
each cook can cook 10 eggs, for a total time of 50 minutes. Later we will discuss the “the
greedy scheduling principle” which tells us that given a task withW work and S span, and
using a greedy schedule, the time is upper bounded by W/P + S. In our case this would
be 150/3 + 5 = 55.

Example 2.8 (Parallel Merge Sort). As an example, consider the parallel mergeSort al-
gorithm for sorting a sequence of length n. The work is the same as the sequential time,
which you might know is

W (n) = O(n lg n).

We will see that the span for mergeSort is

S(n) = O(lg2 n).

Thus, when sorting a million keys and ignoring constant factors, work is 106 lg(106) > 107,
and span is lg2(106) < 500.

3. WORK, SPAN, PARALLEL TIME 7

Parallel Time. Even though work and span, are abstract measures of real costs, they can
be used to predict the run-time on any number of processors. Specifically, if for an algo-
rithm the work dominates, i.e., is much larger than, span, then we expect the algorithm to
deliver good speedups.

Exercise 2.1. How would you expect the parallel mergesort algorithm, mergeSort, men-
tioned in the example above to perform as we increase the number of processors dedicated
to running it?

Solution. Recall that the work of parallel merge sort is O(n lg n), whereas the span is
O(lg2 n). Since span is much smaller than the work, we would expect to get good (close
to perfect) speedups when using a small to moderate number of processors, e.g., couple of
tens or hundreds, because the work term will dominate. We would expect for example the
running time to halve when we double the number of processors. We should note that in
practice, speedups tend to be more conservative due to natural overheads of parallel exe-
cution and due to other factors such as the memory subsystem that can limit parallelism.

3.2 Work Efficiency

If algorithm A has less work than algorithm B, but has greater span then which algorithm
is better? In analyzing sequential algorithms there is only one measure so it is clear when
one algorithm is asymptotically better than another, but now we have two measures. In
general the work is more important than the span. This is because the work reflects the
total cost of the computation (the processor-time product). Therefore typically the goal
is to first reduce the work and then reduce the span by designing asymptotically work-
efficient algorithms that perform no more work than the best sequential algorithm for the
same problem. However, sometimes it is worth giving up a little in work to gain a large
improvement in span.

Definition 2.2 (Work Efficiency). We say that a parallel algorithm is (asymptotically) work
efficient, if the work is asymptotically the same as the time for an optimal sequential algo-
rithm that solves the same problem.

Example 2.9. The parallel mergeSort function described in is work efficient since it does
O(n log n) work, which optimal time for comparison based sorting.

In this course we will try to develop work-efficient or close to work-efficient algorithms.

Chapter 3

Specification, Problem, and
Implementation

This chapter reviews the basic concepts of specification, problem, and implementation.

Problem solving in computer science requires reasoning precisely about problems being
studied and the properties of solutions. To facilitate such reasoning, we define problems
by specifying them and describe the desired properties of solutions at different levels of
abstraction, including the cost of the solution, and its implementation.

In this book, we are usually interested in two distinct classes of problems: algorithms or
algorithmic problems and data structures problems.

1 Algorithm Specification

We specify an algorithm by describing what is expected of the algorithm via an algorithm
specification. For example, we can specify a sorting algorithm for sequences with respect
to a given comparison function as follows.

Definition 3.1 (Comparison Sort). Given a sequence A of n elements taken from a totally
ordered set with comparison operator<, return a sequenceB containing the same elements
but such that B[i] ≤ B[j] for 0 ≤ i < j < n.

Note. The specification describes what the algorithm should do but it does not describe how
it achieves what is asked. This is intentional—and is exactly the point—because there can
be many algorithms that meet a specification.

A crucial property of any algorithm is its resource requirements or its cost. For example,
of the many ways algorithms for sorting a sequence, we may prefer some over the others.

8

2. DATA STRUCTURE SPECIFICATION 9

We specify the cost of class of algorithms with a cost specification. The following cost
specification states that a particular class of parallel sorting algorithms performs O(n log n)
work and O(log2 n) span.

Cost Specification 3.2 (Comparison Sort: Efficient & Parallel). Assuming the compari-
son function < does constant work, the cost for parallel comparison sorting a sequence
of length n is O(n log n) work and O(log2 n) span.

There can be many cost specifications for sorting. For example, if we are not interested in
parallelism, we can specify the work to be O(n log n) but leave span unspecified. The cost
specification below requires even smaller span but allows for more work. We usually care
more about work and thus would prefer the first cost specification; there might, however,
be cases where the second specification is preferable.

Cost Specification 3.3 (Comparison Sort: Inefficient but Parallel). Assuming the compari-
son function < does constant work, the cost for parallel comparison sorting a sequence of
length n is O(n2) work and O(log n) span.

2 Data Structure Specification

We specify a data structure by describing what is expected of the data structure via an Ab-
stract Data Type (ADT) specification. As with algorithms, we usually give cost specifica-
tions to data structures. For example, we can specify a priority queue ADT and give it a
cost specification.

Data Type 3.4 (Priority Queue). A priority queue consists of a priority queue type and
supports three operations on values of this type. The operation empty returns an empty
queue. The operation insert inserts a given value with a priority into the queue and
returns the queue. The operation removeMin removes the value with the smallest priority
from the queue and returns it.

Cost Specification 3.5 (Priority Queue: Basic). The work and span of a priority queue
operations are as follows.

• empty: O(1), O(1).

• insert: O(log n), O(log n).

• removeMin: O(log n), O(log n).

3 Problem

A problem requires meeting an algorithm or an ADT specification and a corresponding
cost specification. Since we allow specifying algorithms and data structures, we can distin-
guish between algorithms problems and data-structure problems.

10 CHAPTER 3. SPECIFICATION, PROBLEM, AND IMPLEMENTATION

Definition 3.6 (Algorithmic Problem). An algorithmic problem or an algorithms prob-
lem requires designing an algorithm that satisfies the given algorithm specification and
cost specification if any.

Definition 3.7 (Data-Structures Problem). A data-structures problem requires meeting an
ADT specification by designing a data structure that can support the desired operations
with the required efficiency specified by the cost specification.

Note. The difference between an algorithmic problem and a data-structures problem is that
the latter involves designing a data structure and a collection of algorithms, one for each
operation, that operate on that data structure.

Remark. When we are considering a problem, it is usually clear from the context whether
we are talking about an algorithm or a data structure. We therefore usually use the simpler
terms specification problem to refer to the algorithm/ADT specification and the corre-
sponding problem respectively.

4 Implementation

We can solve an algorithms or a data-structures problem by presenting an implementation
or code written is some formal or semi-formal programming language. The term algo-
rithm refers to an implementation that solves an algorithms problem and the term data
structure to refer to an implementation that solves a data-structures problem.

Note. The distinction between algorithmic problems and algorithms is common in the lit-
erature but the distinction between abstract data types and data structures is less so.

Example 3.1 (Insertion Sort). In this book, we describe algorithms by using the pseudo-
code notation based on SPARC, the language used in this book. For example, we can
specify the classic insertion sort algorithm as follows.

insSort f s =
if |s| = 0 then
〈 〉

else insert f s[0] (insSort f (s[1, ..., n− 1]))

In the algorithm, f is the comparison function and s is the input sequence. The algorithm
uses a function (insert f x s) that takes the comparison function f , an element x, and a
sequence s sorted by f , and inserts x in the appropriate place. Inserting into a sorted se-
quence is itself an algorithmic problem, since we are not specifying how it is implemented,
but just specifying its functionality.

Example 3.2 (Cost of Insertion Sort). Considering insertion sort example, suppose that we
are given a cost specification for insert: for a sequence of length n the cost of insert
should be O(n) work and O(log n) span. We can then determine the overall asymptotic
cost of sort using our composition rules described in Section (Work, Span, and Parallel

4. IMPLEMENTATION 11

Time) . Since the code uses insert sequentially and since there are n inserts, the algorithm
insSort has n×O(n) = O(n2) work and n×O(log n) = O(n log n) span.

Example 3.3 (Priority Queues). We can give a data structure by specifying the data type
used by the implementation, and the algorithms for each operation. For example, we can
implement a priority queue with a binary heap data structure and describe each operation
as an algorithm that operates on this data structure. In other words, a data structure can be
viewed as a collection of algorithms that operate on the same organization of the data.

Remark (On the Importance of Specification). Distinguishing between specification and im-
plementation is important due to several reasons.

First, specifications allow us to ignore the details of an implementation that we might not
care to know. In many cases the specification of a problem is quite simple, but an efficient
algorithm or implementation that solves it is complicated. Specifications allow us abstract
from implementation details.

Second, specifications allow modularity. In computer science, it is important to improve
implementations over time. As long as each implementation matches the same specifica-
tion and the client only relies on the specification, then new implementations can be used
without breaking things.

Third, when we compare the performance of different algorithms or data structures it is
important that we do not compare apples and oranges. We have to make sure the compared
objects solve the same problem—subtle differences in the problem specification can make
a significant difference in how efficiently that problem can be solved.

Chapter 4

Genome Sequencing (An Example)

Sequencing of a complete human genome represents one of the greatest scientific achieve-
ments of the century. When the human genome project was first proposed in mid 1980’s,
the technology available could only sequence couple of hundred bases at a time. After a
few decades, the efforts led to the several major landmark accomplishments. In 1996, the
DNA of the first living species (fruit fly) was sequenced. This was followed, in 2001, by the
draft sequence of the human genome. Finally in 2007, the full human genome diploid was
sequenced. Efficient parallel algorithms played a crucial role in all these achievements. In
this chapter, we review the genome-sequencing problem and discuss how the problem can
be formulated as an algorithmic one.

This chapter presents an overview of the genome sequencing problem and how it may be
abstracted and solved as a string problem in computer science.

1 Genome Sequencing Problem

1.1 Background

As with many “real world” applications, defining precisely the problem that models our
application is interesting in itself. We therefore start with the vague and not well-defined
problem of “sequencing the human genome” and convert it into a precise algorithmic prob-
lem. Our starting point is the “shotgun method” for genome sequencing, which was the
method used for sequencing the human genome.

Definition 4.1 (Nucleotide). A nucleotide is the basic building block of nucleic acid poly-
mers such as DNA and RNA. It is comprised of a number of components, which bind
together to form the double-helix. The components include

12

1. GENOME SEQUENCING PROBLEM 13

• a nitrogenous base, one of Adenine, Cytosine, Guanine, Thymine (Uracil),

• a 5-carbon sugar molecule, and

• one or more phosphate groups.

We distinguish between four kinds of nucleotides based on their nitgogenous base and
label them as ’ A ’ (Adenine), ’ C ’ (Cytosine), ’ G ’ (Guanine), or ’ T ’ (Thymine).

Definition 4.2 (Nucleic Acid). Nucleic acids are large molecules structured as linear chains
of nucleotides. DNA and RNA are two important examples of nucleic acids.

Definition 4.3 (Human Genome). The human genome is the full nucleic acid sequence
for humans consisting of nucleotide bases of A (Adenine), Cytosine (C), Guanine (G), or
Thymine (T). It contains over 3 billion base pairs, each of which consist of two nucleotide
bases bound by hydrogen bonds. It can be written as a sequence or a string of bases con-
sisting of the letters, “A”, “C”, “G”, and “T”.

Remark. The human-genome sequence, if printed as a book, would be about as tall as the
Washington Monument. The human genome is present in each cell of the human body.
It appears to have all the information needed by the cells in our bodies and its deeper
understanding will likely lead to insights into the nature of life.

1.2 Sequencing Methods

The challenge in sequencing the genome is that there is currently no way to read long
strands with accuracy. Current DNA “reading” techniques are only capable of efficiently
reading relatively short strands, e.g., 10-1000 base pairs, compared to the over three bil-
lion contained in the whole human genome. Scientists therefore cut strands into shorter
fragments, sequence them, and then reassemble the sequenced fragments.

Primer Walking. A technique called primer walking can be used to sequence nucleic
acid molecules up to 10,000 bases. The basic idea behind primer walking is to sequence a
nucleic acid from each end using special molecules called primers that can be used to read
the first 1000 bases or so. The process is then repeated to “walk” the rest of the nucleic acid
by using most recently read part as a primer for the next part. Since the process requires
constructing primers and since it is sequential, it is only effective for sequencing short
molecules.

Fragments. To sequence a larger molecule, we can cut it into fragments, which can be
achieved in a lab, and then use primer walking to sequence each fragment. Since each
fragment can be sequenced independently in parallel, this would allow us to parallelize
the hard part of sequencing. The problem though is that we don’t know how to assemble
them together, because the cutting process destroys the order of the fragments.

14 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

Note. The approach of dividing the genome and sequencing each piece independently is
somewhat analogous to solving a jigsaw puzzle but without knowing the complete picture.
It can be difficult and perhaps even impossible to solve such a puzzle.

Example 4.1. When cut, the strand cattaggagtat might turn into, ag, gag, catt, tat,
destroying the original ordering.

The Shotgun Method. When we cut a genome into fragments we lose all the information
about how the fragments should be assembled. If we had some additional information
about how to assemble them, then we could imagine solving this problem. One way to get
additional information on assembling the fragments is to make multiple copies of the orig-
inal sequence and generate many fragments that overlap. Overlaps between fragments can
then help relate and join them. This is the idea behind the shotgun (sequencing) method,
which was the primary method used in sequencing the human genome for the first time.

Example 4.2. For the sequence cattaggagtat, we produce three copies:

cattaggagtat
cattaggagtat
cattaggagtat

We then divide each into fragments

catt — ag — gagtat
cat — tagg — ag — tat
ca — tta — gga — gtat

Note how each cut is “covered” by an overlapping fragment telling us how to patch to-
gether the cut.

Definition 4.4 (Shotgun Method). The shotgun method works as follows.

1. Take a DNA sequence and make multiple copies.

2. Randomly cut the sequences using a “shotgun” (in reality, using radiation or chemi-
cals) into short fragments.

3. Sequence each fragments (possibly in parallel).

4. Reconstruct the original genome from the fragments.

Remark. Steps 1–3 of the Shotgun Method are done in a wet lab, while step 4 is the algorith-
mically interesting component. Unfortunately it is not always possible to reconstruct the
exact original genome in step 4. For example, we might get unlucky and cut all sequences
in the same location. Even if we cut them in different locations, there can be many DNA
sequences that lead to the same collection of fragments. A particularly challenging prob-
lem is repetition: there is no easy way to know if repeated fragments are actual repetitions
in the sequence or if they are a product of the method itself.

1. GENOME SEQUENCING PROBLEM 15

1.3 Genome Sequencing Problem

This section formulates the genome sequencing problem as an algorithmic problem.

Recall that the using the Shotgun Method, we can construct and sequence short fragments
made from copies of the original genome. Our goal is to use algorithms to reconstruct
the original genome sequence from the many fragments by somehow assembling back the
sequenced fragments. But there are many ways that such fragments can be assembled and
we have no idea how the original genome looked like. So what can we do? In some sense
we want to come up with the “best solution” that we can, given the information that we
have (the fragment sequences).

Basic Terminology on Strings. From an algorithmic perspective, we can treat a genome
sequence just as a sequence made up of the four different characters representing nu-
cleotides. To study the problem algorithmically, let’s review some basic terminology on
strings.

Definition 4.5 (Superstring). A string r is a superstring of another string s if s occurs in r
as a contiguous block, i.e., s is a substring of r.

Example 4.3. • tagg is a superstring of tag and gg but not of tg.

• gtat is a superstring of gta and tat but not of tac.

Definition 4.6 (Substring, Prefix, Suffix). A string s is a substring of another string r, if s
occurs in r as a contiguous block. A string s is a prefix of another string r, if s is a substring
starting at the beginning of r. A string s is a suffix of another string r, if s is a substring
ending at the end of r.

Example 4.4. • ag is a substring of ggag, and is also a suffix.

• gga is a substring of ggag, and is also a prefix.

• ag is not a substring of attg.

Definition 4.7 (Kleene Operators). For any set Σ, its Kleene star Σ∗ is the set of all possible
strings consisting of characters Σ, including the empty string.

For any set Σ, its Kleene plus Σ+ is the set of all possible strings consisting of characters Σ,
excluding the empty string.

Example 4.5. Given Σ = {a,b},

Σ∗ = { ’ ’,
’a ’, ’b ’,
’aa ’, ’ab ’, ’ba ’, ’bb ’,
’aaa ’, ’aab ’, ’aba ’, ’abb ’,
’baa ’, ’bab ’, ’bba ’, ’bbb ’,
. . .

}

16 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

and

Σ+ = { ’a ’, ’b ’,
’aa ’, ’ab ’, ’ba ’, ’bb ’,
’aaa ’, ’aab ’, ’aba ’, ’abb ’,
’baa ’, ’bab ’, ’bba ’, ’bbb ’,
. . .

}

Definition 4.8 (Shortest Superstring (SS) Problem). Given an alphabet set Σ and a set of
finite-length strings A ⊆ Σ∗, return a shortest string r that contains every x ∈ A as a
substring of r.

Genome Sequencing as a String Problem. We can now try to understand the properties
of the genome-sequencing problem.

Exercise 4.1 (Properties of the Solution). What is a property that the result sequence needs
to have in relation to the fragments sequenced in the Shotgun Method?

Solution. Because the fragments all come from the original genome, the result should
contain all of them. In other words, the result is a superstring of the fragments.

Exercise 4.2. There can be multiple superstrings for any given set of fragments. Which
superstrings are more likely to be the actual genome?

Solution. One possibly good solution is the shortest superstring. Because the Shotgun
Method starts by making copies of the original sequence, by insisting on the shortest su-
perstring, we would make sure that the duplicates would be eliminated. More specifically,
if the original sequence had no duplicated fragments, then this approach would eliminate
all the duplicates created by the copies that we made in the beginning.

We can abstract the genome-sequencing problem as an instance of the shortest superstring
problem where Σ = {a, c, g, t}. We have thus converted a vague problem, sequencing the
genome, into a concrete mathematical problem, the SS problem.

Remark. One might wonder why the shortest superstring is the “right answer” given that
there could be many superstrings. Selecting the shortest is an instance of what is referred to
as Occam’s razor—i.e., that the simplest explanation tends to be the right one. As we shall
discuss more later, the SS problem is not exactly the right abstraction for the application
of sequencing the genome, because it ignores some important practical factors. One issue
is that the genome can contain repeated sections that are much longer than the fragments.
In this case the shortest is not the right answer, but there is not enough information in the
fragments to determine the right answer even given infinite computational power. One
needs to add input to fix this issue. Another issue is that there can be errors in reading
the short strings. This could make it impossible to find the correct or even reasonable
superstring. Instead one needs to consider approximate substrings. Fortunately, the basic
approach described here can be generalized to deal with these issues.

1. GENOME SEQUENCING PROBLEM 17

1.4 Understanding the Structure of the Problem

Let’s take a closer look at the problem to make some observations.

Observation 1. We can ignore a fragment that is a substring of another fragment, because
it doesn’t contribute to the solution. For example, if we have gagtat, ag, and gt, we can
throw out ag and gt.

Definition 4.9 (Snippets). In genome sequencing problem, we refer to the fragments that
are not substrings of others as snippets.

Observation 2: Ordering of the snippets. Because no snippet is a substring of another,
in the result superstring, snippets cannot start at the same position. Furthermore, if one
starts after another, it must finish after the other. This leads to our second observation: in
any superstring, the start positions of the snippets is a strict (total) order, which is the same
order as their finish positions.

This observation means that to compute the shortest superstring of the snippets, it suf-
fices to consider the permutations of snippets and compute for each permutation the cor-
responding superstring.

Example 4.6. In our example, we had the following fragments.

catt — ag — gagtat
cat — tagg — ag — tat
ca — tta — gga — gtat

The snippets are now: S = { catt, gagtat, tagg, tta, gga }

The other fragments { cat, ag, tat, ca, gtat } are all contained within the snippets.

Consider a superstring such as cattaggagtat. The starting points for the snippets are: 0
for catt, 2 for tta, 3 for tagg, 5 for gga, and 6 for gagtat.

Shortest Superstring of a Permutation. Our second observation says that a superstring
corresponds to a permutation. This leads to the natural question of how to find the shortest
superstring for a given permutation. The following theorem tells us how.

Theorem 4.1 (Shortest Superstring by Overlap Removal). Given any start ordering of the
snippets s1, s2, . . . , sn, removing the maximum overlap between each adjacent pair of snip-
pets (si, si+1) gives the shortest superstring of the snippets for that start ordering.

18 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

Proof. The theorem can be proven by induction. The base case is true since it is clearly
true for a single snippet. Inductively, we assume it is true for the first i snippets, i.e., that
removing the maximum overlap between adjacent snippets among these i snippets yields
the shortest superstring of s1, . . . , si starting in that order. We refer to this superstring as ri.
We now prove that the theorem it is true for i then it is true for i+ 1. Consider adding the
snippet si+1 after ri, we know that si+1 does not fully overlap with the previous snippet (si)
by the definition of snippets. Therefore when we add it on using the maximum overlap, the
resulting string ri+1 will be ri with some new characters added to the end. The string ri+1

is a superstring of s0, . . . , si+1 because it includes ri, which by induction is a superstring of
s0, . . . , si, and because it includes si+1. It is also be the shortest since ri is the shortest for
s1, . . . si and a shorter string would not include si+1, because we have already eliminated
the maximum overlap between si+1 and ri.

Example 4.7. In our running example, consider the following start ordering

catt tta tagg gga gagtat

When the maximum overlaps are removed we obtain cattaggagtat, which is indeed the
shortest superstring for the given start ordering. In this case, it is also the overall shortest
superstring.

Definition 4.10 (Overlap). Define the function overlap as a function that computes the
maximum overlap between two ordered snippets, i.e.,

overlap(si, sj)

denotes the maximum overlap for si followed by sj .

For example, for tagg and gga, overlap (tagg, gga) = 2.

2 Algorithms for Genome Sequencing

Overview. In this chapter, we review some of the algorithms behind the sequencing of
genome, and more specifically the shortest superstring (SS) problem. The algorithms are
derived by using consider three algorithm-design techniques: brute-force, reduction, and
greedy.

2.1 Brute Force

Designing algorithms may appear to be an intimidating task, because it may seem as
though we would need brilliant ideas that come out of nowhere. In reality, we design al-
gorithms by starting with simple ideas based on several well-known techniques and refine
them until the desired result is reached. Perhaps the simplest algorithm-design technique
(and usually the least effective) is brute-force—i.e., try all solutions and pick the best.

2. ALGORITHMS FOR GENOME SEQUENCING 19

Brute Force Algorithm 1. As applied to the genome-sequencing problem, a brute-force
technique involves trying all candidate superstrings of the fragments and selecting the
shortest one. Concretely, we can consider all strings x ∈ Σ∗, and for each x check if every
fragment is a substring. Although we won’t describe how here, such a check can be per-
formed efficiently. We then pick the shortest x that is indeed a superstring of all fragments.

The problem with this brute-force algorithm is that there are an infinite number of strings
in Σ∗ so we cannot check them all. But, we don’t need to: we only need to consider strings
up to the total length of the fragments m, since we can easily construct a superstring by
concatenating all fragments. Since the length of such a string is m, the shortest superstring
has length at most m.
Note. Unfortunately, there are still |Σ|m strings of length m; this number is not infinite but
still very large. For the sequencing the genome Σ = 4 and m is in the order of billions,
giving something like 41,000,000,000. There are only about 1080 ≈ 4130 atoms in the universe
so there is no feasible way we could apply the brute force method directly. In fact we can’t
even apply it to two strings each of length 100.

2.2 Brute Force Reloaded

We will now design better algorithms by applying the observations from the previous sec-
tion . Specifically, we now know that we can compute the shortest superstring by finding
the permutation that gives us the shortest superstring, and removing overlaps. Let’s first
design an algorithm for removing overlaps.

Algorithm 4.11 (Finding Overlap). Consider two strings s and t in that order. To find the
overlap between s and t as defined before , we can use the brute force-technique: consider
each suffix of s and check if it is a prefix of t and select the longest such match.

The work of this algorithm isO(|s|·|t|), i.e., proportional to the product of the lengths of the
strings since for each suffix of s we compare one to one to each character of the prefix ot t.
The comparisons across all suffixes and all characters within a suffix can be done in parallel
in constant span. We however need to check that all characters match within a suffix, and
then find the longest suffix for which this is true. These can both be done with what is called
a reduce operation, which “sums” across a sequence of elements using a binary associative
operator (in our case logical-and, and maximum). If implemented using a tree sum, a
reduce has span that is logarithmic in the input length. Reduce will be covered extensively
in later chapters. The total span is thus O(lg |s| + lg |t|) ⊆ O(lg (|s|+ |t|) + lg (|s|+ |t|)) =
O(lg (|s|+ |t|)).

Algorithm 4.12 (Finding the Shortest Permutation). Using the above algorithm for find-
ing overlaps, we can compute the shortest superstring of a permutation by eliminating the
overlaps between successive strings in the permutation. We can then find the permutation
with the shortest superstring by considering each permutation and selecting the permuta-
tion with the shortest superstring. Since we can consider each permutation independently
of the others, this algorithm reveals parallelism.

Algorithm 4.13 (Finding the Shortest Permutation (Improved)). We can improve our algo-
rithm for finding the shortest permutation by using a technique known as staging. Notice

20 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

that our algorithm repeatedly computes the overlap between the same snippets, because
the permutations all belong to the same set of snippets. Since we only remove the overlap
between successive snippets in a permutation, there are only O(n2) pairs to consider. We
can thus stage work of the algorithm more carefully:

• First, compute the overlaps between each pair of snippets and store them in a dictio-
nary for quick lookup.

• Second, try all permutations and compute the shortest superstring by removing over-
laps as defined by the dictionary.

Note. Staging technique is inherently sequential: it creates a sequential dependency be-
tween the different stages of work that must be done. If, however, the number of stages is
small (in our example, we have two), then this is harmless.

Cost Analysis. Let’s analyze the work and the span of our staged algorithm. For the
analysis, let W1 and S1 be the work and span for the first phase of the algorithm, i.e., for
calculating all pairs of overlaps in our set of input snippets s = {s1, . . . , sn}. Let m =∑
x∈S |x|. Using our algorithm, overlap(x, y) for finding the maximum overlap between

two strings x and y, we have

W1 ≤
∑n
i=1

∑n
j=1W (overlap(si, sj)))

=
∑n
i=1

∑n
j=1O(|si||sj |)

≤
∑n
i=1

∑n
j=1(c1 + c2|si||sj |)

= c1n
2 + c2

∑n
i=1

∑n
j=1(|si||sj |)

= c1n
2 + c2

∑n
i=1

(
|si|
∑n
j=1 |sj |

)
= c1n

2 + c2
∑n
i=1(|si|m)

= c1n
2 + c2m

∑n
i=1 |si|

= c1n
2 + c2m

2

∈ O(m2) since m ≥ n.

Since all pairs can be considered in parallel, we have for span

S1 ≤ maxni=1 maxnj=1 S(overlap(si, sj)))
S1 ≤ maxni=1 maxnj=1O(lg (|si|+ |sj |))

∈ O(lgm).

We therefore conclude that the first stage of the algorithm requiresO(m2) work andO(lgm)
span.

Moving onto the second stage, we want to compute the shortest superstring for each per-
mutation. Given a permutation, we know that all we have to do is remove the overlaps.
Since there are n overlaps to be considered and summed, this requires O(n) work, assum-
ing that we can lookup the overlaps in constant time. Since we can lookup the overlaps in
parallel, the span is constant for finding the overlaps and O(lg n) for summing them, again

2. ALGORITHMS FOR GENOME SEQUENCING 21

using a reduce. Therefore the cost for handling each permutation is O(n) work and O(lg n)
span.

Unfortunately, there are n! permutations to consider. In fact this is another form of brute-
force in which we try all possible permutations instead of all possible superstrings. Even
though we have designed reasonably efficient algorithms for computing the overlaps and
the shortest superstring for each permutation, there are too many permutations for this
algorithm to be efficient. For n = 10 strings the algorithm is probably feasible, which
is better than our previous brute-force algorithm, which did not even work for n = 2.
However for n = 100, we’ll need to consider 100! ≈ 10158 permutations, which is still more
than the number of atoms in the universe. Thus, the algorithm is still not feasible if the
number of snippets is more than a couple dozen.

Remark. The technique of staging used above is a key technique in algorithm design and
engineering. The basic idea is to identify a computation that is repeated many times and
pre-compute it, storing it in a data structure for fast retrieval. Later instances of that com-
putation can then be recalled via lookup instead of re-computing every time it is needed.

2.3 Shortest Superstrings by Algorithmic Reduction

Another fundamental technique in algorithm design is to reduce one algorithms problem
to another that has a known solution. It is sometimes quite surprising that we can reduce
a problem to another, seemingly very different one. Here, we will reduce the shortest
superstring problem to the Traveling Salesman Problem (TSP), which might appear to be
quite different.

2.4 Traveling Salesperson Problem

The Traveling Salesperson Problem or TSP is a canonical problem dating back to the 1930s
and has been extensively studied. The two major variants of the problem are symmetric
TSP and asymmetric TSP, depending on whether the graph has undirected or directed
edges, respectively. Both variants are known to be NP-hard, which indicates that it is un-
likely that they have an algorithm that has polynomial work. One might ask why reduce
the SS problem to a hard problem such as the TSP problem. Well it turns out that the SS
problem is also NP-hard. The possible advantage of the reduction is that the TSP problem
is such a well studied problem that there are many reasonably effective algorithms for the
problem, even if not polynomial work.

Asymmetric TSP requires finding a Hamiltonian cycle of the graph such that the sum of
the arc (directed edge) weights along the cycle is the minimum of all such cycles. A cycle is
a path in a graph that starts and ends at the same vertex and a Hamiltonian cycle is a cycle
that visits every vertex exactly once. In general graphs might not have a hamiltonian cycle,
and in fact it is NP-hard to even check if a graph has such a cycle. However, in the TSP
problem it is assumed that there is an edge between every pair of vertices (this is called a
complete graph) and in this case a graph always has a hamiltonian cycle.

22 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

Example 4.8 (TSP Competition). A poster from a contest run by Proctor and Gamble in
1962 is reproduced below. The goal was to solve a 33 city instance of the TSP. Gerald
Thompson, a Carnegie Mellon professor, was one of the winners.

Problem 4.3 (The Asymmetric Traveling Salesperson Problem (aTSP)). Given a weighted
directed graph, find the shortest cycle that starts at some vertex and visits all vertices ex-
actly once before returning to the starting vertex.

The symmetric version of the problem considers undirected graphs instead of directed
ones—i.e., where the weight of an edge is the same in both directions.
Note. Note that the version of the problem that requires starting at a particular vertex is
also NP-hard because otherwise we can solve the general problem by trying each vertex.

2.5 Reducing Shortest Superstrings to TSP

We can reduce the Shortest Superstring problem to TSP by using our second Observation,
which we also used in the brute-force algorithm: the shortest superstring problem can be

2. ALGORITHMS FOR GENOME SEQUENCING 23

solved by trying all permutations. In particular we will make TSP try all the permutations
for us.

Reduction from SS to TSP. For the reduction, we set up a graph so that each valid Hamil-
tonian cycle corresponds to a permutation.

We build a graphD = (V,A). The reduction relies on the overlap function defined defined
earlier .

• The vertex set V has one vertex per snippet and a special “source” vertex uwhere the
cycle starts and ends.

• The arc (directed edge) from si to sj has weight wi,j = |sj | − overlap(si, sj). This
quantity represents the increase in the string’s length if si is followed by sj . For
example, if we have tagg followed by gga, then we can generate tagga which only
adds 1 character giving a weight of 1—indeed, | gga| - overlap (tagg, gga) = 3−2 =
1.

• The weights for arcs incident to source u are set as follows: (u, si) = |si| and (si, u) =
0. That is, if si is the first string in the permutation, then the arc (u, si) pays for the
whole length si. If si is the last string we have already paid for it, so the arc (si, u) is
free.

Example 4.9. To see this reduction in action, the snippets in our running example, {catt,
gagtat, tagg, tta, gga } results in the graph, a subgraph of which is shown below (not
all arcs are shown).

As intended, in this graph, a Hamiltonian cycle corresponds to a permutation in our second
brute-force method: we start from the source and follow the cycle to produce the permu-
tation. Furthermore, the sum of the arc weights in that cycle is equal to the length of the

24 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

superstring produced by the permutation. Since the TSP finds the minimum weight cycle,
it also finds the permutation that leads to the shortest superstring. Therefore, if we could
solve the TSP problem, we can solve the shortest superstring problem.

Summary. We have thus reduced the shortest-superstring problem, which is NP-hard, to
another NP-hard problem: TSP. We constructed the reduction by using an insight from a
brute-force algorithm: that we can solve the problem by trying out all permutations. The
advantage of this reduction is that we know a lot about TSP, which can help, because for
any algorithm that solves or approximates TSP, we obtain an algorithm for the shortest-
superstring problem, and thus for sequencing the genome.

Remark (Hardness of Shortest Superstring). In addition to designing algorithms, reductions
can be used to prove that a problem is NP-hard or NP-complete. For example, if we reduce
an NP-hard (NP-complete) problem A to another problem B by performing polynomial
work, and preserving the size within a polynomial factor, then B must be NP-hard (NP-
complete).

For example, let’s say we know the SS problem is NP hard. Since we are able to reduce it to
the TSP problem in polynomial work and size using the method described above, this tells
us the TSP must be NP-hard. If we wanted to go the other way and prove SS is NP-hard
based on the known hardness of TSP then we would have to construct a reduction in the
other direction—i.e., from the TSP to the SS. This is more challenging and we will leave it
up to the most motivated students.

2.6 Greedy Algorithm

We have thus far developed a brute-force algorithm for solving the Shortest Supersting
problem that requires exponential time and reduced the problem to the Traveling Sales-
person Problem (TSP), which is NP-hard. We also remarked that the Shortest Superstring
problem is NP-hard. Thus, we are still far away from a polynomial-work solution to the
problem and we are unlikely to find one.

When a problem is NP hard, it means that there are instances of the problem that are difficult
to solve exactly. NP-hardness doesn’t rule out the possibility of algorithms that quickly
compute approximate solutions or even algorithms that exactly solve many real world
instances. For example the type-checking problem for strongly typed languages (e.g., the
ML family of languages) is NP-hard but we use them all the time, even on large programs.

One interesting approach to overcoming difficult NP-hard problems is to use approxima-
tion. For the SS problem, we know efficient approximation algorithms that are theoretically
good: they guarantee that the length of the superstring is within a constant factor of the op-
timal answer. Furthermore, these algorithms tend to perform even better in practice than
the theoretical bounds suggest. In the rest of this unit, we discuss such an algorithm.

2. ALGORITHMS FOR GENOME SEQUENCING 25

Greedy Algorithms. To design an approximation algorithm we will use an iterative de-
sign technique based on a greedy heuristic. When applying this design technique, we
consider the current solution at hand and make a greedy, i.e., locally optimal decision to
reduce the size of the problem. We then repeat the same process of making a locally op-
timal decision, hoping that eventually these decisions lead us to a global optimum. For
example, a greedy algorithm for the TSP can visit the closest unvisited city (the locally
optimal decision), removing thus one city from the problem.

Because greedy algorithms rely on a heuristic they may or may not return an optimal so-
lution. Nevertheless, greedy algorithms are popular partly because they tend to be simple
and partly because they can perform quite well. We note that, for a given problem there
might be several greedy algorithms that depend on what is considered to be locally opti-
mal.

The key step in designing a greedy algorithm is to decide the locally optimal decision. In
the case of the SS problem, observe that we can minimize the length of the superstring
by maximizing the overlap among the snippets. Thus, at each step of the algorithm, we
can greedily pick a pair of snippets with the largest overlap and join them by placing one
immediately after the other and removing the overlap. This can then be repeated until
there is only one string left. This is the basic idea behind the greedy algorithm below.

Computing Joins. Let’s define the function join(x, y) as a function that places y after x
and removes the maximum overlap.

For example,
join (tagg, gga) = tagga.

Algorithm 4.14 (Greedy Approximate SS).

greedyApproxSS (S) =
if |S| = 1 then
return x ∈ S

else
let
T = {(overlap(x, y), x, y) : x ∈ S, y ∈ S, x 6= y}
(oxy, x, y) = argmax (o, ,)∈T o

z = join(x, y)
S′ = S ∪ {z} \ {x, y}

in
greedyApproxSS (S′)

end

The pseudocode for the greedy algorithm is shown above. Given a set of strings S, the
greedyApproxSS algorithm checks if the set has only 1 element, and if so returns that ele-
ment. Otherwise it finds the pair of distinct strings x and y in S that have the maximum
overlap. It does this by first calculating the overlap for all pairs and then picking the one
of these that has the maximum overlap.

26 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

Note that T is a set of triples each corresponding to an overlap and the two strings that
overlap. The notation

argmax (o, ,)∈T o

is mathematical notation for selecting the element of T that maximizes the first element of
the triple, which is the overlap.

After finding the pair (x, y) with the maximum overlap, the algorithm then replaces x and
y with z = join(x, y) in S to obtain the new set of snippets S′. The new set S′ contains
one element less than S. The algorithm recursively repeats this process on this new set of
strings until there is only a single string left. It thus terminates after |S| recursive calls.

Exercise 4.4. Why is the algorithm greedy?

Solution. The algorithm is greedy because at every step it takes the pair of strings that
when joined will remove the greatest overlap, a locally optimal decision. Upon termina-
tion, the algorithm returns a single string that contains all strings in the original set S.
However, the superstring returned is not necessarily the shortest superstring.

Example 4.10. Consider the snippets in our running example,{
catt, gagtat, tagg, tta, gga

}
.

The graph below illustrates the overlaps between different snippets. An arc from vertex u
to v is labeled with the size of the overlap when u is followed by v. All arcs with weight 0
are omitted for simplicity.

Given these overlaps, the greedy algorithm could proceed as follows:

• join tagg and gga to obtain tagga (overlap = 2),

• join catt and tta to obtain catta (overlap = 2),

3. CONCLUDING REMARKS 27

• join gagtat and tagga to obtain gagtatagga (overlap = 1), and

• join gagtatagga and catta to obtain gagtataggacatta (overlap = 0).

Note. Although the greedy algorithm merges pairs of strings one by one, we note there
is still significant parallelism in the algorithm, at least as described. In particular we can
calculate all the overlaps in parallel, and the largest overlap in parallel using a reduce.

Cost Analysis. From the analysis of our brute-force algorithm, we know that we can
find the overlaps between the strings in O(m2) work and O(lgm) span. Thus T can be
computed in O(m2) work and O(lgm) span. Finding the maximum with argmax can be
computed by a simple reduce operation. Because m > n, the cost of computing T domi-
nates. Therefore, excluding the recursive call, each call to greedyApproxSS costs is O(m2)
work and O(lgm) span.

Observe now that each call to greedyApproxSS reduces the number of snippets: S′ contains
one fewer element than S, so there are at most n calls to greedyApproxSS . These calls are
sequential because one call must complete before the next call can take place. Hence, the
total cost for the algorithm is O(nm2) work and O(n lgm) span. The algorithm therefore
has parallelism (work over span) ofO(nm2/(n lgm)) = O(m2/ lgm) and is therefore highly
parallel. There are ways to make the algorithm more efficient, but leave that as an exercise
to the reader.

Approximation Quality. Since the greedyApproxSS algorithm does only polynomial work,
and since the TSP problem is NP hard, we cannot expect it to give an exact answer on all
inputs—that would imply P = NP, which is unlikely. Although greedyApproxSS does not
return the shortest superstring, it returns a good approximation of the shortest superstring.
In particular, it is known that it returns a string that is within a factor of 3.5 of the shortest;
it is conjectured that the algorithm returns a string that is within a factor of 2. In practice,
the greedy algorithm typically performs better than the bounds suggest. The algorithm
also generalizes to other similar problems. Algorithms such as greedyApproxSS that solve
an NP-hard problem to within a constant factor of optimal, are called constant-factor
approximation algorithms.

3 Concluding Remarks

The Human Genome Project was an international scientific research project that was one of
the largest collaborative projects in the human history. The project was formally launched
in 1990, after several years of preparations, and pronounced complete in 2000. It costed
approximately three billion dollars (in the currency of Fiscal Year 1991).

Abstracting a real-world problem such as the sequencing of the human genome, which
is one of the most challenging problems that has been tackled in science, is significantly

28 CHAPTER 4. GENOME SEQUENCING (AN EXAMPLE)

more complex than the relatively simple abstractions that we use in this book. This section
discusses some of the complexities of genome sequencing that we have not addressed.

Abstraction versus Reality. Often when abstracting a problem we can abstract away
some key aspects of the underlying application that we want to solve. Indeed this is the
case when using the Shortest Superstring (SS) problem for sequencing genomes. In actual
genome sequencing there are two shortcomings with using the SS problem.

The first is that when reading the base pairs using a DNA sequencer there can be errors.
This means the overlaps on the strings that are supposed to overlap perfectly might not.
This can be dealt with by generalizing the Shortest Superstring problem to deal with ap-
proximate matching. Describing such a generalization is beyond the scope of this course,
but basically one can give a score to every overlap and then pick the best one for each pair
of fragments. The nice feature of this change is that the same algorithmic techniques we
discussed for the SS problem still work for this generalization, only the “overlap” scores
will be different.

The second shortcoming of using the SS problem by itself is that real genomes have long re-
peated sections, possibly much longer than the length of the fragments that are sequenced.
The SS problem does not deal well with such repeats. In fact when the SS problem is ap-
plied to the fragments of an initial string with longer repeats than the fragment sizes, the
repeats or parts of them are removed. One method that researchers have used to deal with
this problem is the so-called double-barrel shotgun method. In this method strands of DNA
are cut randomly into lengths that are long enough to span the repeated sections. After
cutting it up one can read just the two ends of such a strand and also determine its length
(approximately). By using the two ends and knowing how far apart they are it is possible
to build a “scaffolding” and recognize repeats. This method can be used in conjunction
with the generalization of the SS discussed in the previous paragraph. In particular the
SS method allowing for errors can be used to construct from the snippets strings up to the
length of the repeats, and the double barreled method can put these short strings together
into longer strings, accounting for repeats.

Part I

Background

29

Chapter 5

Sets and Relations

This chapter presents a review of some basic definitions on sets and relations.

1 Sets

A set is a collection of distinct objects. The objects that are contained in a set, are called mem-
bers or the elements of the set. The elements of a set must be distinct: a set may not contain
the same element more than once. The set that contains no elements is called the empty
set and is denoted by {} or ∅.

Specification of Sets. Sets can be specified intentionally, by mathematically describing
their members. For example, the set of natural numbers, traditionally written as N, can
be specified intentionally as the set of all nonnegative integral numbers. Sets can also be
specified extensionally by listing their members. For example, the set N = {0, 1, 2, . . .}.We
say that an element x is a member of A, written x ∈ A, if x is in A. More generally, sets can
be specified using set comprehensions, which offer a compact and precise way to define
sets by mixing intentional and extensional notation.

Definition 5.1 (Union and Intersection). For two sets A and B, the union A ∪B is defined
as the set containing all the elements of A and B. Symmetrically, their intersection, A ∩B
is the defined as the set containing the elements that are member of both A and B. We say
that A and B are disjoint if their intersection is the empty set, i.e., A ∩B = ∅.

Definition 5.2 (Cartesian Product). Consider two sets A and B. The Cartesian product
A×B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B, i.e.,

A×B = {(a, b) : a ∈ A, b ∈ B} .

30

1. SETS 31

Example 5.1. The Cartesian product of A = {0, 1, 2, 3} and B = {a, b} is

A×B = { (0, a), (0, b), (1, a), (1, b),
(2, a), (2, b), (3, a), (3, b)

}.

Definition 5.3 (Set Partition). Given a setA, a partition ofA is a set P of non-empty subsets
of A such that each element of A is in exactly one subset in P . We refer to each element of
P as a block or a part and the set P as a partition of A. More precisely, P is a partition of
A if the following conditions hold:

• if B ∈ P , then B 6= ∅,

• if A =
⋃
B∈P B, and

• if B,C ∈ P , then B = C or B ∩ C = ∅.

Example 5.2. If A = {1, 2, 3, 4, 5, 6} then P = {{1, 3, 5}, {2, 4, 6}} is a partition of A. The set
{1, 3, 5} is a block.

The set Q = {{1, 3, 5, 6}, {2, 4, 6}} is a not partition of A, because the element 6 is contained
multiple blocks.

Definition 5.4 (Kleene Operators). For any set Σ, its Kleene star Σ∗ is the set of all possible
strings consisting of members of Σ, including the empty string.

For any set Σ, its Kleene plus Σ+ is the set of all possible strings consisting of members Σ,
excluding the empty string.

Example 5.3. Given Σ = {a,b},

Σ∗ = { ’ ’,
’a ’, ’b ’,
’aa ’, ’ab ’, ’ba ’, ’bb ’,
’aaa ’, ’aab ’, ’aba ’, ’abb ’,
’baa ’, ’bab ’, ’bba ’, ’bbb ’,
. . .

}

and

Σ+ = { ’a ’, ’b ’,
’aa ’, ’ab ’, ’ba ’, ’bb ’,
’aaa ’, ’aab ’, ’aba ’, ’abb ’,
’baa ’, ’bab ’, ’bba ’, ’bbb ’,
. . .

}

Exercise 5.1. Prove that Kleene star and Kleene plus are closed under string concatenation.

32 CHAPTER 5. SETS AND RELATIONS

2 Relations

Definition 5.5 (Relation). A (binary) relation from a set A to set B is a subset of the
Cartesian product of A and B. For a relation R ⊆ A×B,

• the set {a : (a, b) ∈ R} is referred to as the domain of R, and

• the set {b : (a, b) ∈ R} is referred to as the range of R.

Definition 5.6 (Function). A mapping or function from A to B is a relation R ⊂ A × B
such that |R| = |domain(R)|, i.e., for every a in the domain of R there is only one b such
that (a, b) ∈ R. The range of the function is the range of R. We call the set A the domain
and the B the co-domain of the function.

Example 5.4. Consider the sets A = {0, 1, 2, 3} and B = {a, b}.

The set:

X = {(0, a), (0, b), (1, b), (3, a)}

is a relation from A to B since X ⊂ A×B, but not a mapping (function) since 0 is repeated.

The set

Y = {(0, a), (1, b), (3, a)}

is both a relation and a function from A to B since each element only appears once on the
left.

Chapter 6

Graph Theory

This chapter presents an overview of basic graph theory used throughout the book. This
chapter does not aim to be complete (and is far from it) but tries to cover the most relevant
material to the course. More details can be found in standard texts.

1 Basic Definitions

Definition 6.1 (Directed Graph). A directed graph or (digraph) is a pair G = (V,A) where

• V is a set of vertices, and

• A ⊆ V × V is a set of directed edges or arcs.

Note. In a digraph, each arc is an ordered pair e = (u, v). A digraph can have self
loops (u, u).

Definition 6.2 (Undirected graph). An undirected graph is a pair G = (V,E) where

• V is a set of vertices (or nodes), and

• E ⊆
(
V
2

)
is a set of edges.

Note. Given a set V , a k-combination of V is a subset of k distinct elements of V . The
notation(

V

k

)
denotes the set of all k-combinations of the set V .

33

34 CHAPTER 6. GRAPH THEORY

Therefore, in an undirected graph, each edge is an unordered pair e = {u, v} (or equiva-
lently {v, u}) and there cannot be self loops ({v, v} = {v} 6∈

(
V
2

)
).

Example 6.1. An example directed graph with 4 vertices:

An undirected graph on 4 vertices, representing the Königsberg problem. (Picture Source:
Wikipedia):

Remark. While directed graphs represent possibly asymmetric relationships, undirected
graphs represent symmetric relationships. Directed graphs are therefore more general than
undirected graphs because an undirected graph can be represented by a directed graph by
replacing an edge with two arcs, one in each direction.

Graphs come with a lot of terminology, but fortunately most of it is intuitive once we
understand the concept. In this section, we consider graphs that do not have any data
associated with edges, such as weights. In the next section, we consider weighted graphs,
where the weights on edges can represent a distance, a capacity or the strength of the
connection.

Definition 6.3 (Neighbors). A vertex u is a neighbor of, or equivalently adjacent to, a
vertex v in a graph G = (V,E) if there is an edge {u, v} ∈ E. For a directed graph a vertex
u is an in-neighbor of a vertex v if (u, v) ∈ E and an out-neighbor if (v, u) ∈ E. We also
say two edges or arcs are neighbors if they share a vertex.

Definition 6.4 (Neighborhood). For an undirected graphG = (V,E), the neighborhoodNG(v)
of a vertex v ∈ V is its set of all neighbors of v, i.e.,NG(v) = {u | {u, v} ∈ E}. For a directed

1. BASIC DEFINITIONS 35

graph we use N+
G (v) to indicate the set of out-neighbors and N−G (v) to indicate the set of

in-neighbors of v. If we use NG(v) for a directed graph, we mean the out neighbors.

The neighborhood of a set of vertices U ⊆ V is the union of their neighborhoods, e.g.,

• NG(U) =
⋃
u∈U NG(y), or

• N+
G (U) =

⋃
u∈U N

+
G (u).

Definition 6.5 (Incidence). We say an edge is incident on a vertex if the vertex is one of its
endpoints. Similarly we say a vertex is incident on an edge if it is one of the endpoints of
the edge.

Definition 6.6 (Degree). The degree dG(v) of a vertex v ∈ V in a graph G = (V,E) is the
size of the neighborhood |NG(v)|. For directed graphs we use in-degree d−G(v) = |N−G (v)|
and out-degree d+

G(v) = |N+
G (v)|. We will drop the subscript G when it is clear from the

context which graph we’re talking about.

Definition 6.7 (Path). A path in a graph is a sequence of adjacent vertices. More formally
for a graph G = (V,E), we define the set of all paths in G, written Paths(G) as

Paths(G) =
{
P ∈ V + | 1 ≤ i < |P |, (Pi, Pi+1) ∈ E

}
,

where V + indicates all positive length sequences of vertices (allowing for repeats). The
length of a path is one less than the number of vertices in the path—i.e., it is the number of
edges in the path. A path in a finite graph can have infinite length. A simple path is a path
with no repeated vertices. Please see the remark below, however.

Remark. Some authors use the terms walk for path, and path for simple path. Even in this
book when it is clear from the context we will sometimes drop the “simple” from simple
path.

Definition 6.8 (Reachability and connectivity). In a graph G, a vertex u can reach another
vertex v if there is a path in G that starts at u and ends at v. If u can reach v, we also say
that v is reachable from u. We use RG(u) to indicate the set of all vertices reachable from
u in G. Note that in an undirected graph reachability is symmetric: if u can reach v, then v
can reach u.

We say that an undirected graph is connected if all vertices are reachable from all other
vertices. We say that a directed graph is strongly connected if all vertices are reachable
from all other vertices.

Definition 6.9 (Cycles). In a directed graph a cycle is a path that starts and ends at the
same vertex. A cycle can have length one (i.e. a self loop). A simple cycle is a cycle
that has no repeated vertices other than the start and end vertices being the same. In an
undirected graph a simple cycle is a path that starts and ends at the same vertex, has no
repeated vertices other than the first and last, and has length at least three. In this course
we will exclusively talk about simple cycles and hence, as with paths, we will often drop
simple.

Exercise 6.1. Why is important in a undirected graph to require that a cycle has length at
least three? Why is important that we do not allow repeated vertices?

36 CHAPTER 6. GRAPH THEORY

Definition 6.10 (Trees and forests). An undirected graph with no cycles is a forest. A
forest that is connected is a tree. A directed graph is a forest (or tree) if when all edges are
converted to undirected edges it is undirected forest (or tree). A rooted tree is a tree with
one vertex designated as the root. For a directed graph the edges are typically all directed
toward the root or away from the root.

Definition 6.11 (Directed acyclic graphs). A directed graph with no cycles is a directed
acyclic graph (DAG).

Definition 6.12 (Distance). The distance δG(u, v) from a vertex u to a vertex v in a graph
G is the shortest path (minimum number of edges) from u to v. It is also referred to as
the shortest path length from u to v.

Definition 6.13 (Diameter). The diameter of a graph G is the maximum shortest path
length over all pairs of vertices in G, i.e., max {δG(u, v) : u, v ∈ V }.

Definition 6.14 (Multigraphs). Sometimes graphs allow multiple edges between the same
pair of vertices, called multi-edges. Graphs with multi-edges are called multi-graphs. We
will allow multi-edges in a couple algorithms just for convenience.

Definition 6.15 (Sparse and Dense Graphs). We will use the following conventions:

n = |V |
m = |E|

Note that a directed graph can have at most n2 edges (including self loops) and an undi-
rected graph at most n(n − 1)/2. We informally say that a graph is sparse if m � n2

and dense otherwise. In most applications graphs are very sparse, often with only a hand-
ful of neighbors per vertex when averaged across vertices, although some vertices could
have high degree. Therefore, the emphasis in the design of graph algorithms, at least for
this book, is on algorithms that work well for sparse graphs.

Definition 6.16 (Enumerable graphs). In some cases, it is possible to label the vertices of
the graphs with natural numbers starting from 0. More precisely, an enumerable graph is
a graph G = (V,E) where V = {0, 1, . . . , n − 1}. Enumerable graphs can be more efficient
to represent than general graphs.

2 Weighted Graphs

Many applications of graphs require associating weights or other values with the edges of
a graph.

Definition 6.17 (Weighted and Edge-Labeled Graphs). An edge-labeled graph or a weighted
graph is a triple G = (E, V,w) where w : E → L is a function mapping edges or directed
edges to their labels (weights) , and L is the set of possible labels (weights).

In a graph, if the data associated with the edges are real numbers, we often use the term
“weight” to refer to the edge labels, and use the term “weighted graph” to refer to the

3. SUBGRAPHS 37

graph. In the general case, we use the terms “edge label” and edge-labeled graph. Weights
or other values on edges could represent many things, such as a distance, or a capacity, or
the strength of a relationship.

Example 6.2. An example directed weighted graph.

Remark. As it may be expected, basic terminology on graphs defined above straightfor-
wardly extend to weighted graphs.

3 Subgraphs

When working with graphs, we sometimes wish to refer to parts of a graph. To this end,
we can use the notion of a subgraph, which refers to a graph contained in a larger graph.
A subgraph can be defined as any subsets of edges and vertices that together constitute a
well defined graph.

Definition 6.18 (Subgraph). Let G = (V,E) and H = (V ′, E′) be two graphs. H is a
subgraph of if V ′ ⊆ V and E′ ⊆ E.

Note. Note that since H is a graph, the vertices defining each edge are in the vertex set V ′,
i.e., for an undirected graph E′ ⊆

(
V ′

2

)
. There are many possible subgraphs of a graph.

An important class of subgraphs are vertex-induced subgraphs, which are maximal sub-
graphs defined by a set of vertices. A vertex-induced subgraph is maximal in the sense that
it contains all the edges that it can possibly contain. In general when an object is said to be
a maximal “X”, it means that nothing more can be added to the object without violating
the property “X”.

Definition 6.19 (Vertex-Induced Subgraph). The subgraph of G = (V,E) induced by V ′ ⊆
V is the graph H = (V ′, E′) where E′ = {{u, v} ∈ E | u ∈ V ′, v ∈ V ′}.

Example 6.3. Some vertex induced subgraphs:

38 CHAPTER 6. GRAPH THEORY

Original graph

Induced by {a,b,c,e,f}

Induced by {a,b,c,d}

We can alno define an induced subgraph in terms of a set of edges by including in the
graph all the vertices incident on the edges.

Definition 6.20 (Edge-Induced Subgraph). The subgraph ofG = (V,E) induced byE′ ⊆ E
is a graph H = (V ′, E′) where V ′ = ∪e∈Ee.

4 Connectivity

Recall that in a graph (either directed or undirected) a vertex v is reachable from a vertex u
if there is a path from u to v. Also recall that an undirected graph is connected if all vertices
are reachable from all other vertices.

Example 6.4. Two example graphs shown. The first in connected; the second is not.

5. GRAPH PARTITION 39

Graph 1

Graph 2

An important subgraph of an undirected graph is a connected component of a graph, de-
fined below.

Definition 6.21 (Connected Component). Let G = (V,E) be an undirected graph. A sub-
graph H of G is a connected component of G if it is a maximally connected subgraph of
G.

Here, “maximally connected component” means we cannot add any more vertices and
edges from G to H without disconnecting H . In the graphs shown in the example above,
the first graph has one connected component (hence it is connected); the second has two
connected components.

Note. We can specify a connected component of a graph by simply specifying the vertices
in the component. For example, the connected components of the second graph in the
example above can be specified as {a,b,c,d} and {e,f}.

5 Graph Partition

Recall that a partition of a setA is a set P of non-empty subsets ofA such that each element
of A is in exactly one subset, also called block, B ∈ P .

Definition 6.22 (Graph Partition). A graph partition is a partition of the vertex set of the
graph. More precisely, given graphG = (V,E), we define a partition ofG as a set of graphs

P = {G1 = (V1, E1) . . . Gk = (Vk, Ek)},

40 CHAPTER 6. GRAPH THEORY

where {V1, . . . , Vk} is a (set) partition of V and G1, . . . , Gk are vertex-induced subgraphs of
Gwith respect to V1, . . . , Vk respectively. As in set partitions, we use the term part or block to
refer to each vertex-induced subgraph G1, . . . , Gk.

Definition 6.23 (Internal and Cut Edges). In a graph partition, we can distinguish between
two kinds of edges: internal edges and cut edges. Internal edges are edges that are within
a block; cut edges are edges that are between blocks. One way to partition a graph is
to make each connected component a block. In such a partition, there are no cut edges
between the partitions.

6 Trees

Definition 6.24 (Tree). An undirected graph is a tree if it does not have cycles and it is
connected. A rooted tree is a tree with a distinguished root node that can be used to access
all other nodes. An example of a rooted tree along with the associated terminology is given
in below.

Definition 6.25 (Rooted Trees). A rooted tree is a directed graph such that

1. One of the vertices is the root and it has no in edges.

2. All other vertices have one in-edge.

3. There is a path from the root to all other vertices.

Rooted trees are common structures in computing and have their own dedicated terminol-
ogy.

• By convention we use the term node instead of vertex to refer to the vertices of a
rooted tree.

• A node is a leaf if it has no out edges, and an internal node otherwise.

• For each directed edge (u, v), u is the parent of v, and v is a child of u.

• For each path from u to v (including the empty path with u = v), u is an ancestor of
v, and v is a descendant of u.

• For a vertex v, its depth is the length of the path from the root to v and its height is
the longest path from v to any leaf.

• The height of a tree is the height of its root.

• For any node v in a tree, the subtree rooted at v is the rooted tree defined by taking the
induced subgraph of all vertices reachable from v (i.e. the vertices and the directed
edges between them), and making v the root.

6. TREES 41

• As with graphs, an ordered rooted tree is a rooted tree in which the out edges (chil-
dren) of each node are ordered.

Example 6.5. An example rooted tree follows.

root : A
leaves : E, C, F , G, and H

internal nodes : A, B, and D
children of A : B, C and D

parent of E : B
descendants of A : all nodes, including A itself

ancestors of F : F , D and A
depth of F : 2
height of B : 1

height of the tree : 2
subtree rooted at D : the rooted tree consisting of D, F , G and H

Part II

A Language for Specifying
Algorithms

42

Chapter 7

Introduction

In this book we define algorithms and data structures using nested parallelism in con-
junction with a functional programming style. Our opinion is that this is the best way to
capture the core ideas of algorithms and parallelism in a concise, clear, safe, and precise
way. Most of the ideas we present, however, transcend the particular style of parallelism
and programming we use and will be useful in a broad set of programming languages.

Nested parallelism. Nested parallelism (or nested fork-join parallelism) is a style of par-
allelism in which any task can fork a set of new child tasks to run in parallel. When forking,
the parent task suspends, and when all the child tasks finish, they “join”, and the parent
continues. Since any task can fork new tasks, the forking can be nested. Nested parallelism
supports a form of parallelism in which computation can be cleanly composed either se-
quentially (within a task), or in parallel (among forked tasks). This in turn leads a simple
cost model based on analyzing work and span.

Importantly, the model is sufficiently powerful to capture the parallelism in most of the
algorithms needed for the purpose of this book. For dynamic programming, we diverge
slightly from this model to a somewhat more general model.

Functional Algorithms. Functional programming is a style of programming in which
functions act like mathematical functions (a mapping from domain to a codomain, and no
side effects), and can be uses as values (can be passed around, stored as data, and created
on the fly). In this book we use this style for two important reasons.

1. Since functions have no side effects, parallelism is inherently safe and deterministic.
Functions can be applied in parallel, or in different orders, without effecting each
others outcomes, or the result of the final computation.

43

44 CHAPTER 7. INTRODUCTION

2. The ability to use functions as values allows powerful abstractions. A large fraction of
the functions in many of the abstract data types we define, for example, take functions
as arguments to other functions. Often these functions are created on the fly.

The functional programming style is not limited to functional programming languages. To-
day most programming languages support it, and in many situations the style has become
dominant.

SPARC. We use a minimal, perhaps “toy”, language called SPARC to describe algorithms
and data structures. It only supplies what we need for the purposes of the book, and is not
meant to be fully precise. We will sometime substitute text for code. SPARC has structures
for supporting nested parallelism and supports only functional programming—it does not
allow for side effects.

SPARC, like many functional languages, is an extension of the lambda-calculus, which is
arguably the first programming language and the basis of many ideas in modern program-
ming languages. Lambda Calculus Chapter gives a very brief overview of the lambda
calculus, and Sparc Chapter describes SPARC.

Function vs. Algorithm. Finally, we note that although functions in the functional pro-
gramming style act like mathematical functions—i.e. a mapping from inputs to outputs—
each is more than just a mathematical function. They not only embody the mapping, but
they also specify the mechanism (code) by which the output is generated from the input.
There can be multiple different definitions of a function that describe the same mathemat-
ical function, but compute it in different ways. Functions are therefore more accurately
algorithms, and the input to output map they define is the mathematical function.

Chapter 8

Functional Algorithms

This chapter describes the idea of functional algorithms as used in this book along with
some justification for the approach.

There are two aspects of functional languages that are important for our purposes. The first
is that program functions are “pure”, which is to say they act like mathematical functions
and have no effects beyond mapping an input to an output. The second is that functions
can be treated as values, and as such can be passed as arguments to other functions, re-
turned as results, and stored in data structures. We describe each of these two aspects in
turn.

1 Pure Functions

A function in mathematics is mapping that associates each possible input x of a set X ,
the domain of the function, to a single output y of a set Y , the codomain of the function.
When a function is applied to an element x ∈ X , the associated element y is returned. The
application has no effect other than returning y.

Functions in programming languages can act like mathematical functions. For example the
C “function”:

int double(int x) {
return 2 * x;}

acts like the mathematical function defined by the mapping

{(0, 0), (−1,−2), (1, 2), (2, 4), . . .} .

45

46 CHAPTER 8. FUNCTIONAL ALGORITHMS

However, in most programming languages, including C, it is also possible to modify state
that is not part of the result. This leads to the notion of side effects, or simply effects.

Definition 8.1 (Side Effects). We say that a computation has a side effect, if in addition to
returning a value, it also performs an effect such as writing to an existing memory location
(possibly part of the input), printing on the screen, or writing to a file.

Example 8.1. The C “function”

int double(int x) {
y = 32;
return 2 * x;}

returns twice the input x, as would a function, but also writes to the location y. It therefore
has a side effect.

The process of writing over a value in a location is often called mutation, since it changes,
or mutates, the value.

Definition 8.2 (Pure Computation). We say that a function in a program is pure if it
doesn’t perform any side effects, and a computation is pure if all its functions are pure. Pure
computations return a value without performing any side effects. In contrast an impure
or imperative computation can perform side effects.

Example 8.2. The C function

int fib(int i) {
if (i <= 0) return i;
else return f(i-1) + f(i-2);}

is pure since it does not have any side effects. When applied it simply acts as the mathe-
matical function defined by the mapping

{(0, 0), (1, 1), (2, 1), (3, 2), (4, 3), (5, 5), . . .} .

In pure computation no data can ever be overwritten, only new data can be created. Data
is therefore always persistent—if you keep a reference to a data structure, it will always
be there and in the same state as it started.

1.1 Safe for Parallelism

Pure computation is safe for parallelism. In particular, when running different components
of the computation in parallel they cannot affect each other. For any two function calls f(a)

1. PURE FUNCTIONS 47

and g(b), if we run f(a) first, or g(b) first, or interleave the instructions of both, the two
results will always be the same. This is because f and g are (pure) functions. It means
that when we specify that two components of a program can run in parallel, the run-time
system is free to run them in either order on one processor, or interleave their instructions
in any way on two processors, without worry.

In contrast, in imperative computation separate components, or separate function calls,
can effect each other under the hood. When running such components in parallel, they can
then give different results depending or the relative ordering of individual instructions of
the two computations.

Definition 8.3 (Race Conditions). Side effects that alter the result of the computation based
on the evaluation order (timing) are called race conditions.

Race conditions most often involve two components that are running in parallel, one which
is writing to a location, and the other is either reading or writing the same location. Since
the exact timing on real processors is highly unpredictable due to all sorts of features in
the processors (caches, pipelining, interruptions, sharing of functional units, ...), it is near
impossible to guarantee how instructions are interleaved between processors. Furthermore
it can change every time the program is run. Hence a program with race conditions can
return different results on different days. Even worse, it can return the same result for 20
years, before returning something different, and perhaps catastrophic.

Example 8.3. There are several spectacular examples of correctness problems caused by
race-conditions, including for example the Northeast blackout of 2003, which affected over
50 Million people in North America.

Here are some quotes from the spokesmen of the companies involved in this event.

The first quote below describes the problem, which is a race condition (multiple compu-
tations writing to the same piece of data). ”There was a couple of processes that were in
contention for a common data structure, and through a software coding error in one of the
application processes, they were both able to get write access to a data structure at the same
time [...] And that corruption led to the alarm event application getting into an infinite loop
and spinning.”

The second quote describes the difficulty of finding the bug. ”This fault was so deeply
embedded, it took them [the team of engineers] weeks of poring through millions of lines
of code and data to find it.”

One approach to reason about programs with race conditions is to consider all possible
interleavings of instructions on separate processors. In general, this can be very difficult
since the number of interleavings is exponential in the number of instructions. However,
there are structured techniques for programming with race conditions. This falls in the
domain of “concurrent programs”. Data structures and algorithms that reason about race
conditions are typically called concurrent data structures and algorithms.
Remark (Heisenbug). Race conditions make it difficult to reason about the correctness and
the efficiency of parallel algorithms. They also make debugging difficult, because each

48 CHAPTER 8. FUNCTIONAL ALGORITHMS

time the code is run, it might give a different answer. For example, each time we evaluate a
piece of code, we may obtain a different answer or we may obtain a correct answer 99.99%
of the time but not always.

The term Heisenbug was coined in the early 80s to refer to a type of bug that “disappears”
when you try to pinpoint or study it and “appears” when you stop studying it. They are
named after the famous Heisenberg uncertainty principle which roughly says that if you
localize one property, you will lose information about another complementary property.
Often the most difficult Heisenbugs to find have to do with race conditions in parallel or
concurrent code. These are sometimes also called concurrency bugs.

Race conditions cannot occur in pure computation, but not all impure programs have race
conditions. For example, an imperative program with no parallelism has no race condi-
tions.

1.2 Persistence

Another important benefit of pure functions is that all data is “persistent”. Since a function
does not modify its input, it means that for pure functions, the input remains the same after
applying the function. In other words, the input persists. This can be very useful in some
applications.

Remark. The astute reader might ask the question: if the inputs persist then won’t that be
a waste of memory? Indeed if a programmer keeps the input for later use, this could be
a waste of memory. However, many languages have what is called a garbage collector,
which will collect any data that is no longer needed. Therefore, if a function makes a call
to f(x), but no longer needs x, then x can be collected and its memory reclaimed. In fact, a
smart compiler might recognize that x is no longer needed and not referenced by anyone
else and allow it to be updated “in place” overwriting the old value. We will make use
of this optimization in a later chapter that optimizes a pure implementation of sequences
(Chapter 22).

1.3 Benign Effects

Benign Effects. The notion of purity can be further extended to allow for effects that
are not observable. For example, the Fibonacci function described above may be imple-
mented by using a mutable reference that holds some intermediate value that may be used
to compute the result. If this reference is not observable (e.g., not visible to the caller of the
function or any other functions), the function has no observable effect, and can thus be con-
sidered pure. Such effects are sometimes called benign effects. This more general notion
of purity is important because it allows for example using side effects in a “responsible”
fashion to improve efficiency.

Example 8.4. The C function

2. FUNCTIONS AS VALUES 49

int factorial(int i) {
int r = 1;
for (int j = 1; j <= i; j++) r = r * i;
return r;}

is not pure since it side effects (mutates) the value of r, but the side effect is not visible
outside of the function. It is therefore a benign effect from the point of view of anyone
calling factorial.

Important. Strictly speaking there is probably no non-trivial computation that is pure all
the way to the “metal” (hardware) because almost any computation performs memory
effects at the hardware level. Encapsulation of effects by observation is therefore essential
for meaningful discussions of purity.

2 Functions as Values

Almost all programming languages allow applying a function to a value. Not all, however,
allow passing functions as arguments, returning them from other functions, storing them
in data structures and generating new functions. This ability to use functions in this way
is sometimes referred to as “functions as first-class values”—i.e., functions can be treated
as values.

Example 8.5 (Examples of Functions as Values). In the following definition (using SPARC)

f(x) =
let g(y) = x+ y
in g end

z = f(3)

the variable z is bound to a function that adds three to its argument, i.e., the function
{(0, 3), (1, 4), . . .}. We can apply z(7) and it would return 10. We can also create another
function f(5) that adds 5 to its argument. And we can pass z, or any other function, as an
argument. For example consider the definition

g(y) = y(6)

Now g(z) returns 9 since in the body of f we apply the function z, which adds 3, to 6. And
g(f(5)) returns 11. Finally we can store functions in data structures, as in

〈 f(3), f(1), f(6) 〉

which is a sequence containing three functions, one that adds 3 one that adds 1 and one
that adds 6.

Treating functions as values leads to a powerful way to code. Functions that take other
functions as arguments are often called higher-order functions. Higher-order functions

50 CHAPTER 8. FUNCTIONAL ALGORITHMS

(even in a language that is not pure) help with the design and implementation of parallel
algorithm by encouraging the designer to think at a higher level of abstraction.

For example, instead of thinking about a loop that iterates over the elements of an array to
generate the sum, which is completely sequential, we can define a higher-order “reduce”
function. In addition to taking the array as an argument, the reduce function takes a bi-
nary associative function as another argument. It then sums the array based on that binary
associative function. The advantage is that the higher-order reduce allows for any binary
associative function (e.g. maximum, minimum, multiplication). By implementing the re-
duce function as a tree sum, which is highly parallel, we can thus perform a variety of
computations in parallel rather than sequentially as a loop. In general, thinking in higher
order functions encourages working at a higher level of abstraction, moving us away from
the one-at-a-time (loop) way of thinking that is detrimental to code quality and to paral-
lelism.

3 Functional Algorithms

In this book we use algorithms that use pure functions and support functions as first-class
values. We refer to these as functional algorithms.

Remark. Coding a functional algorithm does not require a purely functional programming
language. In fact, a functional algorithm can be coded in essentially any programming
language—one just needs to be very careful when coding imperatively in order to avoid
errors caused by sharing of state and side effects. Some imperative parallel languages such
as extension to the C language, in fact, encourage programming functional algorithms. The
techniques that we describe thus are applicable to imperative programming languages as
well.

Chapter 9

The Lambda Calculus

This section briefly describes the lambda calculus, one of the earliest and most important
contributions to computer science. It is is a pure language, only supporting pure functions,
and it fully supports higher-order functions.

The lamba calculus, developed by Alonzo Church in the early 30s, is arguably the first
general purpose “programming language”. Although it is very simple with only three
types of expressions, and one rule for “evaluation”, it captures many of the core ideas of
modern programming languages. The idea of variables, functions, and function applica-
tion are built in. Although conditionals and recursion are not built in, they can be easily
implemented. Furthermore, although it has no primitive data types, integers, lists, trees,
and other structures, can also be easily implemented. Perhaps most importantly for this
book, and impressive given it was developed before computers even existed, the lambda
calculus in inherently parallel. The language (pseudocode) we use in this book, SPARC, is
effectively an extended and typed lambda calculus.

1 Syntax and Semantics

Definition 9.1 (Syntax of the Lambda Calculus). The lambda calculus consists of expres-
sions e that are in one of the following three forms:

• a variable, such as x, y, z, . . .,

• a lambda abstraction, written as (λ x . e), where x is a variable name and e is an
expression, or

• an application, written as (e1 e2), where e1 and e2 are expressions.

51

52 CHAPTER 9. THE LAMBDA CALCULUS

A lambda abstraction (λ x . e) defines a function where x is the argument parameter and
e is the body of the function, likely containing x, possibly more than once. An application
(e1 e2) indicates that the function calculated from e1 should be applied to the expression
e2. This idea of function application is captured by beta reduction.

Definition 9.2 (Beta Reduction). For any application for which the left hand expression is
a lambda abstraction, beta reduction “applies the function” by making the transformation:

(λ x . e1) e2 −→ e1[x/e2]

where e1[x/e2] roughly means for every (free) occurrence of x in e1, substitute it with e2.

Note that this is the standard notion of function application, in which we pass in the value
or the argument(s) by setting the function variables to those values.

Computation in the lambda calculus consists of using beta reduction until there is nothing
left to reduce. An expression that has nothing left to reduce is in normal form. It is possible
that an expression in the lambda calculus can “loop forever” never reducing to normal
form. Indeed, the possibility of looping forever is crucial in any general (Church-Turing
complete) computational model.

Exercise 9.1. Argue that the following expression in the lamba calculus never reduces to
normal form, i.e., however many times beta reduction is applied, it can still be applied
again.

((λ x .(x x)) (λ x .(x x))) .

Solution. A beta reduction will replace the two xs in the first lambda with the second
lambda. This will generate the same expression as the original. This can be repeated any
number of times, and will always come to the same point.

Church-Turing Hypothesis. In the early 30s, soon after he developed the language, Church
argued that anything that can be “effectively computed” can be computed with the lambda
calculus, and therefore it is a universal mechanism for computation. However, it was not
until a few years later when Alan Turing developed the Turing machine and showed its
equivalence to the lambda calculus that the concept of universality became widely ac-
cepted. The fact that the models were so different, but equivalent in what they can com-
pute, was a powerful argument for the universality of the models. We now refer to the
hypothesis that anything that can be computed can be computed with the lambda calcu-
lus, or equivalently the Turing machine, as the Church-Turing hypothesis, and refer to any
computational model that is computationally equivalent to the lambda calculus as Church-
Turing complete.

2 Parallelism and Reduction Order

Unlike the Turing machine, the lambda calculus is inherently parallel. This is because there
can be many applications in an expression for which beta reduction can be applied, and the

2. PARALLELISM AND REDUCTION ORDER 53

lambda calculus allows them to be applied in any order, including a parallel order—e.g., all
at once. We have to be careful, however, since the number of reductions needed to evaluate
an expression (reduce to normal form) can depend significantly on the reduction order. In
fact, some orders might terminate while others will not. Because of this, specific orders
are used in practice. The two most prominent orders adopted by programming languages
are called “call-by-value” and “call-by-need.” In both these orders lambda abstractions are
considered values and beta reductions are not applied inside of them.

Definition 9.3 (Call-by-Value). In call-by-value evaluation order, beta reduction is only
applied to (λ x . e1) e2 if the expression e2 is a value, i.e., e2 is evaluated to a value (lambda
abstraction) first, and then beta reduction is applied.

Example 9.1. The ML class of languages such as Standard ML, CAML, and OCAML, all
use call-by-value evaluation order.

Definition 9.4 (Call-by-Need). In call-by-need evaluation order, beta reduction is applied
to (λ x . e1) e2 even if e2 is not a value (it could be another application). If during beta
reduction e2 is copied into each variable x in the body, this reduction order is called call-
by-name, and if e2 is shared, it is called call-by-need.

Example 9.2. The Haskell language is perhaps the most well known example of a call-by-
need (or lazy) functional language.

Since neither reduction order reduce inside of a lambda abstraction, neither of them re-
duce expressions to normal form. Instead they reduce to what is called “weak head nor-
mal form”. However, both reduction orders, as with most orders, remain Church-Turing
complete.

Call-by-value is an inherently parallel reduction order. This is because in an expression
(e1 e2) the two subexpressions can be evaluated (reduced) in parallel, and when both are
fully reduced we can apply beta reduction to the results. Evaluating in parallel, or not, has
no effect on which reductions are applied, only on the order in which they are applied. On
the other hand call-by-need is inherently sequential. In an expression (e1 e2) only the first
subexpression can be evaluated and when completed we can apply beta reduction to the
resulting lamba abstraction by substituting in the second expression. Therefore the second
expression cannot be evaluated until the first is done without potentially changing which
reductions are applied.

In this book we use call-by-value.

Chapter 10

The SPARC Language

This chapter presents SPARC: a parallel and functional language used throughout the book
for specifying algorithms.

SPARC is a “strict” functional language similar to the ML class of languages such as Stan-
dard ML or SML, Caml, and F#. In pseudo code, we sometimes use mathematical notation,
and even English descriptions in addition to SPARC syntax. This chapter describes the ba-
sic syntax and semantics of SPARC; we introduce additional syntax as needed in the rest
of the book.

1 Syntax and Semantics of SPARC

This section describes the syntax and the semantics of the core subset of the SPARC lan-
guage. The term syntax refers to the structure of the program itself, whereas the term se-
mantics refers to what the program computes. Since we wish to analyze the cost of algo-
rithms, we are interested in not just what algorithms compute, but how they compute. Se-
mantics that capture how algorithms compute are called operational semantics, and when
augmented with specific costs, cost semantics. Here we describe the syntax of SPARC and
present an informal description of its operational semantics. We will cover the cost seman-
tics of SPARC in Cost Models Chapter . While we focus primarily on the core subset of
SPARC, we also describe some syntactic sugar that makes it easier to read or write code
without adding any real power. Even though SPARC is a strongly typed language, for our
purposes in this book, we use types primarily as a means of describing and specifying the
behavior of our algorithms. We therefore do not present careful account of SPARC’s type
system.

The definition below shows the syntax of SPARC. A SPARC program is an expression,
whose syntax, describe the computations that can be expressed in SPARC. When evalu-

54

1. SYNTAX AND SEMANTICS OF SPARC 55

ated an expression yield a value. Informally speaking, evaluation of an expression pro-
ceeds involves evaluating its sub-expressions to values and then combining these values
to compute the value of the expression. SPARC is a strongly typed language, where every
closed expression, which have no undefined (free) variables, evaluates to a value or runs
forever.

Definition 10.1 (SPARC expressions).

Identifier id := . . .
Variables x := id
Type Constructors tycon := id
Data Constructors dcon := id
Patterns p := x variable

| (p) parenthesis
| p1, p2 pair
| dcon (p) data pattern

Types τ := Z integers
| B booleans
| τ [∗τ]+ products
| τ → τ functions
| tycon type constructors
| dty data types

Data Types dty := dcon [of τ]
| dcon [of τ] | dty

Values v := 0 | 1 | . . . integers
| −1 | −2 | . . . integers
| true | false booleans
| not | . . . unary operations
| and | plus | . . . binary operations
| v1, v2 pairs
| (v) parenthesis
| dcon (v) constructed data
| lambda p . e lambda functions

Expression e := x variables
| v values
| e1 op e2 infix operations
| e1, e2 sequential pair
| e1||e2 parallel pair
| (e) parenthesis
| case e1 [| p => e2]+ case
| if e1 then e2 else e3 conditionals
| e1 e2 function application
| let b+ in e end local bindings

Operations op := + | − | ∗ | − . . .
Bindings b := x(p) = e bind function

| p = e bind pattern
| type tycon = τ bind type
| type tycon = dty bind datatype

56 CHAPTER 10. THE SPARC LANGUAGE

Identifiers. In SPARC, variables, type constructors, and data constructors are given a
name, or an identifier. An identifier consist of only alphabetic and numeric characters
(a-z, A-Z, 0-9), the underscore character (“ ”), and optionally end with some number of
“primes”. Example identifiers include, x′, x1, xl, myVar , myType , myData , and my data .

Program variables, type constructors, and data constructors are all instances of iden-
tifiers. During evaluation of a SPARC expression, variables are bound to values, which
may then be used in a computation later. In SPARC, variable are bound during function
application, as part of matching the formal arguments to a function to those specified by
the application, and also by let expressions. If, however, a variable appears in an expres-
sion but it is not bound by the expression, then it is free in the expression. We say that an
expression is closed if it has no free variables.

Types constructors give names to types. For example, the type of binary trees may be given
the type constructor btree. Since for the purposes of simplicity, we rely on mathematical
rather than formal specifications, we usually name our types behind mathematical conven-
tions. For example, we denote the type of natural numbers by N, the type of integers by Z,
and the type of booleans by B.

Data constructors serve the purpose of making complex data structures. By convention, we
will capitalize data constructors, while starting variables always with lowercase letters.

Patterns. In SPARC, variables and data constructors can be used to construct more com-
plex patterns over data. For example, a pattern can be a pair (x, y), or a triple of vari-
ables (x, y, z), or it can consist of a data constructor followed by a pattern, e.g., Cons(x) or
Cons(x, y). Patterns thus enable a convenient and concise way to pattern match over the
data structures in SPARC.

Built-in Types. Types of SPARC include base types such as integers Z, booleans B, prod-
uct types such as τ1 ∗ τ2 . . . τn, function types τ1 → τ2 with domain τ1 and range τ2, as well
as user defined data types.

Data Types. In addition to built-in types, a program can define new data types as a
union of tagged types, also called variants, by “unioning” them via distinct data con-
structors. For example, the following data type defines a point as a two-dimensional or a
three-dimensional coordinate of integers.

type point = PointTwo of Z ∗ Z
| Point3D of Z ∗ Z ∗ Z

1. SYNTAX AND SEMANTICS OF SPARC 57

Recursive Data Types. In SPARC recursive data types are relatively easy to define and
compute with. For example, we can define a point list data type as follows

type plist = Nil | Cons of point ∗ plist .

Based on this definition the list

Cons(PointTwo(0, 0),
Cons(PointTwo(0, 1),

Cons(PointTwo(0, 2),Nil)))

defines a list consisting of three points.

Exercise 10.1 (Booleans). Some built-in types such as booleans, B, are in fact syntactic sugar
and can be defined by using union types as follows. Describe how you can define booleans
using data types of SPARC.

Solution. Booleans can be defined as follows.

type myBool = myTrue | myFalse

Option Type. Throughout the book, we use option types quite frequently. Option types
for natural numbers can be defined as follows.

type option = None | Some of N

Similarly, we can define option types for integers.

type intOption = INone | ISome of Z

Note that we used a different data constructor for naturals. This is necessary for type
inference and type checking. Since, however, types are secondary for our purposes in this
book, we are sometimes sloppy in our use of types for the sake of simplicity. For example,
we use throughout None and Some for option types regardless of the type of the contents.

Values. Values of SPARC, which are the irreducible units of computation include natural
numbers, integers, Boolean values true and false, unary primitive operations, such as
boolean negation not, arithmetic negation -, as well as binary operations such as logical
and and and arithmetic operations such as +. Values also include constant-length tuples,
which correspond to product types, whose components are values. Example tuples used
commonly through the book include binary tuples or pairs, and ternary tuples or triples.
Similarly, data constructors applied to values, which correspond to sum types, are also
values.

As a functional language, SPARC treats all function as values. The anonymous function
lambda p. e is a function whose arguments are specified by the pattern p, and whose body
is the expression e.

58 CHAPTER 10. THE SPARC LANGUAGE

Example 10.1.

• The function lambda x.x+ 1 takes a single variable as an argument and adds one to
it.

• The function lambda (x, y). x takes a pairs as an argument and returns the first com-
ponent of the pair.

Expressions. Expressions, denoted by e and variants (with subscript, superscript, prime),
are defined inductively, because in many cases, an expression contains other expressions.
Expressions describe the computations that can be expressed in SPARC. Evaluating an ex-
pression via the operational semantics of SPARC produce the value for that expression.

Infix Expressions. An infix expression, e1 op e2, involve two expressions and an infix
operator op. The infix operators include + (plus), − (minus), ∗ (multiply), / (divide), <
(less), > (greater), or, and and. For all these operators the infix expression e1 op e2 is just
syntactic sugar for f(e1, e2) where f is the function corresponding to the operator op (see
parenthesized names that follow each operator above).

We use standard precedence rules on the operators to indicate their parsing. For example
in the expression

3 + 4 * 5

the ∗ has a higher precedence than + and therefore the expression is equivalent to 3+(4∗5).

Furthermore all operators are left associative unless stated otherwise, i.e., that is to say that
a op1 b op2 c = (a op1 b) op2 c if op1 and op2 have the same precedence.

Example 10.2. The expressions 5− 4 + 2 evaluates to (5− 4) + 2 = 3 not 5− (4 + 2) = −1,
because − and + have the same precedence.

Sequential and Parallel Composition. Expressions include two special infix operators:
“,” and ||, for generating ordered pairs, or tuples, either sequentially or in parallel.

The comma operator or sequential composition as in the infix expression (e1, e2), evalu-
ates e1 and e2 sequentially, one after the other, and returns the ordered pair consisting of
the two resulting values. Parenthesis delimit tuples.

The parallel operator or parallel composition “||”, as in the infix expression (e1 || e2),
evaluates e1 and e2 in parallel, at the same time, and returns the ordered pair consisting of
the two resulting values.

1. SYNTAX AND SEMANTICS OF SPARC 59

The two operators are identical in terms of their return values. However, we will see later,
their cost semantics differ: one is sequential and the other parallel. The comma and parallel
operators have the weakest, and equal, precedence.

Example 10.3.

• The expression

lambda (x, y). (x ∗ x, y ∗ y)

is a function that take two arguments x and y and returns a pair consisting of the
squares x and y.

• The expression

lambda (x, y). (x ∗ x || y ∗ y)

is a function that take two arguments x and y and returns a pair consisting of the
squares x and y by squaring each of x and y in parallel.

Case Expressions. A case expression such as

case e1

| Nil⇒ e2

| Cons (x, y)⇒ e3

first evaluates the expression e1 to a value v1, which must return data type. It then matches
v1 to one of the patterns, Nil or Cons (x, y) in our example, binds the variable if any in
the pattern to the respective sub-values of v1, and evaluates the “right hand side” of the
matched pattern, i.e., the expression e2 or e3.

Conditionals. A conditional or an if-then-else expression, if e1 then e2 else e3, eval-
uates the expression e1, which must return a Boolean. If the value of e1 is true then the
result of the if-then-else expression is the result of evaluating e2, otherwise it is the result
of evaluating e3. This allows for conditional evaluation of expressions.

Function Application. A function application, e1 e2, applies the function generated by
evaluating e1 to the value generated by evaluating e2. For example, lets say that e1 evalu-
ates to the function f and e2 evaluates to the value v, then we apply f to v by first match-
ing v to the argument of f , which is pattern, to determine the values of each variable in
the pattern. We then substitute in the body of f the value of each variable for the variable.
To substitute a value in place of a variable x in an expression e, we replace each instance
of x with v.

For example if function lambda (x, y). e is applied to the pair (2,3) then x is given value
2 and y is given value 3. Any free occurrences of the variables x and y in the expression e

60 CHAPTER 10. THE SPARC LANGUAGE

will now be bound to the values 2 and 3 respectively. We can think of function application
as substituting the argument (or its parts) into the free occurrences of the variables in its
body e. The treatment of function application is why we call SPARC a strict language.
In strict or call-by-value languages, the argument to the function is always evaluated to
a value before applying the function. In contrast non-strict languages wait to see if the
argument will be used before evaluating it to a value.

Example 10.4.

• The expression

(lambda (x, y). x/y) (8, 2)

evaluates to 4 since 8 and 2 are bound to x and y, respectively, and then divided.

• The expression

(lambda (f, x). f(x, x)) (plus, 3)

evaluates to 6 because f is bound to the function plus , x is bound to 3, and then plus
is applied to the pair (3, 3).

• The expression

(lambda x. (lambda y. x+ y)) 3

evaluates to a function that adds 3 to any integer.

Bindings. The let expression,

let b+in e end,

consists of a sequence of bindings b+, which define local variables and types, followed
by an expression e, in which those bindings are visible. In the syntax for the bindings,
the superscript + means that b is repeated one or more times. Each binding b is either a
variable binding, a function binding, or a type binding. The let expression evaluates to the
result of evaluating e given the variable bindings defined in b.

A function binding, x(p) = e, consists of a function name, x (technically a variable), the
arguments for the function, p, which are themselves a pattern, and the body of the function,
e.

Each type binding equates a type to a base type or a data type.

1. SYNTAX AND SEMANTICS OF SPARC 61

Example 10.5. Consider the following let expression.

let
x = 2 + 3
f(w) = (w ∗ 4, w − 2)
(y, z) = f(x− 1)

in
x+ y + z

end

The first binding the variable x to 2 + 3 = 5; The second binding defines a function f(w)
which returns a pair; The third binding applies the function f to x − 1 = 4 returning the
pair (4 ∗ 4, 4− 2) = (16, 2), which y and z are bound to, respectively (i.e., y = 16 and z = 2.
Finally the let expressions adds x, y, z and yields 5 + 16 + 2. The result of the expression is
therefore 23.

Note. Be careful about defining which variables each binding can see, as this is important
in being able to define recursive functions. In SPARC the expression on the right of each
binding in a let can see all the variables defined in previous variable bindings, and can
see the function name variables of all binding (including itself) within the let. Therefore
the function binding

x(p) = e

is not equivalent to the variable binding

x = lambda p.e,

because in the prior x can be used in e and in the later it cannot. Function bindings therefore
allow for the definition of recursive functions. Indeed they allow for mutually recursive
functions since the body of function bindings within the same let can reference each other.

Example 10.6. The expression

let
f(i) = if (i < 2) then i else i ∗ f(i− 1)

in
f(5)

end

will evaluate to the factorial of 5, i.e., 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1, which is 120.

Example 10.7. The piece of code below illustrates an example use of data types and higher-

62 CHAPTER 10. THE SPARC LANGUAGE

order functions.

let
type point = PointTwo of Z ∗ Z

| PointThree of Z ∗ Z ∗ Z
injectThree (PointTwo (x, y)) = PointThree (x, y, 0)
projectTwo (PointThree (x, y, z)) = PointTwo (x, y)
compose f g = f g
p0 = PointTwo (0, 0)
q0 = injectThree p0
p1 = (compose projectTwo injectThree) p0

in
(p0, q0)

end

The example code above defines a point as a two (consisting of x and y axes) or three
dimensional (consisting of x, y, and z axes) point in space. The function injectThree takes
a 2D point and transforms it to a 3D point by mapping it to a point on the z = 0 plane.
The function projectTwo takes a 3D point and transforms it to a 2D point by dropping its
z coordinate. The function compose takes two functions f and g and composes them. The
function compose is a higher-order function, since id operates on functions.

The point p0 is the origin in 2D. The point q0 is then computed as the origin in 3D. The
point p1 is computed by injecting p0 to 3D and then projecting it back to 2D by dropping
the z components, which yields again p0. In the end we thus have p0 = p1 = (0, 0).

Example 10.8. The following SPARC code, which defines a binary tree whose leaves and
internal nodes holds keys of integer type. The function find performs a lookup in a given
binary-search tree t, by recursively comparing the key x to the keys along a path in the tree.

type tree = Leaf of Z | Node of (tree,Z, tree)
find (t, x) =
case t
| Leaf y ⇒ x = y
| Node (left , y, right)⇒

if x = y then
return true

else if x < y then
find (left , x)

else
find (right , x)

Remark.
The definition

lambda x . (lambda y . f(x, y))

takes a function f of a pair of arguments and converts it into a function that takes one of the
arguments and returns a function which takes the second argument. This technique can

1. SYNTAX AND SEMANTICS OF SPARC 63

be generalized to functions with multiple arguments and is often referred to as currying,
named after Haskell Curry (1900-1982), who developed the idea. It has nothing to do with
the popular dish from Southern Asia, although that might be an easy way to remember the
term.

Part III

Concurrency

64

Chapter 11

Threads, Concurrency, and
Parallelism

This chapter presents an important abstraction in computer science, threads, and how they
can be used to write concurrent and parallel programs.

1 Threads

Definition 11.1 (Thread). A thread, short for thread of execution, is a computation that ex-
ecutes a given piece of code. A program that uses multiple threads is called multithreaded.

We consider two operations on threads: spawn and sync.

• The operation spawn takes an expression, creates a thread to execute that expression,
and returns the thread. Once spawned the thread starts executing concurrently with
other threads in the program.

• The operation sync takes a thread and waits until that thread completes its execu-
tion.

Example 11.1. The piece of code below spawns two threads and assigns them the task of
computing the nth and 2nth Fibonacci number. Once spawned the two threads execute
concurrently.

let t = spawn (lambda () .fib n)

u = spawn (lambda () .fib 2n)

((),()) = (sync t,sync u)

in () end

65

66 CHAPTER 11. THREADS, CONCURRENCY, AND PARALLELISM

The function fib may be implemented as

fib x =
if x ≤ 1 then x
else fib (x− 1) + fib (x− 2)

Example 11.2. In the example above , the threads compute the desired Fibonacci number
but has no way of communicating the result back. The piece of code below modifies the
example slightly to report the results back via references. The sync operations ensure that
the results are computed by waiting for the threads to complete.

let (r, s) = (ref 0,ref 0)

t = spawn (lambda () . r ← fib n)

u = spawn (lambda () . s← fib 2n)

((),()) = (sync t,sync u)

in (!r,!s)

end

Definition 11.2 (Thread Scheduler). Multithreaded programs rely on a thread scheduler
or scheduler for short, to execute the spawned threads to completion. At a given time,
a scheduler can execute any subset of the spawned threads that are ready to execute, i.e.,
they are not waiting other threads.

Example 11.3 (One-Processor Schedule). Consider executing the multithreaded program
for computing two Finonacci numbers using one processor. The thread scheduler will
start by executing the “main thread” that spawns the two threads. After the two threads
are spawned, the scheduler can choose to execute any one of them for any duration of time.
If it divides its time evenly between the two threads, then the first one will finish, leaving
only the second thread to work on. The scheduler will therefore work on the second thread,
and when it completes, it will return to the main thread and return the computed results.

Example 11.4 (Two-Processor Schedule). Consider executing the multithreaded program
for computing two Finonacci numbers using two processors.

The scheduler could execute the two threads in parallel until the first finishes. This would
speedup the completion of the program, somewhat, but not dramatically, because one pro-
cessor will be idle most of the time—this program does not have enough parallelism.

2 Concurrency and Parallelism

Definition 11.3 (Concurrency). An algorithmic problem is a concurrency problem if its
specification involves multiple things happening at the same item.

Example 11.5 (Scheduling as a Concurrency Problem). The problem of scheduling things
such as tasks to be completed in a manufacturing facility while respecting the dependencies
between them, threads, requests in a web server, or jobs in a server farm, all fall into the
category of “scheduling problems.” These problems are all concurrency problems.

2. CONCURRENCY AND PARALLELISM 67

• The problem of designing a thread scheduler is a concurrent problem because it
involves potentially multiple threads that execute at the same time.

• Web servers must promptly server many users varying from just a few to thousands
and even sometimes millions at a time. Scheduling requests arriving at a web server
is a concurrency problem, because requests could arrive and be processed at the same
time.

Example 11.6 (Interactive Systems). Many problems involving interactive systems such as
operating systems, games, and browser, are all naturally concurrent.

• To specify the behavior of an operating system, we need to talk about multiple event
happening at the same time, such as multiple programs executing at once, an event
such as a network event or a user input happening at the same time, etc.

• To specify a multiplayer game, we need to talk about multiple users, their actions,
and how the system (game) reacts to them. Even a simple game such as single-user
game involves simultaneous events such as the actions of the user and the computa-
tions performed by the graphics card. Nearly all reasonably sophisticated games are
therefore naturally concurrent.

• A modern browser must handle events from the user as well as through the network,
e.g., a request completing as the user also creates a new tab in their browser.

Solving Concurrency Problems. Multithreading is usually the technique of choice for
solving concurrency problems such as those in the example above . Using a thread sched-
uler , such multithreaded implementations can be made to work on sequential hardware,
such as a computer with any number of processors.

Example 11.7. Many OS’s today are designed to exploit multicore chipsets that can provide
anywhere from 2-8 cores even in small devices such as laptops and mobile phones. Such
devices also typically include a multicore Graphics-Processing-Units (GPUs) that typically
include anywhere from a handful to hundreds and even thousands of cores or processors.

Definition 11.4 (Parallelism). An algorithm is parallel if it performs multiple tasks at the
same time. Both concurrent and non-concurrent problems typically accept parallel algo-
rithms (solutions).

Example 11.8. Parallel implementations are commonly used in solving computationally
challenging problems.

• Games with rich graphical interfaces perform many graphics computations (triangu-
lation, rasterization, shading, etc) in parallel on the GPU.

• In automotive industry, “self-driving” systems use parallel processors and GPUs to
perform various image processing and machine learning tasks.

68 CHAPTER 11. THREADS, CONCURRENCY, AND PARALLELISM

• Scientific simulations for predicting the outcome of physical phenomena (e.g., weather
and climate, inter-planetary forces in space, and fluid dynamics) require loads of
computations. Parallel computers make such computations practically feasible and
usable by speeding them thousands of times. For example, the European Center for
Medium-Range Weather Forecasts use supercomputers with more than 10,000 pro-
cessors.

Remark (Concurrency versus Parallelism). Concurrency and parallelism are largely orthog-
onal concepts:

• concurrency is a property of a “problem”,

• parallelism is a property of an implementation or a “solution.”

Concurrency and parallelism can and usually co-exist. Concurrent problems usually accept
parallel solutions. As we saw in this class, many non-concurrent problem, which can be
specified as mathematical functions mapping an input to an output, also accept parallel
solutions.

Example 11.9 (Parallel Fibonacci). The function fib below computes the xth Fibonacci num-
ber in parallel.

fib x dest =
if x ≤ 1 then

dest ← x
else
let

(da, db) = (ref 0,ref 0)
a = spawn (lambda () .fib (x− 1) da)
b = spawn (lambda () .fib (x− 2) db)
((),()) = (sync a,sync b)

in
dest← !da+ !db

end

Example 11.10 (Parallel Fibonacci in SPARC). Using SPARC, we can write the parallel
Fibonacci function as

fib x =
if x ≤ 1 then
x

else
let (ra, rb) = (fib (x− 1)) || (fib (x− 2)) in
ra+ rb

end.

Note. The SPARC code above can be viewed as “syntactic sugar” for the code in parallel
Fibonacci example . Essentially any realistic implementation of SPARC will translate the
code into a multithreaded version that uses spawn and sync functions, which will then be
compiled into a parallel executable.

3. MUTABLE STATE AND RACE CONDITIONS 69

3 Mutable State and Race Conditions

Parallel versus Sequential Semantics. We can think of any parallel SPARC program as a
sequential program by replacing parallel tuples with sequential ones.

The semantics of these two programs are strongly related: if the original parallel program
is pure (purely functional), and does not use side effects, then corresponding sequential
program is “observationally equivalent” to the parallel one.

This means that the two programs yield the same output on the same inputs.

Definition 11.5 (Sequential Elision). For any SPARC program, there is a corresponding
sequential program called its sequential elision, that is obtained by replacing par (or ||)
with simple sequential pairs.

Example 11.11 (Parallel Fibonacci: Sequential Elision). Using SPARC, we can write the
parallel Fibonacci function as

fib x =
if x ≤ 1 then
x

else
let (ra, rb) = (fib (x− 1)) || (fib (x− 2)) in
ra+ rb

end.

The sequential elision of the function fib is:

fib x =
if x ≤ 1 then
x

else
let (ra, rb) = (fib (x− 1),fib (x− 2)) in
ra+ rb

end.

Convince yourself that these two programs are observationally equivalent.

Mutable State. The observational equivalence property between SPARC programs and
their sequential elision breaks in the presence of side effects, or mutable state. In fact, when
a multithreaded or parallel program uses mutable state, i.e., references and destructive
updates, reasoning about its correctness and efficiency can become difficult.

Example 11.12 (Concurrent Writes). Consider executing the following program

let x = ref 0

((),()) = (x← 1) || (x← 2)

in print x end

70 CHAPTER 11. THREADS, CONCURRENCY, AND PARALLELISM

The expressions x ← 1 and x ← 2 both update the same variable x. Because the two
expressions are parallel, they can take effect in any order (even on a single processor) and
the outcome of the program is non-deterministic. This program can therefore output 1 or 2.

Example 11.13 (Concurrent Additions). Consider the following program

let x = ref 0

((),()) = (x← x+ 1) || (x← x+ 1)

in print x end.

The two instances of the expression x← x+1 are parallel and they update the same shared
variable x. It might seems that because both expressions increment the same variable, the
output of the program will always output 2. But this is not quite correct, because the
expression x ← x+ 1 is not atomic: the two instances can both start by reading x as 0 and
the update it to 1. The program can therefore output 1 or 2.

Definition 11.6 (Data Race). We say that a data race occurs if multiple threads access the
same piece of data and at least one of the threads update or write to the data. Data races
usually lead to non-deterministic outcome, which is in many cases an error condition. In
some cases, a data race does not impact adversely the correctness of a program. Such data
races are called benign.

Example 11.14. The two examples above— parallel writes and parallel additions — both
include a data race.

Note (Determinacy Race). Data races are sometimes called determinacy races because they
could lead to non-deterministic outcome.

Why Use Mutable State. Given the complexities of reasoning about concurrent programs
that use mutable state, we might reasonably ask:

Why use mutable state at all and why not program purely functionally?

There are two important reasons.

• On modern computers, it is impossible to avoid mutable state completely. Even if a
program is purely functional, it still has to allocate memory and write into it. There-
fore, at some level of abstraction, we must operate on mutable state, even when it is
“hiddden” behind the abstraction of purely functional programming.

• Mutable state enables implementing certain operations including purely functional
ones more efficiently. For example, updating a single position in an array requires
copying an array if we are not allowed to mutate it.

3. MUTABLE STATE AND RACE CONDITIONS 71

Races are Considered Harmful. It is now broadly accepted that data races are harmful
and should be avoided to the extent possible. The reason for this is that when a program
contains races, understanding its behavior becomes extremely difficult, because we have
to reason about an exponentially growing number of possible interactions. For example,
if we have 100 threads each of which execute 10 instructions that can cause races, then the
total number of interactions we must consider are 10100 more than the number of atoms in
the universe.

Remark. When using strongly typed languages, we can easily avoid races by being judi-
cious about use of mutable data. For example, if we program in Parallel ML and use only
the pure functional subset of the language, then we are guaranteed to avoid races. This is
the reason for why we use a strongly typed language in this class.

Remark. The history of computer science is full of examples demonstrating the power of
abstraction. Can you imagine for example, that before “structured programming” lan-
guagues were accepted, programs were written with “GOTO” statements? Can you imag-
ine that it was only 20 years ago that pros and cons of garbage collection were passionately
debated among both researchers and practitioners? Today, hardly anyone would write
code with “GOTO” statements and hardly anyone would question the benefits of garbage
collection.

Teach them [young students], as soon as possible, a decent programming lan-
guage that exercises their power of abstraction.

– Edsger Dijkstra

Chapter 12

Critical Sections and Mutual
Exclusion

In this chapter, we present the concepts of critical sections and how we may use synchro-
nization instructions to ensure mutal exclusion.

Definition 12.1 (Critical Sections and Mutual Exclusion). In a concurrent program, a crit-
ical section is a part that cannot be executed by more than one thread at the same time.
In other words, a critical section must be executed in mutual exclusion. Critical sections
typically contain code that alters data shared among parallel computations, and could lead
to data races if executed concurrently.

Example 12.1 (RadCoin). A new startup RadCoin has a very simple and highly scalable
approach to financial transactions that has piqued the interest and admiration of the Wall
Street. Their technology rests on two functions debit and credit that respectively take a
specified amount delta from an account by updating the balance bal . The following code
snippet shows their magic debit and credit functions (N.B. all IP rights reserved) and uses
them to debit and credit 10 from and to the same account.

let
debit bal delta =

bal ← bal − delta
credit bal delta =

bal ← bal + delta
in

(debit mybal 10) || (credit mybal 10)
end

We expect the balance to remain unchanged after this operation but this is not guaranteed
unless the functions debit and credit execute in mutual exclusion. Suppose that we start
with 50 dollars in the account. Now, consider the following two scenarios.

72

73

• The functions credit and debit both read the balance of 50 and debit takes out the 10
and updates the balance, and then credit updates the balance to 60. Effectively, the
outcome is that the update from the function debit has been lost.

• The functions credit updates the balance first, and then debit sets the balance to 40.
In this scenario, the update from the function credit has been lost.

Note. Consider an operation of the form

bal ← bal ⊕ delta,

where⊕ can be any arithmetic operation such as plus or minus. Even though this operation
is written as one operation, a real computer cannot guarantee its atomicity, because it is
typically executed as three instructions

oldbal ← !bal
newbal ← oldbal ⊕ delta
bal ← newbal .

Thus if multiple instances of the operation is on flight in parallel, their effects may take
effect in memory in arbitrary total order.

Data Races and Critical Sections. If a critical section is executed concurrently, then a data
race could occur. When a data race occurs, the outcome of the program usually depends
on the relative timing of events in the execution, and varies from one execution to another.
Most race conditions therefore break correctness properties of programs but some are be-
nign and don’t harm correctness.

Heisenbug. It can be extremely difficult to find a data race, because parallel programs
usually exhibit ample non-determinacy in their execution, due to scheduling. A data race
may lead to an observably incorrect behavior only a tiny fraction of the time, making it
extremely difficult to observe and reproduce it. This becomes especially a problem, because
when executed in the “debugging mode”, programs usually “slow down” and sometimes
the effect is significant enough to cause the bug to disappear. Such a bug is called an
Heisenbug.

Example 12.2. Many examples of data races exist in the history of computing. A particu-
larly destructive one was the ”Northeast Blackout” of 2003, which caused 45 million people
in the US and 10 million people in Canada to lose electricity for an extended period of time.
The data race was in an “Energy Management System” developed by General Electric (GE).
Here is a quote describing the data race by a GE manager.

“There was a couple of processes that were in contention for a common data
structure, and through a software coding error in one of the application pro-
cesses, they were both able to get write access to a data structure at the same
time. And that corruption lead to the alarm event application getting into an
infinite loop and spinning.”

74 CHAPTER 12. CRITICAL SECTIONS AND MUTUAL EXCLUSION

The data race took software engineers weeks of poring through approximately one million
lines of C and C++ code. To do this, the engineeers slowed down the system and injected
deliberate delays in the code while feeding alarm inputs to the program. About eight weeks
after the blackout, the bug was unmasked as a particularly subtle data race, triggered on
August 14th by a perfect storm of events and alarm conditions on the equipment being
monitoring. The bug had a window of opportunity measured in milliseconds.

Definition 12.2 (Mutual Exclusion Problem). The problem of designing algorithms or pro-
tocols for ensuring mutual exclusion is called the mutual exclusion problem or the critical
section problem.

Definition 12.3 (Synchronization Instructions). There are many techniques for solving mu-
tual exclusion problems. Nearly all of these techniques involve synchronizing between the
threads by using synchronization instructions, which can be broadly divided into three
categories.

1. Spin locks allow a thread to “busy wait” until the critical section is “clear” of other
threads.

2. Blocking locks allow a thread to “block” and wait for another thread to exit the criti-
cal section. When the critical section is clear, then the blocked thread receives a signal,
allowing it to proceed. The term mutex, short for ”mutual exclusion” is sometimes
used to refer to a blocking lock.

3. Atomic read-modify-write instructions, can read and modify the contents of a mem-
ory location atomically, allowing a thread to operate safely on shared data.

Remark. One example of a mutual exclusion algorithm that does not use synchronization
operations is Dekker’s algorithm for mutual exclusion. The algorithm works only for two
threads.

Atomic Read-Modify-Write Instructions. In contrast to conventional instructions, these
instructions differ in the sense that they can be used to perform atomically a sequence of
three instructions, i.e.,

• reading the contents of reference,

• computing some value based on it, and

• writing it back into the reference atomically.

As it turns out, these instructions suffice to implement more complex concurrent opera-
tions on shared data.

Definition 12.4 (Nonblocking Synchronization). Atomic read-modify-write operations typ-
ically require special hardware support and are implemented more or less directly in hard-
ware. Because they don’t block the executing thread, atomic read-modify-write instruc-
tions are called nonblocking. Nonblocking operations can be used to implement more

75

complex concurrent nonblocking data structures, such as concurrent stacks and queues,
that can guarantee system-wide progress.

Definition 12.5 (Compare and Swap). Compare-and-swap is an atomic read-modify-write
instruction that performs a memory read followed by a memory write atomically on a
machine word. The type signature for the cas instruction is

cas : word ref→ word ∗ word→ word.

Given a reference r and expected value exp and a target value tgt , the instruction

cas r (exp, tgt)

performs the following atomically:

1. let old be the contents of r,

2. compare old with exp,

3. if they are equal, then write into r the value tgt ,

4. otherwise, leave r unchanged, and

5. return old

Definition 12.6 (Fetch and Add). Fetch-and-add is an atomic read-modify-write instruc-
tion that atomically updates the contents of a memory location and returns the contents
(before the update). The type signature for the faa instruction is

faa : word ref→ word→ word.

Given a reference r and an “increment” delta , the instruction

faa r delta

performs the following update atomically

let v = !r (12.1)
r ← !r ⊕ delta (12.2)

in v end. (12.3)

Here ⊕ is the addition operation on machine words.

Exercise 12.1. Implement a spin-lock using fetch-and-add .

Exercise 12.2. Implement fetch-and-add using compare-and-swap . How does the effi-
ciency of your implementation compare to that of the fetch-and-add instruction.

76 CHAPTER 12. CRITICAL SECTIONS AND MUTUAL EXCLUSION

Solution.

fetchAndAdd r delta =
let

loop r =
let old = !r

new = old + delta
in
if cas r (old ,new) = old then

old
else

loop r
end

in
loop r

end

Exercise 12.3. Implement a spin-lock using compare-and-swap .

Exercise 12.4. Describe how to fix the concurrency in RadCoin’s code by using compare-
and-swap . Is your solution as scalable as that of RadCoin’s original implementation?

Exercise 12.5. Using the compare-and-swap instruction for synchronization, design a
concurrent stack data structure that can be shared by multiple threads. Such a concurrent
stack data structure can be used to implement a thread scheduler for executing the threads
in a parallel language such as SPARC or MPL.

Part IV

Analysis of Algorithms

77

Chapter 13

Introduction

Algorithm Analysis. The term algorithm analysis refers to mathematical analysis of
algorithms with the purpose of determining their consumption of resources such as the
amount of total work they perform, the energy they consume, the time to execute, and the
memory or storage space that they require.

When analyzing algorithms, it is important to be precise so that we can compare different
algorithms and assess their suitability for our purposes. It is also equally important to be
abstract because we don’t want to worry about details of compilers and computer architec-
tures, and because we want our analysis to remain valid even as these details change over
time.

To find the right balance between precision and abstraction, we rely on two levels of ab-
straction: asymptotic analysis and cost models.

• Asymptotic analysis enables abstracting from small factors such as the exact time
a particular operation may require. Asymptotics chapter describes the basics of
asymptotic analysis.

• Cost models specify the cost of operations available in a computational model, usu-
ally only up to the precision of the asymptotic analysis. Models Chapter describes
machine-based and language-based cost models.

Many algorithms in computer science are naturally recursive. Analyses of such algorithms
typically lead us to recurrences, which are recursive mathematical relations. Solving such
recurrences is a basic skill for every computer scientist. Recurrences Chapter covers
recurrences and the basic techniques for solving them.

78

Chapter 14

Asymptotics

This chapter describes the asymptotic notation that is used nearly universally in computer
science to analyze the resource consumption of algorithms.

1 Basics

When analyzing algorithms, we are usually interested in costs such as the total work, the
running time, or space usage. In such analysis, we usually characterize the behavior of an
algorithm with a numeric function from the domain of natural numbers (typically repre-
senting input sizes) to the codomain of real numbers (cost).

Example 14.1 (Numeric Functions). By analyzing the work of the algorithm A for prob-
lem P in terms of its input size n, we may obtain the numeric function

WA(n) = 2n lg n+ 3n+ 4 lg n+ 5.

By applying the analysis method to another algorithm, algorithm B, we may derive the
numeric function

WB(n) = 6n+ 7 lg2 n+ 8 lg n+ 9.

Both of these functions are numeric because their domain is the natural numbers.

When given numeric functions, how should we interpret them? Perhaps more importantly
given two algorithms and their work cost as represented by two numeric functions, how
should we compare them? One option would be to calculate the two functions for varying
values of n and pick the algorithm that does the least amount of work for the values of n
that we are interested in.

79

80 CHAPTER 14. ASYMPTOTICS

In computer science, we typically care about the cost of an algorithm for large inputs. We
are therefore usually interested in the growth or the growth rate of the functions. Asymp-
totic analysis offers a technique for comparing algorithms by comparing the growth rate of
their cost functions as the sizes get large (approach infinity).

Example 14.2 (Asymptotics). Consider two algorithms A and B for a problem P and sup-
pose that their work costs, in terms of the input size n, are

WA(n) = 2n lg n+ 3n+ 4 lg n+ 5, and

WB(n) = 6n+ 7 lg2 n+ 8 lg n+ 9.

Via asymptotic analysis, we derive

WA(n) ∈ Θ(n lg n), and

WB(n) ∈ Θ(n).

Since n lg n grows faster that n, we would usually prefer the second algorithm, because it
performs better for sufficiently large inputs.

The difference between the exact work expressions and the “asymptotic bounds” written
in terms of the “Theta” functions is that the latter ignores so called constant factors, which
are the constants in front of the variables, and lower-order terms, which are the terms such
as 3n and 4 lg n that diminish in growth with respect to n lg n as n increases.

Remark. In addition to enabling us to compare algorithms, asymptotic analysis also allows
us to ignore certain details such as the exact time an operation may require to complete on a
particular architecture. This is important because it makes it possible to apply our analysis
to different architectures, where such constant may differ. Furthermore, it also enables us
to create more abstract cost models: in designing cost models, we assign most operations
unit costs regardless of the exact time they might take on hardware. This greatly simplifies
the definition of the models.

Exercise 14.1. Comparing two algorithms that solve the same problem, one might perform
better on large inputs and the other on small inputs. Can you give an example?

Solution. There are many such algorithms. A classic example is the merge-sort algorithm
that performs Θ(n lg n) work, but performs worse on smaller inputs than the asymptoti-
cally inefficient Θ(n2)-work insertion-sort algorithm. Asymptotic notation does not help
in comparing the efficiency of insertion sort and merge sort at small input sizes. For this,
we need to compare their actual work functions which include the constant factors and
lower-order terms that asymptotic notation ignores.

2 Big-O, big-Omega, and big-Theta

The key idea in asymptotic analysis is to understand how the growth rate of two functions
compare on large input. In particular as we increase the numeric argument of both func-
tions to infinity, does one grow faster, equally fast or slower than the other? In answering

2. BIG-O, BIG-OMEGA, AND BIG-THETA 81

this question we do not care about small input and do not care about constant factors. To
capture this idea, we use the following definition.

Definition 14.1 (Asymptotic dominance). Let f(·) and g(·) be two numeric functions. We
say that f(·) asymptotically dominates g(·), if there exists constants c > 0 and n0 > 0 such
that for all n ≥ n0,

g(n) ≤ c · f(n).

or, equivalently, if

lim
n→∞

g(n)

f(n)
≤ c .

Example 14.3. In the following examples, the function f(·) asymptotically dominates and
thus grows at least as fast as the function g(·).

f(n) = 2n g(n) = n
f(n) = 2n g(n) = 4n
f(n) = n lg n g(n) = 8n
f(n) = n lg n g(n) = 8n lg n+ 16n
f(n) = n

√
n g(n) = n lg n+ 2n

f(n) = n
√
n g(n) = n lg8 n+ 16n

f(n) = n2 g(n) = n lg2 n+ 4n

f(n) = n2 g(n) = n lg2 n+ 4n lg n+ n

In the definition we ignore all n that are less than n0 (i.e. small inputs), and we allow
g(n) to be some constant factor, c, larger than f(n) even though f(n) “dominates”. When
a function f(·) asymptotically dominates (or dominates for short) g(·), we sometimes say
that f(·) grows as least as fast as g(·)

Exercise 14.2. Prove that for all k, f(n) = n asymptotically dominates g(n) = lnk n.

Hint: use L’Hopital’s rule, which states:

if lim
n→∞

f(n) =∞ and lim
n→∞

g(n) =∞, then: lim
n→∞

g(n)

f(n)
= lim
n→∞

g′(n)

f ′(n)
.

Solution. We have:

lim
n→∞

g(n)

f(n)
= lim

n→∞

lnk n

n

=

(
lim
n→∞

lnn

n1/k

)k
=

(
lim
n→∞

1/n

(1/k)n1/k−1

)k
=

(
lim
n→∞

k

n1/k

)k
= 0

We applied L’Hospital’s rule from the second to the third line. Since 0 is certainly upper
bounded by a constant c, we have that f dominates g.

82 CHAPTER 14. ASYMPTOTICS

For two functions f and g it is possible neither dominates the other. For example, for
f(n) = n sin(n) and g(n) = n cos(n) neither dominates since they keep crossing. However,
both f and g are dominated by h(n) = n.

The dominance relation defines what is called a preorder (distinct from “pre-order” for
traversal of a tree) over numeric functions. This means that the relation is transitive (i.e.,
if f dominates g, and g dominates h, then f dominates h), and reflexive (i.e., f dominates
itself).

Exercise 14.3. Prove that asymptotic dominance is transitive.

Solution. By the definition of dominance we have that

1. for some ca, na and all n ≥ na, g(n) ≤ ca · f(n), and

2. for some cb, nb and all n ≥ nb, h(n) ≤ cb · g(n).

By plugging in, we have that for all n ≥ max(na, nb)

h(n) ≤ cb(caf(n)) .

This satisfies the definition f dominates h with c = ca · cb and n0 = max(na, nb).

Definition 14.2 (O,Ω,Θ, o, ω Notation). Consider the set of all numeric functions F , and
f ∈ F . We define the following sets:

Name Definition Intuitively
big-O : O(f) = {g ∈ F such that f dominates g} ≤ f
big-Omega : Ω(f) = {g ∈ F such that g dominates f} ≥ f
big-Theta : Θ(f) = O(f) ∩ Ω(f) = f
little-o : o(f) = O(f) \ Ω(f) < f
little-omega : ω(f) = Ω(f) \O(f) > f

Here “\” means set difference.

Example 14.4.

f(n) = 2n ∈ O(n)
f(n) = 2n ∈ Ω(n)
f(n) = 2n ∈ Θ(n)
f(n) = 2n ∈ O(n2)
f(n) = 2n ∈ o(n2)
f(n) = 2n ∈ Ω(

√
n)

f(n) = 2n ∈ ω(
√
n)

f(n) = n lg8 n+ 16n ∈ O(n
√
n)

f(n) = n lg2 n+ 4n lg n+ n ∈ Θ(n lg2 n)

3. SOME CONVENTIONS 83

Exercise 14.4. Prove or disprove the following statement: if g(n) ∈ O(f(n)) and g(n) is a
finite function (g(n) is finite for all n), then it follows that there exist constants k1 and k2

such that for all n ≥ 1,

g(n) ≤ k1 · f(n) + k2.

Solution. The statement is correct. Because g(n) ∈ O(f(n)), we know by the definition
that there exists positive constants c and no such that for all n ≥ n0, g(n) ≤ c · f(n). It
follows that for the function k1 · f(n) + k2 where k1 = c and k2 =

∑n0

i=1 g(i), we have
g(n) ≤ k1 · f(n) + k2.

We often think of g(n) ∈ O(f(n)) as indicating that f(n) is an upper bound for g(n) Sim-
ilarly g(n) ∈ Ω(f(n)) indicates that f(n) is a lower bound for g(n), and g(n) ∈ Θ(f(n))
indicates that f(n) is a tight bound for g(n).

3 Some Conventions

When using asymptotic notations, we follow some standard conventions of convenience.

Writing = Instead of ∈. In is reasonably common to write g(n) = O(f(n)) instead of
g(n) ∈ O(f(n)) (or equivalently for Ω and Θ). This is often considered abuse of notation
since in this context the “=” does not represent any form of equality—it is not even reflex-
ive. In this book we try to avoid using “=”, although we expect it still appears in various
places.

Common Cases. By convention, and in common use, we use the following names:

linear : O(n)
sublinear : o(n)
quadratic : O(n2)
polynomial : O(nk), for any constant k.
superpolynomial : ω(nk), for any constant k.
logarithmic : O(lg n)

polylogarithmic : O(lgk n), for any constant k.
exponential : O(an), for any constant a > 1.

Expressions as Sets. We usually treat expressions involving asymptotic notation as sets.
For example, the expression

g(n) +O(f(n))

84 CHAPTER 14. ASYMPTOTICS

represents the set of functions

{g(n) + h(n) : h(n) ∈ f(n)}.

One exception to this is with (Recurrences).

Subsets. We can use big-O (Ω, Θ) on both the left and right-hand sides of an equation. In
this case we are indicating that one set of functions is a subset of the other. For example,
consider Θ(n) ⊂ O(n2). This equation indicates that the set of functions on the left-hand
side is contained in the set on the right hand side. Again, sometimes “=” is used instead
of “⊂”.

The Argument. When writing O(n+ a) we have to guess what the argument of the func-
tion is—is it n or is it a? By convention we assume the letters l,m, and n are the arguments
when they appear. A more precise notation would be to use O(λn.n + a)—after all the
argument to the big-O is supposed to be a function, not an expression.

Multiple Arguments. Sometimes the function used in big-O notation has multiple argu-
ments, as in f(n,m) = n2 +m lg n and used in O(f(n,m)). In this case f(n,m) asymptoti-
cally dominates g(n,m) if there exists constants c and x0 > 0 such that for all inputs where
n > x0 or m > x0, g(n,m) ≤ c · f(n,m).

Chapter 15

Cost Models

Any algorithmic analysis must assume a cost model that defines the resource costs re-
quired by a computation. There are two broadly accepted ways of defining cost models:
machine-based and language-based cost models.

1 Machine-Based Cost Models

Definition 15.1 (Machine-Based Cost Model). A machine-based (cost) model takes a ma-
chine model and defines the cost of each instruction that can be executed by the machine—
often unit cost per instruction. When using a machine-based model for analyzing an al-
gorithm, we translate the algorithm so that it can be executed on the machine and then
analyze the cost of the machine instructions used by the algorithm.

Remark. Machine-based models are suitable for deriving asymptotic bounds (i.e., using
big-O, big-Theta and big-Omega) but not for predicting exact runtimes. The reason for this
is that on a real machine not all instructions take the same time, and furthermore not all
machines have the same instructions.

1.1 RAM Model

The classic machine-based model for analyzing sequential algorithms is the Random Ac-
cess Machine or RAM. In this model, a machine consists of a single processor that can
access unbounded memory; the memory is indexed by the natural numbers. The pro-
cessor interprets sequences of machine instructions (code) that are stored in the memory.
Instructions include basic arithmetic and logical operations (e.g. +, -, *, and, or, not),
reads from and writes to arbitrary memory locations, and conditional and unconditional
jumps to other locations in the code. Each instruction takes unit time to execute, including

85

86 CHAPTER 15. COST MODELS

those that access memory. The execution-time, or simply time of a computation is mea-
sured in terms of the number of instructions executed by the machine. Because the model
is sequential (there is only one processor) time and work are the same.

Critique of the RAM Model. Most research and development of sequential algorithms
has used the RAM model for analyzing time and space costs. One reason for the RAM
model’s success is that it is relatively easy to reason about the costs because algorithmic
pseudo code can usually be translated to the model. Similarly, code in low-level sequential
languages such as C can also be translated (compiled) to the RAM Model relatively easily.
When using higher level languages, the translation from the algorithm to machine instruc-
tions becomes more complex and we find ourselves making strong, possibly unrealistic
assumptions about costs, even sometimes without being aware of the assumptions.

More broadly, the RAM model becomes difficult to justify in modern languages. For ex-
ample, in object- oriented languages certain operations may require substantially more
time than others. Likewise, features of modern programming languages such as automatic
memory management can be difficult to account for in analysis. Functional features such as
higher-order functions are even more difficult to reason about in the RAM model because
their behavior depends on other functions that are used as arguments. Such functional fea-
tures, which are the mainstay of “advanced” languages such as the ML family and Haskell,
are now being adopted by more mainstream languages such as Python, Scala, and even for
more primitive (closer to the machine) languages such as C++. All in all, it requires signif-
icant expertise to understand how an algorithm implemented in modern languages today
may be translated to the RAM model.
Remark. One aspect of the RAM model is the assumption that accessing all memory loca-
tions has the same uniform cost. On real machines this is not the case. In fact, there can
be a factor of 100 or more difference between the time for accessing different locations in
memory. For example, all machines today have caches and accessing the first-level cache
is usually two orders of magnitude faster than accessting main memory.

Various extensions to the RAM model have been developed to account for this non-uniform
cost of memory access. One variant assumes that the cost for accessing the ith memory lo-
cation is f(i) for some function f , e.g. f(i) = log(i). Fortunately, however, most algorithms
that are good in these more detailed models are also good in the RAM model. Therefore
analyzing algorithms in the simpler RAM model is often a reasonable approximation to
analyzing in the more refined models. Hence the RAM has served quite well despite not
fully accounting for non-uniform memory costs.

The model we use in this book also does not account for non-uniform memory costs, but
as with the RAM the model can be refined to account for it.

1.2 PRAM: Parallel Random Access Machine

The RAM model is sequential but can be extended to use multiple processors which share
the same memory. The extended model is called the Parallel Random Access Machine.

2. LANGUAGE BASED MODELS 87

PRAM Model. A Parallel Random Access Machine, or PRAM, consist of p sequential
random access machines (RAMs) sharing the same memory. The number of processors,
p, is a parameter of the machine, and each processor has a unique index in {0, . . . , p − 1},
called the processor id. Processors in the PRAM operate under the control of a common
clock and execute one instruction at each time step. The PRAM model is most usually used
as a synchronous model, where all processors execute the same algorithm and operate on
the same data structures. Because they have distinct ids, however, different processors can
do different computations.

Example 15.1. We can specify a PRAM algorithm for adding one to each element of an
integer array with p elements as shown below. In the algorithm, each processor updates
certain elements of the array as determined by its processor id, id.

(* Input: integer array A. *)
arrayAdd = A[id]← A[id] + 1

If the array is larger than p, then the algorithm would have to divide the array up and into
parts, each of which is updated by one processor.

SIMD Model. Because in the PRAM all processors execute the same algorithm, this typ-
ically leads to computations where each processor executes the same instruction but pos-
sibly on different data. PRAM algorithms therefore typically fit into single instruction
multiple data, or SIMD, programming model. Example 15.1 shows an example SIMD
program.

Critique of PRAM. Since the model is synchronous, and it requires the algorithm de-
signer to map or schedule computation to a fixed number of processors, the PRAM model
can be awkward to work with. Adding a value to each element of an array is easy if the
array length is equal to the number of processors, but messier if not, which is typically the
case. For computations with nested parallelism, such as divide-and-conquer algorithms,
the mapping becomes much more complicated.

We therefore don’t use the PRAM model in this book. Most of the algorithms presented
in this book, however, also work with the PRAM (with more complicated analysis), and
many of them were originally developed using the PRAM model.

2 Language Based Models

Language-Based Cost-Models. A language-based model takes a language as the starting
point and defines cost as a function mapping the expressions of the language to their cost.
Such a cost function is usually defined as a recursive function over the different forms of
expressions in the language. To analyze an algorithm by using a language-based model,

88 CHAPTER 15. COST MODELS

we apply the cost function to the algorithm written in the language. In this book, we use a
language-based cost model, called the work-span model.

2.1 The Work-Span Model

Our language-based cost model is based on two cost metrics: work and span. Roughly
speaking, the work of a computation corresponds to the total number of operations it per-
forms, and the span corresponds to the longest chain of dependencies in the computation.
The work and span functions can be defined for essentially any language ranging from
low-level languages such as C to higher level languages such as the ML family. In this
book, we use the SPARC language.

Notation for Work and Span. For an expressions e, or an algorithm written in a language,
we write W (e) for the work of e and S(e) for the span of e.

Example 15.2. For example, the notation

W (7 + 3)

denotes the work of adding 7 and 3.

The notation

S(fib(11))

denotes the span for calculating the 11th Fibonacci number using some particular code for
fib.

The notation

W (mySort(a))

denotes the work for mySort applied to the sequence a.

Using Input Size. Note that in the third example the sequence a is not defined within the
expression. Therefore we cannot say in general what the work is as a fixed value. However,
we might be able to use asymptotic analysis to write a cost in terms of the length of a, and
in particular if mySort is a good sorting algorithm we would have:

W (mySort(a)) = O(|a| log |a|).

Often instead of writing |a| to indicate the size of the input, we use n or m as shorthand.
Also if the cost is for a particular algorithm, we use a subscript to indicate the algorithm.
This leads to the following notation

WmySort(n) = O(n log n).

where n is the size of the input of mysort. When obvious from the context (e.g. when in a
section on analyzing mySort) we typically drop the subscript, writingW (n) = O(n log n).

2. LANGUAGE BASED MODELS 89

Definition 15.2 (SPARC Cost Model). The work and span of SPARC expressions are de-
fined below. In the definition and throughout this book, we write W (e) for the work of
the expression and S(e) for its span. Both work and span are cost functions that map an
expression to a integer cost. As common in language-based models, the definition follows
the definition of expressions for SPARC (Sparc Chapter). We make one simplifying as-
sumption in the presentation: instead of considering general bindings, we only consider
the case where a single variable is bound to the value of the expression.

In the definition, the notation Eval(e) evaluates the expression e and returns the result, and
the notation [v/x] e indicates that all free (unbound) occurrences of the variable x in the
expression e are replaced with the value v.

W (v) = 1
W (lambda p . e) = 1
W (e1 e2) = W (e1) +W (e2) +W ([Eval(e2)/x] e3) + 1

where Eval(e1) = lambda x . e3

W (e1 op e2) = W (e1) +W (e2) + 1
W (e1 , e2) = W (e1) +W (e2) + 1
W (e1 || e2) = W (e1) +W (e2) + 1

W

 if e1

then e2

else e3

 =

{
W (e1) +W (e2) + 1 if Eval(e1) = true
W (e1) +W (e3) + 1 otherwise

W

(
let x = e1

in e2 end

)
= W (e1) +W ([Eval(e1)/x] e2) + 1

W ((e)) = W (e)

S(v) = 1
S(lambda p . e) = 1
S(e1 e2) = S(e1) + S(e2) + S([Eval(e2)/x] e3) + 1

where Eval(e1) = lambda x . e3

S(e1 op e2) = S(e1) + S(e2) + 1
S(e1 , e2) = S(e1) + S(e2) + 1
S(e1 || e2) = max (S(e1), S(e2)) + 1

S

 if e1

then e2

else e3

 =

{
S(e1) + S(e2) + 1 Eval(e1) = true
S(e1) + S(e3) + 1 otherwise

S

(
let x = e1

in e2 end

)
= S(e1) + S([Eval(e1)/x] e2) + 1

S((e)) = S(e)

Example 15.3. Consider the expression e1+e2 where e1 and e2 are themselves other expres-
sions (e.g., function application). Note that this is an instance of the rule e1 op e2, where op
is a plus operation. In SPARC, we evaluate this expressions by first evaluating e1 and then
e2 and then computing the sum. The work of the expressions is therefore

W (e1 + e2) = W (e1) +W (e2) + 1.

90 CHAPTER 15. COST MODELS

The additional 1 accounts for computation of the sum.

For the let expression, we first evaluate e1 and assign it to x before we can evaluate e2.
Hence the fact that the span is composed sequentially, i.e., by adding the spans.

Example 15.4. In SPARC, let expressions compose sequentially.

W (let y = f(x) in g(y) end) = 1 +W (f(x)) +W (g(y))
S(let y = f(x) in g(y) end) = 1 + S(f(x)) + S(g(y))

Note that all the rules for work and span have the same form except for parallel application,
i.e., (e1 || e2). Recall that parallel application indicates that the two expressions can be
evaluated in parallel, and the result is a pair of values containing the two results. In this
case we use maximum for combining the span since we have to wait for the longer of the
two. In all other cases we sum both the work and span. Later we will also add a parallel
construct for working with sequences.

Example 15.5. The expression (fib(6) || fib(7)) runs the two calls to fib in parallel and
returns the pair (8, 13). It does work

1 +W (fib(6)) +W (fib(7))

and span

1 + max (S(fib(6)), S(fib(7))).

If we know that the span of fib grows with the input size, then the span can be simplified
to 1 + S(fib(7)).

Remark. When assuming purely functional programs, it is always safe to run things in
parallel if there is no explicit sequencing. For the expression e1 + e2, for example, it is safe
to evaluate the two expressions in parallel, which would give the rule

S(e1 + e2) = max (S(e1), S(e2)) + 1 ,

i.e., we wait for the later of the two expression fo finish, and then spend one additional unit
to do the addition. However, in this book we use the convention that parallelism has to be
stated explicitly using ||.

Definition 15.3 (Average Parallelism). Parallelism, sometimes called average parallelism,
is defined as the work over the span:

P =
W

S
.

Parallelism informs us approximately how many processors we can use efficiently.

Example 15.6. For a mergesort with work Θ(n log n) and span Θ(log2 n) the parallelism
would be Θ(n/ log n).

Example 15.7. Consider an algorithm with workW (n) = Θ(n3) and span S(n) = Θ(n log n).
For n = 10, 000, P (n) ≈ 107, which is a lot of parallelism. But, if W (n) = Θ(n2) ≈ 108 then
P (n) ≈ 103, which is much less parallelism. Note that the decrease in parallelism is not
because of an increase in span but because of a reduction in work.

2. LANGUAGE BASED MODELS 91

Designing Parallel Algorithms. In parallel-algorithm design, we aim to keep parallelism
as high as possible. Since parallelism is defined as the amount of work per unit of span, we
can do this by decreasing span. We can increase parallelism by increasing work also, but
this is usually not desirable. In designing parallel algorithms our goals are:

1. to keep work as low as possible, and

2. to keep span as low as possible.

Except in cases of extreme parallelism, where for example, we may have thousands or more
processors available to use, the first priority is usually to keep work low, even if it comes
at the cost of increasing span.

Definition 15.4 (Work efficiency). We say that a parallel algorithm is work efficient if it per-
form asymptotically the same work as the best known sequential algorithm for that prob-
lem.

Example 15.8. A (comparison-based) parallel sorting algorithm with Θ(n log n) work is
work efficient; one with Θ(n2) is not, because we can sort sequentially with Θ(n log n)
work.

Note. In this book, we will mostly cover work-efficient algorithms where the work is the
same or close to the same as the best sequential time. Among the algorithm that have the
same work as the best sequential time, our goal will be to achieve the greatest parallelism.

2.2 Scheduling

Scheduling involves executing a parallel program by mapping the computation over the
processors in such a way to minimize the completion time and possibly, the use of other
resources such as space and energy. There are many forms of scheduling. This section de-
scribes the scheduling problem and briefly reviews one particular technique called greedy
scheduling.

2.2.1 Scheduling Problem

An important advantage of the work-span model is that it allows us to design parallel
algorithms without having to worry about the details of how they are executed on an actual
parallel machine. In other words, we never have to worry about mapping of the parallel
computation to processors, i.e., scheduling.

Scheduling can be challenging, because a parallel algorithm generates independently exe-
cutable tasks on the fly as it runs, and it can generate a large number of them, typically
many more than the number of processors.

92 CHAPTER 15. COST MODELS

Example 15.9. A parallel algorithm with Θ(n/ lg n) parallelism can easily generate millions
of parallel subcomptutations or task at the same time, even when running on a multicore
computer with 10 cores. For example, for n = 108, the algorithm may generate millions of
independent tasks.

Definition 15.5 (Scheduler). A scheduling algorithm or a scheduler is an algorithm for
mapping parallel tasks to available processors. The scheduler works by taking all parallel
tasks, which are generated dynamically as the algorithm evaluates, and assigning them to
processors. If only one processor is available, for example, then all tasks will run on that
one processor. If two processors are available, the task will be divided between the two.

Schedulers are typically designed to minimize the execution time of a parallel computation,
but minimizing space usage is also important.

2.2.2 Greedy Scheduling

Definition 15.6 (Greedy Scheduler). We say that a scheduler is greedy if whenever there is
a processor available and a task ready to execute, then it assigns the task to the processor
and starts running it immediately. Greedy schedulers have an important property that is
summarized by the greedy scheduling principle.

Definition 15.7 (Greedy Scheduling Principle). The greedy scheduling principle postulates
that if a computation is run on P processors using a greedy scheduler, then the total time
(clock cycles) for running the computation is bounded by

TP < W
P + S

where W is the work of the computation, and S is the span of the computation (both mea-
sured in units of clock cycles).

Optimality of Greedy Schedulers. This simple statement is powerful.

Firstly, the time to execute the computation cannot be less than W
P clock cycles since we

have a total of W clock cycles of work to do and the best we can possibly do is divide it
evenly among the processors.

Secondly, the time to execute the computation cannot be any less than S clock cycles, be-
cause S represents the longest chain of sequential dependencies. Therefore we have

Tp ≥ max

(
W

P
,S

)
.

We therefore see that a greedy scheduler does reasonably close to the best possible. In
particular W

P + S is never more than twice max (WP , S).

2. LANGUAGE BASED MODELS 93

Furthermore, greedy scheduling is particularly good for algorithms with abundant par-
allellism. To see this, let’s rewrite the inequality of the Greedy Principle in terms of the
parallelism P = W/S:

TP < W
P + S

= W
P + W

P

= W
P

(
1 + P

P

)
.

Therefore, if P � P , i.e., the parallelism is much greater than the number of processors,
then the parallel time TP is close to W/P , the best possible. In this sense, we can view
parallelism as a measure of the number of processors that can be used effectively.

Definition 15.8 (Speedup). The speedup SP of a P -processor parallel execution over a
sequential one is defined as

SP = Ts/TP ,

where TS denotes the sequential time. We use the term perfect speedup to refer to a
speedup that is equal to P .

When assessing speedups, it is important to select the best sequential algorithm that solves
the same problem (as the parallel one).

Exercise 15.1. Describe the conditions under which a parallel algorithm would obtain near
perfect speedups.

Remark. Greedy Scheduling Principle does not account for the time it requires to com-
pute the (greedy) schedule, assuming instead that such a schedule can be created instan-
taneously and at no cost. This is of course unrealistic and there has been much work on
algorithms that attempt to match the Greedy Scheduling Principle. No real schedulers can
match it exactly, because scheduling itself requires work. For example, there will surely be
some delay from when a task becomes ready for execution and when it actually starts ex-
ecuting. In practice, therefore, the efficiency of a scheduler is quite important to achieving
good efficiency. Because of this, the greedy scheduling principle should only be viewed
as an asymptotic cost estimate in much the same way that the RAM model or any other
computational model should be just viewed as an asymptotic estimate of real time.

Chapter 16

Recurrences

This chapter covers recurrences and presents three methods for solving recurrences: the
“Tree Method” the “Brick Method” , and the “Substitution Method” .

1 The Basics

Recurrences are simply recursive functions for which the argument(s) and result are num-
bers. As is normal with recursive functions, recurrences have a recursive case along with
one or more base cases. Although recurrences have many applications, in this book we
mostly use them to represent the cost of algorithms, and in particular their work and span.
They are typically derived directly from recursive algorithms by abstracting the arguments
of the algorithm based on their sizes, and using the cost model described in Cost Models
Chapter . Although the recurrence is itself a function similar to the algorithm it abstracts,
the goal is not to run it, but instead the goal is to determine a closed form solution to it
using other methods. Often we satisfy ourselves with finding a closed form that specifies
an upper or lower bound on the function, or even just an asymptotic bound.

Example 16.1 (Fibonacci). Here is a recurrence written in SPARC that you should recog-
nize:

F (n) = case n of
0 => 0
| 1 => 1
| => F (n− 1) + F (n− 2) .

It has an exact closed form solution:

F (n) =
ϕn − (1− ϕ)n√

5
,

94

2. SOME CONVENTIONS 95

where ϕ = 1+
√

5
2 is the golden ratio. We can write this in asymptotic notation as

F (n) = Θ(ϕn)

since the first term dominates asymptotically. Solving this recurrence exactly is more that
we will ask in this course, but the substitution method described in this chapter will allow
you to prove it correct.

Example 16.2 (Mergesort Recurrence). Assuming that the input length is a power of 2, we
can write the code for parallel mergesort algorithm as follows.

msort(A) =
if |A| ≤ 1 then A
else
let (L,R) = msort(A[0 . . . |A|/2]) || msort(A[|A|/2 . . . |A|])
in merge(L,R) end

By abstracting based on the length ofA, and using the cost model described in Cost Models
Chapter , we can write a recurrence for the work of mergesort as:

Wmsort(n) =
if n ≤ 1 then c1
else
let (WL,WR) = (Wmsort(n/2),Wmsort(n/2))
inWL +WR +Wmerge(n) + c2 end

where the ci are constants. Assuming Wmerge(n) = c3n+ c4 this can be simplified to

Wmsort(n) = if n ≤ 1 then c1
else 2Wmsort(n/2) + c3n+ c5

where c5 = c2 + c4. We will show in this chapter that this recurrence solves to

Wmsort(n) = O(n lg n)

using all three of our methods.

2 Some conventions

To reduce notation we use several conventions when writing recurrences.

Syntax. We typically write recurrences as mathematical relations of the form

Wf (n) =

c1 base case 1
c2 base case 2
· · · · · ·
recursive definition otherwise.

96 CHAPTER 16. RECURRENCES

Dropping the subscript. We often drop the subscript on the cost W or S (span) when
obvious from the context.

Base case. Often base cases are trivial—i.e., some constant if n ≤ 1. In such cases, we
usually leave them out.

Big-O inside a recurrence. Technically using big-O notation in a recurrence as in:

W (n) = 2W (n/2) +O(n)

is not well defined. This is because 2W (n/2)+O(n) indicates a set of functions, not a single
function. In this book when we use O(f(n)) in a recurrences it is meant as shorthand for
c1f(n) + c2, for some constants c1 and c2. Furthermore, when solving the recurrence the
O(f(n)) should always be replaced by c1f(n) + c2.

Inequality. Because we are mostly concerned with upper bounds, we can be sloppy and
add (positive) constants on the right-hand side of an equation. In such cases, we typically
use an inequality. For example, we may write for some constants c1, c2,

W (n) ≤ 2W (n/2) + c1n+ c2.

Input size inprecision. A technical issue concerns rounding of input sizes. Going back to
the mergesort example , note that we assumed that the size of the input to merge sort, n,
is a power of 2. If we did not make this assumption, i.e., for general n, we would partition
the input into two parts, whose sizes may differ by up to one element. In such a case, we
could write the work recurrence as

W (n) =

{
O(1) if n ≤ 1
W (dn/2e) +W (bn/2c) +O(n) otherwise.

When working with recurrences, we typically ignore floors and ceiling because they change
the size of the input by at most one, which does not usually affect the closed form by more
than a constant factor.

Example 16.3 (Mergesort recurrence revisited). Using our conventions we can write our
recurrence for the work of mergesort as:

W (n) ≤ 2W (n/2) +O(n) .

However, when solving it is best to write it as:

W (n) ≤
{
cb if n ≤ 1
2W (n/2) + c1n+ c2 otherwise .

3. THE TREE METHOD 97

Assuming merge has logarithmic span, we can similarly write a recurrence for the span of
the parallel mergesort as:

S(n) ≤ S(n/2) +O(lg n) .

3 The Tree Method

Definition 16.1 (Tree Method). The tree method is a technique for solving recurrences.
Given a recurrence, the idea is to derive a closed form solution of the recurrence by first
unfolding the recurrence as a tree and then deriving a bound by considering the cost at each
level of the tree. To apply the technique, we start by replacing the asymptotic notations in
the recurrence, if any. We then draw a tree where each recurrence instance is represented
by a subtree and the root is annotated with the cost that occurs at this level, that is beside
the recurring costs.

After we determine the tree, we ask several questions.

• How many levels are there in the tree?

• What is the problem size on level i?

• What is the cost of each node on level i?

• How many nodes are there on level i?

• What is the total cost across the level i?

Based on the answers to these questions, we can write the cost as a sum and calculate it.

Example 16.4. Consider the recurrence

W (n) = 2W (n/2) +O(n).

By the definition of asymptotic complexity, we can establish that

W (n) ≤ 2W (n/2) + c1 · n+ c2,

where c1 and c2 are constants.

We now draw a tree to represent the recursion. Since there are two recursive calls, the
tree is a binary tree, whose input is half the size of the size of the parent node. We then
annotate each node in the tree with its cost noting that if the problem has size m, then the
cost, excluding that of the recursive calls, is at most c1 ·m+ c2.

The drawing below illustrates the resulting tree; each level is annotated with the problem
size (left) and the cost at that level (right).

98 CHAPTER 16. RECURRENCES

We observe that:

• level i (the root is level i = 0) contains 2i nodes,

• a node at level i costs at most c1(n/2i) + c2.

Thus, the total cost on level i is at most

2i ·
(
c1
n

2i
+ c2

)
= c1 · n+ 2i · c2.

Because we keep halving the input size, the number of levels i ≤ lg n. Hence, we have

W (n) ≤
lgn∑
i=0

(
c1 · n+ 2i · c2

)
= c1n(1 + lg n) + c2(n+ n

2 + n
4 + · · ·+ 1)

= c1n(1 + lg n) + c2(2n− 1)

∈ O(n lg n),

where in the second to last step, we apply the fact that for a > 1,

1 + a+ · · ·+ an =
an+1 − 1

a− 1
≤ an+1.

4 The Brick Method

The brick method is a special case of the tree method, aimed at recurrences that grow
or decay geometrically across levels of the recursion tree. A sequence of numbers has
geometric growth if it grows by at least a constant factor (> 1) from element to element, and
has geometric decay if it decreases by at least a constant factor. The beauty of a geometric
sequence is that its sum is bounded by a constant times the last element (for geometric
growth), or the first element (for geometric decay).

Exercise 16.1 (Sums of geometric series.). Consider the sum of the sequence S = 〈1, α, α2, . . . , αn〉.
Show that

4. THE BRICK METHOD 99

1. for α > 1 (geometric growth), the sum of S is at most
(

α
α−1

)
· αn, and

2. for α < 1 (geometric decay), the sum of S is at most
(

1
1−α

)
· 1.

Hint: for the first let s be the sum, and consider αs− s, cancelling terms as needed.

Solution. Let

s =

n∑
i=0

αi .

To solve the first case we use

αs− s =
(
α
∑n
i=0 α

i
)
−
∑n
i=0 α

i

=
(∑n

i=0 α
i+1
)
−
∑n
i=0 α

i

= αn+1 − 1
< αn+1 .

Now by dividing through by α− 1 we get

s <
αn+1

α− 1
=

(
α

α− 1

)
· αn ,

which is we wanted to show.

The second case is similar but using s− αs.

In the tree method, if the costs grow or decay geometrically across levels (often the case),
then for analyzing asymptotic costs we need only consider the cost of the root (decay) , or
the total cost of the leaves (growth). If there is no geometric growth or decay then it often
suffices to calculate the cost of the worst level (often either the root or leaves) and multiply
it by the number of levels. This leads to three cases which we refer to as root dominated,
leaf dominated and balanced. Conveniently, to distinguish these three cases we need only
consider the cost of each node in the tree and how it relates to the cost of its children.

Definition 16.2 (Brick Method). Consider each node v of the recursion tree, and let N(v)
denote its input size, C(v) denote its cost, and D(v) denote the set of its children. There
exists constants a ≥ 1 (base size), α > 1 (grown/decay rate) such that:

Root Dominated For all nodes v such that N(v) > a,

C(v) ≥ α
∑

u∈D(v)

C(u),

i.e., the cost of the parent is at least a constant factor greater than the sum of the costs
of the children. In this case, the total cost is dominated by the root, and is upper
bounded by α

α−1 times the cost of the root.

100 CHAPTER 16. RECURRENCES

Leaves Dominated For all v such that N(v) > a,

C(v) ≤ 1

α

∑
u∈D(v)

C(u),

i.e., the cost of the parent is at least a constant factor less than the sum of the costs of
the children. In this case, the total cost is dominated by the cost of the leaves, and is
upper bounded by α

α−1 times the sum of the cost of the leaves. Most often all leaves
have constant cost so we just have to count the number of leaves.

Balanced When neither of the two above cases is true. In this case the cost is upper
bounded by the number of levels times the maximum cost of a level.

Proof. We first consider the root dominated case. For this case if the root has cost C(r),
level i (the root is level 0) will have total cost at most (1/α)iC(r). This is because the cost
of the children of every node on a level decrease by at least a factor of α to the next level.
The total cost is therefore upper bounded by

∞∑
i=0

(
1

α

)i
C(r).

This is a decaying geometric sequence and therefore is upper bounded by α
α−1C(r), as

claimed.

For the leaf dominated case, if all leaves are on the same level and have the same cost, we
can make a similar argument as above but in the other direction—i.e. the levels increase
geometrically down to the leaves. The cost is therefore dominated by the leaf level. In
general, however, not all leaves are at the same level.

For the general leaf-dominated case, let L be the set of leaves. Consider the cost C(l) for
l ∈ L, and account a charge of (1/α)iC(l) to its i-th ancestor in the tree (its parent is its first
ancestor). Adding up the contributions from every leaf to the internal nodes of the tree
gives the maximum possible cost for all internal nodes. This is because for this charging
every internal node will have a cost that is exactly (1/α) the sum of the cost of the children,
and this is the most each node can have by our assumption of leaf-dominated recurrences.
Now summing the contributions across leaves, including the cost of the leaves themselves
(i = 0), we have as an upper bound on the total cost across the tree:

∑
l∈L

∞∑
i=0

(
1

α

)i
C(l) .

This is a sum of sums of decaying geometric sequences, giving an upper bound on the total
cost across all nodes of α

α−1

∑
l∈L C(l), as claimed.

The balanced case follows directly from the fact that the total cost is the sum of the cost of
the levels, and hence at most the number of levels times the level with maximum cost.

Remark. The term “brick” comes from thinking of each node of the tree as a brick and the
width of a brick being its cost. The bricks can be thought of as being stacked up by level.

4. THE BRICK METHOD 101

A recurrence is leaf dominated if the pile of bricks gets narrower as you go up to the root.
It is root dominated if it gets wider going up to the root. It is balanced if it stays about the
same width.

Example 16.5 (Root dominated). Lets consider the recurrence

W (n) = 2W (n/2) + n2.

For a node in the recursion tree of size n we have that the cost of the node is n2 and the
sum of the cost of its children is (n/2)2 + (n/2)2 = n2/2. In this case the cost has decreased
by a factor of two going down the tree, and hence the recurrence is root dominated. There-
fore for asymptotic analysis we need only consider the cost of the root, and we have that
W (n) = O(n2).

In the leaf dominated case the cost is proportional to the number of leaves, but we have to
calculate how many leaves there are. In the common case that all leaves are at the same
level (i.e. all recursive calls are the same size), then it is relatively easy. In particular, one
can calculate the number of recursive calls at each level, and take it to the power of the
depth of the tree, i.e., (branching factor)depth.

Example 16.6 (Leaf dominated). Lets consider the recurrence

W (n) = 2W (n/2) +
√
n .

For a node of size n we have that the cost of the node is
√
n and the sum of the cost of its

two children is
√
n/2+

√
n/2 =

√
2
√
n. In this case the cost has increased by a factor of

√
2

going down the tree, and hence the recurrence is leaf dominated. Each leaf corresponds to
the base case, which has cost 1.

Now we need to determine how many leaves there are. Since each recursive call halves the
input size, the depth of recursion is going to be lg n (the number of times one needs to half
n before getting to size 1). Now on each level the recursion is making two recursive calls,
so the number of leaves will be 2lgn = n. We therefore have that W (n) = O(n).

Example 16.7 (Balanced). Lets consider the same recurrence we considered for the tree
method, i.e.,

W (n) = 2W (n/2) + c1n+ c2.

For all nodes we have that the cost of the node is c1n + c2 and the sum of the cost of the
two children is (c1n/2 + c2) + (c1n/2 + c2) = c1n + 2c2. In this case the cost is about the
same for the parent and children, and certainly not growing or decaying geometrically. It
is therefore a balanced recurrence. The maximum cost of any level is upper bounded by
(c1 + c2)n, since there are at most n total elements across any level (for the c1n term) and at
most n nodes (for the c2n term). There are 1+ lg n levels, so the total cost is upper bounded
by (c1 + c2)n(1 + lg n). This is slightly larger than our earlier bound of c1n lg n+ c2(2n− 1),
but it makes no difference asymptotically—they are both O(n lg n).

Remark. Once you are used to using the brick method, solving recurrences can often be
done very quickly. Furthermore the brick method can give a strong intuition of what part

102 CHAPTER 16. RECURRENCES

of the program dominates the cost—either the root or the leaves (or both if balanced). This
can help a programmer decide how to best optimize the performance of recursive code.
If it is leaf dominated then it is important to optimize the base case, while if it is root
dominated it is important to optimize the calls to other functions used in conjunction with
the recursive calls. If it is balanced, then, unfortunately, both need to be optimized.

Exercise 16.2. For each of the following recurrences state whether it is leaf dominated, root
dominated or balanced, and then solve the recurrence

W (n) = 3W (n/2) + n
W (n) = 2W (n/3) + n
W (n) = 3W (n/3) + n
W (n) = W (n− 1) + n
W (n) =

√
nW (

√
n) + n2

W (n) = W (
√
n) +W (n/2) + n

Solution. The recurrence W (n) = 3W (n/2) + n is leaf dominated since n ≤ 3(n/2) = 3
2n.

It has 3lgn = nlg 3 leaves so W (n) = O(nlg 3).

The recurrence W (n) = 2W (n/3) + n is root dominated since n ≥ 2(n/3) = 2
3n. Therefore

W (n) = O(n), i.e., the cost of the root.

The recurrence W (n) = 3W (n/3) + n is balanced since n = 3(n/3). The depth of recursion
is log3 n, so the overall cost is n per level for log3 n levels, which gives W (n) = O(n log n).

The recurrence W (n) = W (n − 1) + n is balanced since each level only decreases by 1
instead of by a constant fraction. The largest level is n (at the root) and there are n levels,
which gives W (n) = O(n · n) = O(n2).

The recurrence W (n) =
√
nW (

√
n) + n2 is root dominated since n2 ≥

√
n · (
√
n)

2
= n3/2.

In this case the decay is even faster than geometric. Certainly for any n ≥ 2, it satisfies our
root dominated condition for α =

√
2. Therefore W (n) = O(n2).

The recurrence W (n) = W (
√
n) + W (n/2) + n is root dominated since for n > 16, n ≥

4
3 (
√
n+ n/2). Note that here we are using the property that a leaf can be any problem size

greater than some constant a. Therefore W (n) = O(n), i.e., the cost of the root.

Advanced. In some leaf-dominated recurrences not all leaves are at the same level. An
example isW (n) = W (n/2)+W (n/3)+1. Let L(n) be the number of leaves as a function of
n. We can solve for L(n) using yet another recurrence. In particular the number of leaves
for an internal node is simply the sum of the number of leaves of each of its children. In
the example this will give the recurrence L(n) = L(n/2) + L(n/3). Hence, we need to find
a function L(n) that satisfies this equation. If we guess that it has the form L(n) = nβ for
some β, we can plug it into the equation and try to solve for β:

nβ =
(
n
2

)β
+
(
n
3

)β
= nβ

((
1
2

)β
+
(

1
3

)β)

5. SUBSTITUTION METHOD 103

Now dividing through by nβ gives(
1

2

)β
+

(
1

3

)β
= 1 .

This gives β ≈ .788 (actually a tiny bit less). Hence L(n) < n.788, and because the original
recurrence is leaf dominated: W (n) ∈ O(n.788).

This idea of guessing a form of a solution and solving for it is key in our next method for
solving recurrences, the substitution method.

5 Substitution Method

The tree method can be used to find the closed form solution to many recurrences but in
some cases, we need a more powerful techniques that allows us to make a guess and then
verify our guess via mathematical induction. The substitution method allows us to do that
exactly.

Important. This technique can be tricky to use: it is easy to start on the wrong foot with a
poor guess and then derive an incorrect proof, by for example, making a small mistake. To
minimize errors, you can follow the following tips:

1. Spell out the constants—do not use asymptotic notation such as big-O. The problem
with asymptotic notation is that it makes it super easy to overlook constant factors,
which need to be carefully accounted for.

2. Be careful that the induction goes in the right direction.

3. Add additional lower-order terms, if necessary, to make the induction work.

Example 16.8. Consider the recurrence

W (n) = 2W (n/2) +O(n).

By the definition of asymptotic complexity, we can establish that

W (n) ≤ 2W (n/2) + c1 · n+ c2,

where c1 and c2 are constants.

We will prove the following theorem using strong induction on n.

Theorem. Let a constant k > 0 be given. IfW (n) ≤ 2W (n/2)+k ·n for n > 1 andW (n) ≤ k
for n ≤ 1, then we can find constants κ1 and κ2 such that

W (n) ≤ κ1 · n lg n+ κ2.

104 CHAPTER 16. RECURRENCES

Proof. Let κ1 = 2k and κ2 = k. For the base case (n = 1), we check that W (1) ≤ k ≤ κ2.
For the inductive step (n > 1), we assume that

W (n/2) ≤ κ1 · n2 lg(n2) + κ2,

And we’ll show that W (n) ≤ κ1 · n lg n + κ2. To show this, we substitute an upper bound
for W (n/2) from our assumption into the recurrence, yielding

W (n) ≤ 2W (n/2) + k · n
≤ 2(κ1 · n2 lg(n2) + κ2) + k · n
= κ1n(lg n− 1) + 2κ2 + k · n
= κ1n lg n+ κ2 + (k · n+ κ2 − κ1 · n)

≤ κ1n lg n+ κ2,

where the final step follows because k · n+ κ2 − κ1 · n ≤ 0 as long as n > 1.

Variants of the recurrence considered in our last example arise commonly in algorithms.
Next, we establish a theorem that shows that the same bound holds for a more general
class of recurrences.

Theorem 16.1 (Superlinear Recurrence). Let ε > 0 be a constant and consider the recur-
rence

W (n) = 2W (n/2) + k · n1+ε.

If W (n) ≤ 2W (n/2) + k · n1+ε for n > 1 and W (n) ≤ k for n ≤ 1, then for some constant κ,

W (n) ≤ κ · n1+ε.

Proof. Let κ = 1
1−1/2ε · k. The base case is easy: W (1) = k ≤ κ1 as 1

1−1/2ε ≥ 1. For the
inductive step, we substitute the inductive hypothesis into the recurrence and obtain

W (n) ≤ 2W (n/2) + k · n1+ε

≤ 2κ
(n

2

)1+ε

+ k · n1+ε

= κ · n1+ε +

(
2κ
(n

2

)1+ε

+ k · n1+ε − κ · n1+ε

)
≤ κ · n1+ε,

where in the final step, we use the fact that for any δ > 1:

2κ
(n

2

)δ
+ k · nδ − κ · nδ = κ · 2−ε · nδ + k · nδ − κ · nδ

= κ · 2−ε · nδ + (1− 2−ε)κ · nδ − κ · nδ

≤ 0.

6. MASTER METHOD 105

An alternative way to prove the same theorem is to use the tree method and evaluate the
sum directly. The recursion tree here has depth lg n and at level i (again, the root is at level
0), we have 2i nodes, each costing k · (n/2i)1+ε. Thus, the total cost is

lgn∑
i=0

k · 2i ·
(n

2i

)1+ε

= k · n1+ε ·
lgn∑
i=0

2−i·ε

≤ k · n1+ε ·
∞∑
i=0

2−i·ε.

But the infinite sum
∑∞
i=0 2−i·ε is at most 1

1−1/2ε . Hence, we conclude W (n) ∈ O(n1+ε).

6 Master Method

You might have learned in a previous course about the master method for solving recur-
rences. We do not like to use it, because it only works for special cases and does not help
develop intuition. It requires that all recursive calls are the same size and are some constant
factor smaller than n. It doesn’t work for recurrences such as:

W (n) = W (n− 1) + 1
W (n) = W (2n/3) +W (n/3) + n3

W (n) =
√
n W (

√
n) + 1

all for which the tree, brick, and substitution method work. We note, however, that the
three cases of the master method correspond to limited cases of leaves dominated, bal-
anced, and root dominated of the brick method.

Part V

Sequences

106

Chapter 17

Introduction

If we were to identify the most fundamental ideas in computer science, we would probably
end up converging on a list that includes abstract data types (ADTs) and the data structures
used to implement them. Unlike an algorithm the data structures need to balance the cost
of different functions within the ADT interface, often involving a tradeoff.

This part covers an ADT that mimics the mathematical concept of a sequence.

ADT for Sequences. Recall that an ADT is defined in terms of an interface consisting of a
collection of functions (and possibly values) on a given abstract type, and without reference
to the implementation. ADT Chapter defines such an interface for sequences, specifying
the type and semantics for each of the functions. Many of the functions we define, such as
map, reduce, filter and scan , are particularly useful in developing parallel algorithms. The
chapter also covers a shorthand syntax we use in this book for these functions.

Cost Specifications for Sequences. Beyond the interface itself we need to know some-
thing about the costs of each of the functions. As discussed in an earlier chapter , a data
type can have many different implementations with different asymptotic costs, and the
idea of a cost specification is to capture the cost of a class of implementations, without
reference to the actual implementation. In a cost specification, the costs (work and span)
for each function are defined asymptotically as a function of size (number of elements, in
the case of sequences). Costs Chapter covers three different cost specifications for the
sequence ADT. One is based on arrays, one on trees, and one on lists. None of these fully
dominate each other. In all cases some functions are asymptotically more expensive in one
and some in the other.

Implementations of Sequences. Cost specifications are meant to abstract away from the
specific implementation and be useful for users of an ADT, but someone needs to imple-

107

108 CHAPTER 17. INTRODUCTION

ment a data structure that abide by the bounds. In Array Sequences Chapter we describe
how to match the bounds for the array based cost specification. We start with a small set of
primitive operations with given costs and show how to implement the rest of the interface
within the bounds given by the specification.

In Examples Chapter , we present some examples using the sequences ADT, including
several algorithms for computing prime numbers. In Ephemeral Sequences Chapter , we
describe a reduced interface for sequences and a cost specification for the interface that
makes updates faster. The cost specification is different from the others in that it is non-
pure—costs will depend on the context.

1 Defining Sequences

From a mathematical standpoint it is possible to define sequences in several ways. One
way is to use set theory. Another way to take a more formal approach based on constructive
logic and define them inductively. Here we use basic set theory.

Mathematically, a sequence is an enumerated collection. As with a set, a sequence has el-
ements. The length of the sequence is the number of elements in the sequence.

Sequences allow for repetition: an element can appear at multiple positions. The position
of an element is called its rank or its index. Traditionally, the first element of the sequence
is given rank 1, but, being computer scientists, we start at 0.

In mathematics, sequences can be finite or infinite but for our purposes in this book, finite
sequences suffice. We therefore consider finite sequences only.

We define a sequence as a function whose domain is a contiguous set of natural numbers
starting at zero. This definition, stated more precisely below, allows us to specify the se-
mantics of various operations on sequences succinctly.

Definition 17.1 (Sequences). An α sequence is a mapping (function) from N to α with
domain {0, . . . , n− 1} for some n ∈ N.

Example 17.1. Let A = {0, 1, 2, 3} and B = {’a ’, ’b ’, ’c ’}. The function

R = {(0, ’a ’), (1, ’b ’), (3, ’a ’)}

from A to B has domain {0, 1, 3}. The function is not a sequence, because its domain has a
gap.

The function

Z = {(1, ’b ’), (3, ’a ’), (2, ’a ’), (0, ’a ’)}

fromA toB is a sequence. The first element of the sequence is ’a ’ and thus has rank 0. The
second element is ’b ’ and has rank 1. The length of the sequence is 4.

1. DEFINING SEQUENCES 109

Remark. Notice that in the definition sequences are parametrized by the type (i.e., set of
possible values) of their elements.

Note. This mathematical definition might seem pedantic but it is useful for at least several
reasons.

• It allows for a concise and precise definition of the semantics of the functions on
sequences.

• Relating sequences to mappings creates a symmetry with the abstract data types such
as tables or dictionaries for representing more general mappings.

Syntax 17.2 (Sequences and Indexing). As in mathematics, we use a special notation for
writing sequences. The notation

〈 a0, a1, . . . , an−1 〉

is shorthand for the sequence

{(0, a0), (1, a1), . . . , ((n− 1), an−1)} .

For any sequence a

• a[i] refers to the element of a at position i,

• a[l · · ·h] refers to the subsequence of a restricted to the position between l and h.

Example 17.2. Some example sequences follow.

• For the sequence a = 〈 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 〉, we have

– a[0] = 2,

– a[2] = 5, and

– a[1 · · · 4] = 〈 3, 5, 7, 11 〉.

• A Z→ Z function sequence:

〈 lambda x . x2,
lambda y . y + 2,
lambda x . x− 4

〉 .

Syntax 17.3 (Ordered Pairs and Strings). We use special notation and terminology for se-
quences with two elements and sequences of characters.

• An ordered pair (x, y) is a pair of elements in which the element on the left, x, is
identified as the first entry, and the one on the right, y, as the second entry.

110 CHAPTER 17. INTRODUCTION

• We refer to a sequence of characters as a string, and use the standard syntax for them,
e.g., ’ c0c1c2 . . . cn−1 ’ is a string consisting of the n characters c0, . . . , cn−1.

Example 17.3 (Ordered Pairs and Strings). • A character sequence, or a string: 〈 ’ s ’, ’ e ’, ’ q ’ 〉 ≡
’ seq ’ .

• An integer-and-string sequence: 〈 (10, ’ ten ’), (1, ’ one ’), (2, ’ two ’) 〉 .

• A string-and-string-sequence sequence: 〈 〈 ’ a ’ 〉 , 〈 ’nested ’, ’ sequence ’ 〉 〉 .

Chapter 18

The Sequence Abstract Data Type

Sequences are one of the most prevalent ADTs (Abstract Data Types) used in this book,
and more generally in computing. In this chapter, we present the interface of an ADT for
sequences, describe the semantics of the functions in the ADT, and define the notation we
use in this book for sequences.

1 The Abstract Data Type

Data Type 18.1 (Sequences). Define booleans as

B = {true,false},

and orders as

O = {less, greater , equal}.

For any element type α, the α- sequence data type is the type Sα consisting of the set of all

111

112 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

α sequences, and the following values and functions on Sα.

length : Sα → N
nth : Sα → N→ α
empty : Sα
singleton : α→ Sα
tabulate : (N→ α)→ N→ Sα
map : (α→ β)→ Sα → Sβ
subseq : Sα → N→ N→ Sα
append : Sα → Sα → Sα
filter : (α→ B)→ Sα → Sα
flatten : SSα → Sα
update : Sα → (N× α)→ Sα
inject : Sα → SN×α → Sα
isEmpty : Sα → B
isSingleton : Sα → B
collect : (α× α→ O)→ Sα×β → Sα×Sβ
iterate : (α× β → α)→ α→ Sβ → α
reduce : (α× α→ α)→ α→ Sα → α
scan : (α× α→ α)→ α→ Sα → (Sα × α)

where the semantics of the values and functions are described in this chapter.

Syntax 18.2 (Sequence Comprehensions). Inspired by mathematical notation for sequences,
we use a “sequence comprehensions” notation as defined below. In the definition,

• i is a variable ranging over natural numbers,

• x is a variable ranging over the elements of a sequence,

• e is a SPARC expression,

• en and e′n are SPARC expressions whose values are natural numbers,

• es and e′s are SPARC expressions whose values are a sequence,

• p is a SPARC pattern that binds one or more variables.

|es| ≡ length es
es[i] ≡ nth es
〈 〉 ≡ empty
〈 e 〉 ≡ singleton e
〈 e : 0 ≤ i < en 〉 ≡ tabulate (lambda i . e) en
〈 e : p ∈ es 〉 ≡ map (lambda p . e) es
〈 p ∈ es | e 〉 ≡ filter (lambda p . e) es
es[en, · · · , en′] ≡ subseq (es, en, e

′
n − en + 1)

es ++ e′s ≡ append es e
′
s

2. BASIC FUNCTIONS 113

2 Basic Functions

Definition 18.3 (Length and indexing). Given a sequence a, length a, also written |a|, re-
turns the length of a (i.e., number of elements). The function nth returns the element of a
sequence at a specified index, e.g. nth a 2, written a[2], returns the element of a with rank
2. If the element demanded is out of range, the behavior is undefined and leads to an error.

Definition 18.4 (Empty and singleton). The value empty is the empty sequence, 〈 〉. The
function singleton takes an element and returns a sequence containing that element, e.g.,
singleton 1 evaluates to 〈 1 〉.

Definition 18.5 (Functions isEmpty and isSingleton). To identify trivial sequences such as
empty sequences and singleton sequences, which contain only one element, the interface
provides the functions isEmpty and isSingleton . The function isEmpty returns true if the
sequence is empty and false otherwise. The function isSingleton returns true if the
sequence consists of a one element and false otherwise.

3 Tabulate

Definition 18.6 (Tabulate). The function tabulate takes a function f and an natural number
n and produces a sequence of length n by applying f at each position. The function f can
be applied to each element in parallel. We specify tabulate as follows

tabulate (f : N→ α) (n : N) : Sα
= 〈 f(0), f(1), . . . , f(n− 1) 〉 .

Syntax 18.7 (Tabulate). We use the following syntax for tabulate function

〈 e : 0 ≤ i < en 〉 ≡ tabulate (lambda i . e) en,

where e and en are expressions, the second evaluating to an integer, and i is a variable.
More generally, we can also start at any other index, as in:

〈 e : ej ≤ i < en 〉 .

Example 18.1 (Fibonacci Numbers). Given the function fib i, which returns the ith Fi-
bonacci number, the expression:

a = 〈fib i : 0 ≤ i < 9 〉

is equivalent to

a = tabulate fib 9.

When evaluated, it returns the sequence

a = 〈 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 〉 .

114 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

4 Map and Filter

Mapping over a sequence or filtering out elements of a sequence that does not meet a
desired condition are common tasks. The sequence ADT includes the functions map and
filter for these purposes.

Definition 18.8 (Map). The function map takes a function f and a sequence a and applies
the function f to each element of a returning a sequence of equal length with the results.
As with tabulate , in map, the function f can be applied to all the elements of the sequence
in parallel.

We specify the behavior of map as follows

map (f : α→ β) (a : Sα) : Sβ
= {(i, f(x)) : (i, x) ∈ a}

or equivalently as

map (f : α→ β) 〈 a1, . . . , an−1 〉 : Sα) : Sβ = 〈 f(a1), . . . , f(an−1) 〉 .

Syntax 18.9 (Map). We use the following syntax for the map function

〈 e : p ∈ es 〉 ≡ map (lambda p . e) es,

where e and es are expressions, the second evaluating to a sequence, and p is a a pattern of
variables (e.g., x or (x, y)).

Definition 18.10 (Filter). The function filter takes a Boolean function f and a sequence a
as arguments and applies f to each element of a. It then returns the sequence consisting
exactly of those elements of s ∈ a for which f(s) returns true, while preserving the relative
order of the elements returned.

We specify the behavior of filter as follows

filter (f : α→ B) (a : Sα) : Sα =

{(|{(j, y) ∈ a | j < i ∧ f(y)}|, x) : (i, x) ∈ a | f(x)} .

As with map and tabulate , the function f in filter can be applied to the elements in parallel.

Syntax 18.11 (Filter Syntax). We use the following syntax for the filter function

〈x ∈ es | e 〉 ≡ filter (lambda x . e) es,

where e and es are expressions. In the syntax, note the distinction between the colon (:)
and the bar (|). We use the colon to draw elements from a sequence for mapping and we
use the bar to select the elements that we wish to filter.

We can map and filter at the same time:

〈 e : x ∈ es | ef 〉 ≡ map (lambda x . e)

(filter (lambda x . ef) es).

5. SUBSEQUENCES 115

What appears before the colon (if any) is an expression to apply each element of the se-
quence to generate the result; what appears after the bar (if there is any) is an expression
to apply to each element to decide whether to keep it.

Example 18.2. The expression〈
x2 : x ∈ a

〉
is equivalent to

map (lambda x . x2) a.

Assuming a = 〈 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 〉 (from above), it evaluates to the sequence:

〈 0, 1, 1, 4, 25, 64, 169, 441, 1156 〉 .

Given the function isPrime x which checks if x is prime, the expression

〈x : x ∈ a | isPrime x 〉

is equivalent to

filter isPrime a.

When evaluated, it returns the sequence 〈 2, 5, 13 〉 .

5 Subsequences

Definition 18.12 (Subsequences). The subseq(a, i, j) function extracts a contiguous subse-
quence of a starting at location i and with length j. If the subsequence is out of bounds
of a, only the part within a is returned. We can specify subseq as follows

subseq (a : Sα) (i : N) (j : N) : Sα
= {(k − i, x) : (k, x) ∈ a | i ≤ k < i+ j} .

We use the following syntax for denoting subsequences

a[ei · · · ej] ≡ subseq (a, ei, ej − ei + 1).

Splitting sequences. As we shall see in the rest of this book, many algorithms operate
inductively on a sequence by splitting the sequence into parts, consisting for example, of
the first element and the rest, a.k.a., the head and the tail, or the first half or the second
half. We could define additional functions such as splitHead , splitMid , take , and drop for
these purposes. Since all of these are easily expressible in terms of subsequences, we omit
their discussion.

116 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

6 Append and Flatten

For constructing large sequences from smaller ones, the sequence ADT provides the func-
tions append and flatten .

Definition 18.13 (Append). The function append (a, b) appends the sequence b after the
sequence a. More precisely, we can specify append as follows

append (a : Sα) (b : Sα) : Sα
= a ∪ {(i+ |a|, x) : (i, x) ∈ b}

We write a ++ b as a short form for append a b.

Example 18.3 (Append). The append function

〈 1, 2, 3 〉 ++ 〈 4, 5 〉

yields

〈 1, 2, 3, 4, 5 〉 .

Definition 18.14 (Flatten). To append more than two sequences the flatten a function takes
a sequence of sequences and flattens them. For the input is a sequence a = 〈 a1, a2, . . . , an 〉,
flatten returns a sequence whole elements consists of those of all the ai in order. We can
specify flatten more precisely as follows

flatten (a : SSα) : Sα

=

i+

∑
(k,c)∈a,k<j

|c|, x

 : (i, x) ∈ b, (j, b) ∈ a

 .

Example 18.4 (Flatten). The flatten function

flatten 〈 〈 1, 2, 3 〉 , 〈 4 〉 , 〈 5, 6 〉 〉

yields

〈 1, 2, 3, 4, 5, 6 〉 .

7 Update and Inject

Definition 18.15 (Update). The function update (a, (i, x)), updates location i of sequence a
to contain the value x. If the location is out of range for the sequence, the function returns
the input sequence unchanged.

7. UPDATE AND INJECT 117

We specify update as follows

update (a : Sα) (i : N, x : α) : Sα

=

{
{(j, y) : (j, y) ∈ a | j 6= i} ∪ {(i, x)} if 0 ≤ i < |a|
a otherwise.

Definition 18.16 (Inject). To update multiple positions at once, we can use inject . The
function inject a b takes a sequence b of position-value pairs and updates each position
with its associated value. If a position is out of range, then the corresponding update is
ignored. If multiple positions are the same, the first update in the ordering of b take effect.
We define the degree of the update sequence b as the maximum number of updates that
target any position.

Example 18.5 (Update and Inject). Given the string sequence

a = 〈 ’the ’, ’cat ’, ’in ’, ’the ’, ’hat ’ 〉 ,

update a (1, ’rabbit ’)

magically yields

〈 ’the ’, ’rabbit ’, ’in ’, ’the ’, ’hat ’ 〉

since position 1 is updated with ’rabbit ’. The expression

inject a 〈 (4, ’log ’), (1, ’dog ’), (6, ’hog ’), (4, ’bog ’), (0, ’a ’) 〉

yields

〈 ’a ’, ’dog ’, ’in ’, ’the ’, ’log ’ 〉

because position 0 is updated with ’a ’, position 1 with ’dog ’, and position 4 with ’log ’
(the first of the two updates is applied). Because two updates target position 4 and at most
1 update targets all the other positions, the degree of the update sequence is 2.

Definition 18.17 (Nondeterministic Inject). To update multiple positions at once, we can
also use nondetermistic inject ninject . The function ninject a b takes a sequence b of
position-value pairs and updates each position with its associated value. If a position is out
of range, then the corresponding update is ignored. If multiple positions are the same, any
one of the updates may take effect. The function ninject may thus treat duplicate updates
non-deterministically. Because nondeterministic inject does not insist on determinism of
updates, it may be implemented more efficiently and in lower span.

Example 18.6 (Nondeterministic Inject). Given the string sequence

a = 〈 ’the ’, ’cat ’, ’in ’, ’the ’, ’hat ’ 〉 ,

the expression

ninject a 〈 (4, ’log ’), (1, ’dog ’), (6, ’hog ’), (4, ’bog ’), (0, ’a ’) 〉

118 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

could yield

〈 ’a ’, ’dog ’, ’in ’, ’the ’, ’log ’ 〉

since position 0 is updated with ’a ’, position 1 with ’dog ’, and position 4 with ’log ’ (the
first of the two updates is applied). It could also yield

〈 ’a ’, ’dog ’, ’in ’, ’the ’, ’log ’ 〉

The entry with position 6 is ignored since it is out of range for a.

8 Collect

Definition 18.18 (Collect). Given a sequence of key-value pairs, the operation collect “col-
lects” together all the values for a given key. This operation is quite common in data pro-
cessing, and in relational database languages such as SQL it is referred to as “Group by”.
The signature of collect is

collect : (cmp : α× α→ O)→ (a : Sα×β)→ Sα×Sβ .

Here the ”order set” O = {less, equal , greater}.

The first argument cmp is a function for comparing keys of type α, and must define a total
order over the keys. The second argument a is a sequence of key-value pairs. The collect
function collects all values in a that share the same key together into a sequence, ordering
the values in the same order as their appearance in the original sequence.

Example 18.7 (Collect). The following sequence consists of key-value pairs each of which
represents a student and the classes that they take.

kv = 〈(’jack ’, ’15210 ’), (’jack ’, ’15213 ’)
(’mary ’, ’15210 ’), (’mary ’, ’15213 ’), (’mary ’, ’15251 ’),
(’peter ’, ’15150 ’), (’peter ’, ’15251 ’),
. . .

〉.

We can determine the classes taken by each student by using collect cmp, where cmp is a
comparison function for strings

collect cmp kv = 〈 (’jack ’, 〈 ’15210 ’, ’15213 ’, . . . 〉)
(’mary ’, 〈 ’15210 ’, ’15213 ’, ’15251 ’, . . . 〉),
(’peter ’, 〈 ’15150 ’, ’15251 ’, . . . 〉),
. . .

〉 .

Note that the output sequence is ordered based on the first instance of their key in the input
sequences. Similarly, the order of the classes taken by each student are the same as in the
input sequence.

9. AGGREGATION BY ITERATION 119

9 Aggregation by Iteration

Iteration is a fundamental algorithm technique. It involves a sequence of steps, taken one
after another, where each step transforms the state from the previous step. Iteration is an
inherently sequential process.

Definition 18.19 (The iterate and iteratePrefixes). The function iterate iterates over a se-
quence while accumulating a “running sum”, i.e., a result that changes at each step. It
starts with an initial result and a sequence, and on each step updates the result based on
the next element of the sequence.

The function iterate has the type signature

iterate (f : α× β → α) (x : α) (a : Sβ) : α

where f is a function mapping a state and an element of a to a new state, x is the initial
state, a is a sequence.

The semantics of iterate is defined as follows.

iterate f x a =

{
x if |a| = 0
iterate f (f(x, a[0])) (a[1 · · · |a| − 1]) otherwise.

A variant of iteration, the function iteratePrefixes takes the same arguments as iterate but
returns a pair, where the first component is a sequence consisting of all the intermediate
result computed by iteration, up to and excluding the last element, and the second compo-
nent is the final results. More precisely, iteratePrefixes can be specified as

iteratePrefixes f x a =
let g (b, x) y = (b++ x, f(x, y))
in iterate g (〈 〉 , x) a end

Example 18.8. The function iterate computes its final result by computing a result for each
element of the sequence. Concretely, iterate f x a computes the results xi, 0 ≤ i ≤ n = |a|,
where

x0 = x
x1 = f(x0, a[0])
x2 = f(x1, a[1])

...
xn = f(xn−1, a[n− 1]).

The expression

iterate f x a

thus evaluates to xn.

120 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

The expression

iteratePrefixes f x a

performs the same computation and returns (〈x0, . . . , xn−1 〉 , xn).

Example 18.9 (Iteration). For a sequence of length 5, iteration computes its final result as

iterate f x a = f(f(f(f(f(v, a[0]), a[1]), a[2]), a[3]), a[4]).

For example,

iterate ’+ ’ 0 〈 2, 5, 1, 6 〉

returns 14 since it starts with the integer state 0 and then one by one adds the integer
elements 2, 5, 1 and 6 of the sequence to the state.

Similarly

iterate ’- ’ 0 〈 2, 5, 1, 6 〉

returns (((0− 2)− 5)− 1)− 6 = −14.

The function

iterate ’+ ’ 0 (map zeroWhenEven a),

which uses the function zeroWhenEven to map even numbers to zero, sums up only the
odd numbers in sequence a, returning 6

Exercise 18.1 (Rightmost Positive). Design an algorithm that, for each element in a se-
quence of integers, finds the rightmost positive number to its left. If there is no positive
element to the left of an element, the algorithm returns −∞ for that element.

For example, given the sequence

〈 1, 0,−1, 2, 3, 0,−5, 7 〉

the algorithm would return

〈−∞, 1, 1, 1, 2, 3, 3, 3 〉 .

Solution. Consider the function

extendPositive ((`, b), x) =
if x > 0 then

(x, b++ 〈 l 〉)
else

(`, b++ 〈 ` 〉)

This function takes as its first argument the tuple consisting of `, the last positive value
seen (or −∞) and a sequence b. The second argument x is a new element. The function

10. AGGREGATION BY REDUCTION 121

extends the sequence b with ` and returns as the most recently seen positive value x if is
positive or ` otherwise.

Using this function, we can give an algorithm for the problem of selecting the rightmost
positive number to the left of each element is a given sequence a:

let (`, b) = iterate extendPositive (−∞, 〈 〉) a
in b

We can solve the same problem more elegantly using iteratePrefixes . Consider the function

selectPositive (`, x) =
if x > 0 then
x

else
`

This function takes as argument `, the last positive value seen, and x, the new element from
the sequence. The function then returns x if is positive or ` otherwise. We can now we can
give an algorithm for the problem of selecting the rightmost positive number preceeding
each element in a given sequence a as

let (`, b) = iteratePrefixes selectPositive −∞ a
in b

Note (Iteration and order of operations). Iteration is a powerful technique but can be too
big of a hammer, especially when used unnecessarily. For example, when summing the ele-
ments in a sequence, we don’t need to perform the addition operations in a particular order
because addition operations are associative and thus they can be performed in any order
desired. The iteration-based algorithm for computing the sum does not take advantage of
this property, computing instead the sum in a left-to-right order. As we will see next, we
can take advantage of associativity to sum up the elements of a sequence in parallel.

10 Aggregation by Reduction

Reduction. The term reduction refers to a computation that repeatedly applies an asso-
ciative binary operation to a collection of elements until the result is reduced to a single
value. Recall that associative operations are defined as operations that allow commuting
the order of operations.

Associativity.

Definition 18.20 (Assocative Function). A function f : α×α→ α is associative if f(f(x, y), z) =
f(x, f(y, z)) for all x, y and z of type α.

122 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

Example 18.10. Many functions are associative.

• Addition and multiplication on natural numbers are associative, with 0 and 1 as their
identities, respectively.

• Minimum and maximum are also associative with identities∞ and−∞ respectively.

• The append function on sequences is associative, with identity being the empty se-
quence.

• The union operation on sets is associative, with the empty set as the identity.

Note. Associativity implies that when applying f to some values, the order in which the
applications are performed does not matter. Associativity does not mean that you can
reorder the arguments to a function (that would be commutativity).
Important (Associativity of Floating Point Operations). Floating point operations are typ-
ically not associative, because performing them in different orders can lead to different
results because of loss of precision.

Definition 18.21 (The reduce operation). In the sequence ADT, we use the function reduce
to perform a reduction over a sequence by applying an associative binary operation to
the elements of the sequence until the result is reduced to a single value. The operation
function has the type signature

reduce (f : α× α→ α) (id : α) (a : Sα) : α

where f is an associative function, a is the sequence, and id is the left identity of f , i.e.,
f(id, x) = x for all x ∈ α.

When applied to an input sequence with a function f , reduce returns the “sum” with re-
spect to f of the input sequence. In fact if f is associative this sum in equal to iteration. We
can define the behavior of reduce inductively as follows

reduce f id a =

id if |a| = 0
a[0] if |a| = 1

f
(

reduce f id (a[0 · · · b |a|2 c − 1]),

reduce f id (a[b |a|2 c · · · |a| − 1]
)

otherwise.

Example 18.11 (Reduce and append). The expression

reduce append 〈 〉 〈 ’another ’, ’way ’, ’to ’, ’flatten ’ 〉

evaluates to

’anotherwaytoflatten ’.

Important. The function reduce is more restrictive than iterate because it is the same func-
tion but with extra restrictions on its input (i.e. that f be associative, and id is a left identity).
If the function f is associative, then we have

reduce f id a = iterate f id a.

11. AGGREGATION WITH SCAN 123

Exercise 18.2. Give an example function f , a left identity x, and an input sequence a such
that iterate f x a and reduce f x a return different results.

Important. Although we will use reduce only with associative functions, we define it for all
well-typed functions. To deal properly with functions that are non-associative, the spec-
ification of reduce makes precise the order in which the argument function f is applied.
For instance, when reducing with floating point addition or multiplication, we will need
to take the order of operations into account. Because the specification defines the order in
which the operations are applied, every (correct) implementation of reduce must return the
same result: the result is deterministic regardless of the specifics of the algorithm used in
the implementation.

Exercise 18.3. Given that reduce and iterate are equivalent for assocative functions, why
would we use reduce?

Solution. Even though the input-output behavior of reduce and iterate may match, their
cost specifications differ: unlike iterate , which is strictly sequential, reduce is parallel. In
fact, as we will see in this Chapter , the span of iterate is linear in the size of the input,
whereas the span of reduce is logarithmic.

11 Aggregation with Scan

The scan function. When we restrict ourselves to associative functions, the input-output
behavior of the function reduce can be defined in terms of the iterate. But the reverse is not
true: iterate cannot always be defined in terms of reduce, because iterate can use the results
of intermediate states computed on the prefixes of the sequence, whereas reduce cannot
because such intermediate states are not available. We now describe a function called scan
that allows using the results of intermediate computations and also does so in parallel.

Definition 18.22 (The functions scan and iScan). The term “scan” refers to a computation
that reduces every prefix of a given sequence by repeatedly applying an associative binary
operation. The scan function has the type signature

scan (f : α ∗ α→ α) (id : α) (a : Sα) : (Sα ∗ α),

where f is an associative function, a is the sequence, and id is the left identity element of f .

The expression scan f a evaluates to the cumulative “sum” with respect to f of all prefixes
of the sequence a. For this reason, the scan function is referred to as prefix sums.

We specify the semantics of scan in terms of reduce as follows.

scan f id a = (〈 reduce f id a[0 · · · (i− 1)] : 0 ≤ i < |a| 〉 ,
reduce f id a)

For the definition, we assume that a[0 · · · − 1] = 〈 〉.

124 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

When computing the result for position i, scan does not include the element of the input
sequence at that position. It is sometimes useful to do so. To this end, we define scanI (“I”
stands for “inclusive”).

We define the semantics of scanI in terms of reduce as follows.

scanI f id a = 〈 reduce f id a[0 · · · i] : 0 ≤ i < |a| 〉

Example 18.12 (Scan). Consider the sequence a = 〈 0, 1, 2 〉. The prefixes of a are

• 〈 〉

• 〈 0 〉

• 〈 0, 1 〉

• 〈 0, 1, 2 〉 .

The prefixes of a sequence are all the subsequences of the sequence that starts at its begin-
ning. Empty sequence is a prefix of any sequence. The computation scan ‘+‘ 0 〈 0, 1, 2 〉
can be written as

scan ‘+‘ 0 〈 0, 1, 2 〉 =(〈 reduce ‘+‘ 0 〈 〉 ,
reduce ‘+‘ 0 〈 0 〉 ,
reduce ‘+‘ 0 〈 0, 1 〉
〉 ,

reduce ‘+‘ 0 〈 0, 1, 2 〉
)

=(〈 0, 0, 1 〉 , 3) .

The computation scanI ‘+‘ 0 〈 0, 1, 2 〉 can be written as

scanI ‘+‘ 0 〈 0, 1, 2 〉 = 〈 reduce ‘+‘ 0 〈 0 〉 ,
reduce ‘+‘ 0 〈 0, 1 〉 ,
reduce ‘+‘ 0 〈 0, 1, 2, 〉
〉

= 〈 0, 1, 3 〉 .

Note (Scan versus reduce). Since scan can be specified in terms of reduce, one might be
tempted to argue that it is redundant. In fact, it is not: as we shall see, performing reduce
repeatedly on every prefix is not work efficient. Remarkably scan can be implemented by
performing essentially the same work and span of reduce.

Example 18.13 (Copy scan). Scan is useful when we want pass information along the se-
quence. For example, suppose that we are given a sequence of type SN consisting only

11. AGGREGATION WITH SCAN 125

of integers and asked to return a sequence of the same length where each element re-
ceives the previous positive value if any and −∞ otherwise. For the example, for input
〈 0, 7, 0, 0, 3, 0 〉 , the result should be 〈−∞,−∞, 7, 7, 7, 3 〉.

We considered this problem in an example before and presented an algorithm based on
iteration. Because that algorithm uses iteration, it is sequential. But does it have to be
sequential? There is, perhaps, a parallel algorithm.

We can solve this problem using an inclusive scan, if we can find with a combining function
f that does the crux of the work. Consider the function

selectPositive (x, y) = if y > 0 then y else x.

The function returns its right (second) argument if it is positive, otherwise it returns its the
left (first) argument.

To be used in a scan, selectPositive must be associative. That is, for all x, y and z, the
following equality should hold:

selectPositive(x, selectPositive(y, z)) = selectPositive(selectPositive(x, y), z).

There are eight possibilities corresponding to the signs of x, y and z. When z > 0, the left
and right hand sides of the equality both yield z. When z ≤ 0 and y > 0, the left and right
hand sides both yield y. Finally, when z ≤ 0 and y ≤ 0, they left and right hand sides both
yield x.

To use selectPositive in a scan, we also need its left identity. Because

selectPositive (−∞, y) = y

for any y, the left identity for selectPositive is −∞.

Remark (Reduce and scan). Experience in parallel computing shows that reduce and scan
are powerful primitives that suffice to express many parallel algorithms on sequences.
In some ways this is not surprising, because the functions allow using two important
algorithm-design techniques: reduce function allows expressing divide-and-conquer algo-
rithms and the scan function allows expressing iterative algorithms.

Chapter 19

Array Sequences

In ADT Chapter , we specify the input-output behavior of the operations in the sequence
ADT. In this chapter, we present an overview of how these operations can be implemented
by using arrays.

1 A Parametric Implementation

The sequence ADT, as we described in ADT Chapter , includes more than a dozen func-
tions. Although it is possible to present an implementation by considering each function
independently, it usually suffices to implement directly a smaller subset of the functions,
which we can think of the primitive functions, and implement the rest of the functions in
terms of the primitive ones.

In this section, we briefly describe how such an implementation could proceed based on
the following primitive functions:

• nth ,

• length ,

• subseq ,

• tabulate ,

• flatten , and

• inject and ninject .

First, we present an implementation of the rest of the interface based on the primitive
functions. We then describe in Section 1 how the implement the primitive functions.

126

1. A PARAMETRIC IMPLEMENTATION 127

Algorithm 19.1 (Function empty). We can implement the empty sequence empty directly
in terms of tabulate :

empty = tabulate (lambda i.i) 0.

Algorithm 19.2 (Function singleton). We can implement the function singleton directly in
terms of tabulate :

singleton x = tabulate (lambda i.x) 1.

Algorithm 19.3 (Function map). The function map is relatively easy to implement in terms
of tabulate :

map f a = tabulate (lambda i.f(a[i])) |a|.

Algorithm 19.4 (Function append). We can implement append directly in terms of flatten :

append a b = flatten 〈 a, b 〉 .

We can also implement append by using tabulate . To this end, we first define a helper
function:

select (a, b) i =lambda i. (19.1)
if i < |a| then a[i] (19.2)
else b[i− |a|]. (19.3)

We can now state append as

append a b = tabulate (select (a, b)) (|a|+ |b|).

Algorithm 19.5 (Function filter). We can implement filter by a using a combination of map
and flatten . The basic idea is to map the elements of the sequence for which the condition
holds to singletons and map the other elements to empty sequences and then flatten.

We first define a function that “deflates” the elements for which the condition f does not
hold:

deflate f x =
if (f x) then 〈x 〉
else 〈 〉 .

We can now write filter as a relatively simple application of flatten , map, and deflate .

filter f a =
let b = map (deflate f) a
in flatten b end

128 CHAPTER 19. ARRAY SEQUENCES

Algorithm 19.6 (Function update). We can implement the function update in terms of tabulate
as

update a (i, x) =
tabulate (lambda j. if i = j then x else a[i])

|a|

Algorithm 19.7 (Functions isEmpty and isSingleton). Emptiness and singleton checks are
simple by using the length function:

isEmpty a =
|a| = 0

isSingleton a =
|a| = 1

Algorithm 19.8 (Functions iterate). We can implement iteration by simply iterating over
the sequence from left to right.

iterate f x a =
if |a| = 0 then
x

else if |a| = 1 then
f(x, a[0])

else
iterate f (f(x, a[0])) a[1 . . . |a| − 1]

Algorithm 19.9 (Functions reduce). We can implement reduce by using a divide-and-conquer
strategy.

reduce f id a =
if |a| = 0 then

id
else if |a| = 1 then
a[0]

else
let

mid = floor(|a|/2)
(b, c) = (a[0 . . .mid − 1], a[mid . . . |a| − 1])
(rb, rc) = (reduce f id b) || (reduce f id c)

in
f(rb, rc)

end

Algorithm 19.10 (Scan Using Contraction). We will cover scan in more detail in Section 3.
But for completeness, we present an implementation below. For simplicity, we assume that
the length of the sequence is a power of two, though this is not difficult to eliminate.

2. IMPLEMENTING THE PRIMITIVE FUNCTIONS 129

(* Assumption: |a| is a power of two. *)
scan f id a =
case |a|
| 0⇒ (〈 〉 , id)
| 1⇒ (〈 id 〉 , a[0])
| n⇒
let
a′ = 〈 f(a[2i], a[2i+ 1]) : 0 ≤ i < n/2 〉
(r, t) = scan f id a′

in

(〈 pi : 0 ≤ i < n 〉 , t), where pi =

{
r[i/2] even(i)

f(r[i/2], a[i− 1]) otherwise

end

2 Implementing the Primitive Functions

To support the primitive operations efficiently we represent a sequence as an array segment
(a.k.a., slice) contained within a possibly larger array along with a few additional pieces of
information. More precisely, a sequence is represented as:

• an array of elements contains the elements in the sequence (but possibly more)

• a “left” and a “right” position indicates the boundaries of the slice in terms of the be-
ginning and the ending of a contiguous section of the array that contains the elements
in the sequence (in order),

Algorithm 19.11 (Function nth). Using arrays, indexing into any location requires a simple
array access and can be achieved in constant work and span.

Algorithm 19.12 (Function length). Because we know the boundary positions of the array
slice that corresponds to the sequence, we can calculate length by using simple arithmetic
in constant work and span.

Algorithm 19.13 (Function subseq). Taking a subsequence of a sequence requires deter-
mining the boundaries for the new slice. We do not need to copy the elements of the array
within the boundary. This operation therefore requires basic arithmetic and thus can be
done in constant work and span.

Algorithm 19.14 (Function tabulate). Consider a call to tabulate of the form:

tabulate f n.

To construct the sequence of length n, we allocate a fresh array of n elements, evaluate f at
each position i and write the result into position i of the array.

130 CHAPTER 19. ARRAY SEQUENCES

Because the function f can be evaluated at each element independently in parallel, this
operation has the same span and that of the function f itself (maximized over all positions)
and the total work is the sum of the work required to evaluate f at each position.

Algorithm 19.15 (Function flatten). Consider a call to flatten of the form:

flatten a,

where a is a sequences of sequences.

To compute the resulting sequence, we first map each element of a to its length; let ` be the
resulting sequence. We then perform the scan scan + 0 `. This computation returns for
each element of a its position in the result sequence of flatten . Finally, we allocate an array
that can hold all of the elements of the sequences in a and write each element of a into its
corresponding segment in parallel.

This cost of scan is O(|a|) work and O(lg |a|) span. The cost of the final write of each
element requires O(||a||) work, where ||a|| =

∑|a|−1
i=0 |a[i]| and constant span. Thus the total

work is O(|a|+ ||a||) and span is O(lg |a|).

Algorithm 19.16 (Function inject). Consider a call to inject of the form:

inject a b,

where a is a sequence of length n and b is a sequence of m updates.

To inject the updates into the sequence, we create a new array aa from a, where for all
0 ≤ i < |a|, aa[i] = (a[i], |a|). We then “inject” all updates in b into aa in parallel. To handle
each update of the form (j, v) at position k, we perform an atomic update operation that
proceeds as follows.

atomicWrite aa b k =
atomically do:

(j, v)← b[k]
(w, i)← aa[j]
if k < i then
aa[j]← (v, k)

This update operation guarantees that of the possibly many conflicting operations the first
(leftmost) one in the update sequence wins and is transferred to the result; the other up-
dates either don’t take place or are overwritten. After all updates complete, we take aa and
create another array consisting of only the value component of each element.

Under the assumption that all updates occur uniformly randomly, it is possible to prove
that the number of updates to a position that is targeted by d updates is O(lg d) in expecta-
tion and the total work is O(n + m). Note that d ≤ m and therefore O(lgm) span is also a
decent upper bound but as we will see in many cases d, which is the degree, is constant.

Algorithm 19.17 (Function ninject). Consider a call to ninject of the form:

ninject a b,

2. IMPLEMENTING THE PRIMITIVE FUNCTIONS 131

where a is a sequence to be injected into and b is the updates.

To inject the updates into the sequence, we make a copy of the array a and then use an
atomic write operation to write or “inject” each update independently in parallel. Each
instance of the atomic write operation updates the relevant element of the copied array
atomically. Assuming that each atomic write operation requires constant-work, this imple-
mentation requires linear work in the number of updates and constant span.

Remark (Benign Effects). We made careful use of side effects (memory updates) in imple-
menting the primitive functions. Because these side effects are not visible to the program-
mer, the ADT remains to be purely functional and thus is safe for parallelism. Effects such
as these that have no impact on purity are sometimes called benign effects.

Chapter 20

Cost of Sequences

In this chapter, we present several cost specifications for the Sequence ADT Chapter .
These cost specifications pertain to implementations that use several common representa-
tions for sequences based on arrays , trees , and lists .

The cost specifications do not require describing the particular implementations, but im-
plementations that match the given costs indeed use data structures based on arrays, trees,
and lists (respectively). However, for example, there might many tree implementations
that match the tree cost specification.

All of the the cost bounds we give are based on “pure” implementations, as discussed
in Functional Algorithms Chapter . In particular all functions create new data without
changing the old data. In the case of the array cost specification, this means that updates
are expensive since they need to copy the array. In Ephemeral Sequences we discuss both
the “inpure” costs and an interface that remains pure, but reduces the cost to the same as
the “impure” case when used in a particular way.

1 Cost Specifications

Cost specifications describe the cost—in terms of work and span—of the functions in an
ADT. Typically many specific implementations match a specific cost specification. For ex-
ample, for the tree-sequence specification for sequences (Section 3, an implementation can
use one of many balanced binary tree data structures available.

To use a cost specification, we don’t need to know the details of how these implementations
work. Cost specifications can thus be viewed as an abstraction over implementation details
that do not matter for the purposes of the algorithm.

Note. Cost specifications are similar to prices on restaurant menus. If we view the functions

132

2. ARRAY SEQUENCES 133

of the ADT as the dishes in a menu, then the cost specification is the price tag for each dish.
Just as the cost of the dishes in a menu does not change from day to day as the specific
details of the preparation process changes (e.g., different cooks may prepare the dish, the
origin of the ingredients may vary from one day to the next), cost specifications offer a
layer of abstraction over implementation details that a client of the ADT need not know.

Definition 20.1 (Domination of cost specifications). There are usually multiple ways to
implement an ADT and thus there can be multiple cost specifications for the same ADT.
We say that one cost specification dominates another if for each and every function, its
asymptotic costs are no higher than those of the latter.

Example 20.1. Of the three cost specifications that we consider in this chapter, none dom-
inates another. The list-based cost specification, however, is almost dominated by the oth-
ers, because it is nearly completely sequential.

Choosing cost specifications. When deciding which of the possibly many cost specifica-
tion to use for a particular ADT, we usually notice that there are certain trade-offs: some
functions will be cheaper in one and while others are cheaper in another. In such cases, we
choose the cost specification that minimizes the cost for the algorithm that we wish to ana-
lyze. After we decide the specification to use, what remains is to select the implementation
that matches the specification, which can include additional considerations.

Example 20.2. If an algorithm makes many calls to nth but no calls to append , then we
would use the array-sequence specification rather than the tree-sequence specification, be-
cause in the former nth requires constant work whereas in the latter it requires logarithmic
work. Conversely, if the algorithm mostly uses append and update, then tree-sequence
specification would be better.

Note. Following on our restaurant analogy, suppose that you wish to enjoy a nice three
course meal in a nearby restaurant. Looking over the menues of the restaurants in your
price range, you might realize that prices for the appetizers in one are lower than others
but the main dishes are more expensive. (If that were not the case, the others would be
dominated and, assuming equal quality, they would likely go out of business.) Assuming
your goal is to minimize the total cost of your meal, you would therefore sum up the cost
for the dishes that you plan on enjoying and make your decision based on the total sum.

2 Array Sequences

Cost Specification 20.2 (Array Sequences). The table below specifies the array-sequence
costs. For the cost of inject , we define the degree of an update sequence as the maximum
number of updates targeting the same position. The notation T (−) refer to the trace of the
corresponding operation. The specification for scan assumes that f has constant work and
span.

134 CHAPTER 20. COST OF SEQUENCES

Operation Work Span
length a 1 1
nth a i 1 1
singleton x 1 1
empty 1 1
isSingleton x 1 1
isEmpty x 1 1

tabulate f n 1 +

n∑
i=0

W (f(i)) 1 +
n

max
i=0

S (f(i))

map f a 1 +
∑
x∈a

W (f(x)) 1 + max
x∈a

S (f(x))

filter f a 1 +
∑
x∈a

W (f(x)) lg|a|+ max
x∈a

S (f(x))

subseq a (i, j) 1 1

append a b 1 + |a|+ |b| 1

flatten a 1 + |a|+
∑
x∈a |x| 1 + lg|a|

update a (i, x) 1 + |a| 1

inject a b 1 + |a|+ |b| lg(degree(b))

ninject a b 1 + |a|+ |b| 1

collect f a 1 +W (f) · |a| lg|a| 1 + S (f) · lg2|a|

iterate f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

reduce f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) lg|a| · max
f(y,z)∈T (−)

S (f(y, z))

scan f x a |a| lg|a|

The functions length , nth , empty , singleton , isEmpty , isSingleton , subseq , all require constant
work and span.

Tabulate and Map. The functions tabulate and map total work that is equal to the sum of
the work of applying f at each position, as well as an additional unit cost to account for
tabulate or map itself.

Because it is possible to apply the function f in parallel—there are no dependencies among
the different positions, the span is the maximum of the span of applying f at each position,
plus 1 for the function call itself.

Example 20.3 (Tabulate and map with array costs). As an example of tabulate and map

W
(〈
i2 : 0 ≤ i < n

〉)
= O

(
1 +

∑n−1
0=1 O (1)

)
= O (n)

S
(〈
i2 : 0 ≤ i < n

〉)
= O

(
1 + maxn−1

i=0 O (1)
)

= O (1)

2. ARRAY SEQUENCES 135

because the work and span for i2 is O (1).

Filter. The work for the function filter is equal to the sum of the work of applying f at
each position, as well as an additional unit cost, for the function call itself.

Because it is possible to apply the function f in parallel—there are no dependencies among
the different positions, the span is the maximum of the span of applying f at each posi-
tion, plus a logarithmic term for performing compaction, i.e., packing the chosen elements
contiguously into the result array.

Example 20.4 (Filter). As an example of filter , we have

W (〈x : x ∈ a | x < 27 〉) = O
(

1 +
∑|a|−1
i=0 O (1)

)
= O (|a|)

S (〈x : x ∈ a | x < 27 〉) = O
(

lg |a|+ max
|a|−1
i=0 O (1)

)
= O(lg |a|).

The operation append requires work proportional to the length of the sequences given as
input, can be implemented in constant span.

The operation flatten generalizes append , requiring work proportional to the total length
of the sequences flattened, and can be implemented in parallel in logarithmic span in the
number of sequences flattened.

Update and Inject. The operations update and inject both require work proportional to
the length of the sequences they are given as input. It might seem surprising that update
takes work proportional to the size of the input sequence a, since updating a single element
should require constant work. The reason is that the interface is purely functional so that
the input sequence needs to be copied–we are not allowed to update the old copy.

The function update and non-deterministic inject ninject can be implemented in constant
span, but deterministic inject required resolving conflicts more carefully and requiresO (lg(degree(b)))
span where the degree of the update sequence b is the maximum number of updates tar-
geting the same position in the sequence being updated.

In the last section of this chapter, we describe single-threaded array sequences that allows
updating under a sequence in constant work, but under certain restrictions.

Collect. The primary cost in implementing collect is a sorting step that sorts the sequence
based on the keys. The work and span of collect is therefore determined by the work and
span of (comparison) sorting with the specified comparison function f .

136 CHAPTER 20. COST OF SEQUENCES

Cost of aggregation. The cost of aggregation functions, iterate, reduce, and scan are more
difficult to specify, because they depend their arguments and on the intermediate values
computed during evaluation.

Example 20.5 (Cost of Iterated append). Consider appending the following sequence of
strings using iterate:

iterate append ’ ’ 〈 ’abc ’, ’d ’, ’e ’, ’f ’ 〉 .

If we only count the work of append functions performed during evaluation, we obtain a
total work of 22, because the following append functions are performed

1. append ’ ’ ’abc ’ (work 4),

2. append ’abc ’ ’d ’ (work 5),

3. append ’abcd ’ ’e ’ (work 6), and

4. append ’abcde ’ ’f ’ (work 7).

Consider now appending the following sequence of strings, which is a permutation of the
previous, using iterate :

iterate append ’ ’ 〈 ’d ’, ’e ’, ’f ’, ’abc ’ 〉

If we only count the work of append operations using the array-sequence specification, we
obtain a total work of 16, because the following append operations are performed

1. append ’ ’ ’d ’ (work 2),

2. append ’d ’ ’e ’ (work 3),

3. append ’de ’ ’f ’, (work 4) and

4. append ’def ’ ’abc ’ (work 7).

Thus, we have used iteration over two sequences, both with 4 elements, and obtained dif-
ferent costs even though the sequences are permutations of each other. The reason for this
is that the total cost depends on the intermediate values generated during computation.

Specification of iterate. To specify the cost of iterate , we consider the intermediate values
generated by an evaluation of iterate , whose specification, originally given in Section 9 is
reproduced here for convenience.

iterate f x a =

{
x if |a| = 0
iterate f (f(x, a[0])) (a[1 · · · |a| − 1]) otherwise.

2. ARRAY SEQUENCES 137

Consider an evaluation of

iterate f v a

and let

T (iterate f v a)

denote the set of calls to f(·, ·) performed along with the arguments, as defined by the
specification above. We refer to this set of function calls as the trace of iterate and define
the cost of iterate as the sum of these calls.

Cost Specification 20.3 (Cost for iterate). Consider evaluation of iterate f v a and let
T (iterate f v a) denote the set of calls (trace) to f(·, ·) performed along with the arguments.
The work and span are as follows.

W (iterate f x a) = O
(

1 +
∑
f(y,z)∈T (iterate f x a)W (f(y, z))

)
S (iterate f x a) = O

(
1 +

∑
f(y,z)∈T (iterate f x a) S (f(y, z))

)
Example 20.6 (Sorting by Iteration). As an interesting example, consider the function mergeOne a x
for merging a sequence a with the singleton sequence 〈x 〉 by using an assumed compari-
son function. The function performsO(n) work inO(lg n) span, where n is the total number
of elements in the output sequence. We can use the mergeOne function to sort a sequence
via iteration as follows

iterSort a = iterate mergeOne 〈 〉 a.

For example, on input a = 〈 2, 1, 0 〉, iterSort first merges 〈 〉 and 〈 2 〉, then merges the result
〈 2 〉 with 〈 1 〉, then merges the resulting sequence 〈 1, 2 〉 with 〈 0 〉 to obtain the final result
〈 0, 1, 2 〉.

The trace for iterSort with an input sequence of length n consists of a set of calls to mergeOne,
where the first argument is a sequence of sizes varying from 1 to n − 1, while its right ar-
gument is always a singleton sequence. For example, the final mergeOne merges the first
(n− 1) elements with the last element, the second to last mergeOne merges the first (n− 2)
elements with the second to last element, and so on. Therefore, the total work for an input
sequence a of length n is

W (iterSort a) ≤
n−1∑
i=1

c · (1 + i) = O(n2).

Using the trace, we can also analyze the span of iterSort . Since we iterate adding in each
element after the previous, there is no parallelism between merges, but there is parallelism
within a mergeOne, whose span is is logarithmic. We can calculate the total span as

S (iterSort a) ≤
n−1∑
i=1

c · lg (1 + i) = O(n lg n).

Since average parallelism, W (n) /S (n) = O(n/ lg n), we see that the algorithm has a rea-
sonable amount of parallelism. Unfortunately, it does much too much work.

138 CHAPTER 20. COST OF SEQUENCES

Note (Algorithm iterSort). Using this reduction order the algorithm is effectively working
from the front to the rear, using mergeOne to “insert” each element into a sorted prefix
where it is placed at the correct location to maintain the sorted order. The algorithm thus
implements the well-known insertion sort.

Cost of reduce. Recall that with reduce, we noted that the result of the computation is not
affected by the order in which the associative function is applied and in fact is the same
as that of performing the same computation with iterate. The cost of reduce, however,
depends on the order in which the operations are performed.

Example 20.7 (Cost of reduce append). Consider appending the following code

reduce append ’ ’ 〈 ’abc ’, ’d ’, ’e ’, ’f ’ 〉 .

Suppose performing append operations in left-to-right order and count their work using
the array-sequence specification. The total work is 19, because the following append oper-
ations are performed

1. append ’abc ’’d ’ (work 5),

2. append ’abcd ’’e ’ (work 6), and

3. append ’abcde ’’f ’ (work 7).

Consider now performing the append operations from right to left order. We obtain a total
cost of 15, because the following append operations are performed

1. append ’e ’ ’f ’ (work 3),

2. append ’d ’ ’ef ’, (work 4) and

3. append ’abc ’ ’def ’ (work 7).

Specification of reduce. To specify the cost of reduce, we consider its trace based on its
specification, as given in Section 10 reproduced below for convenience.

reduce f id a =

id if |a| = 0
a[0] if |a| = 1

f
(

reduce f id (a[0 · · · b |a|2 c − 1]),

reduce f id (a[b |a|2 c · · · |a| − 1]
)

otherwise.

3. TREE SEQUENCES 139

Cost Specification 20.4 (Cost of reduce). Consider evaluation of reduce f x a and let T (reduce f x a)
denote the set of calls to f(·, ·) performed along with the arguments. The work and span
are defined as

W (reduce f x a) = O

1 +
∑

f(y,z)∈T (reduce f x a)

W (f(y, z))

 , and

S (reduce f x a) = O

(
lg |a| · max

f(y,z)∈T (reduce f x a)
S (f(y, z))

)
.

Work and Span of reduce. The work bound is simply the total work performed, which
we obtain by summing across all combine functions, plus one for the reduce. The span
bound is more interesting. The lg |a| term expresses the fact that the recursion tree in
the specification of reduce is at most O(lg |a|) deep. Since each node in the recursion
tree has span at most maxf(y,z) S (f(y, z)), any root-to-leaf path, has at most O(lg |a| ·
maxf(a,b) S (f(a, b))) span.

Cost of scan . As in iterate and reduce the cost specification of scan depends on the in-
termediate results. But the dependency is more complex than can be represented by our
ADT specification. For scan , we will stop at giving a cost specification by assuming that
the function that we are scanning with performs O (1) work and span.

Cost Specification 20.5 (Cost for scan). Consider the expression scan f x a, where f(·, ·)
always requires O (1) work and span. The work and span of the expression are defined as

W (scan f x a) = O(|a|), and

S (scan f x a) = O(lg |a|).

3 Tree Sequences

The costs for tree sequences is given in Cost Specification below . The specification rep-
resents the cost for a class of implementations that use a balanced tree to represent the
sequence. The cost of each operation is similar to the array-based specification, and many
are exactly the same, i.e., length , singleton , isSingleton , isEmpty , collect , iterate, reduce, and
scan .

There are also differences. The work and span of the operation nth is logarithmic, as op-
posed to being constant. This is because in balanced-tree based implementation, the oper-
ation must follow a path from the root to a leaf to find the desired element element. For
a sequence a, such a path has length O(lg |a|). Although nth does more work with tree
sequences, append does less work. Instead of requiring linear work, the work of append
with tree sequences is proportional to the logarithm of the ratio of the size of the larger
sequence to the size of the smaller one smaller one. For example if the two sequences are

140 CHAPTER 20. COST OF SEQUENCES

the same size, then append takes O (1) work. On the other hand if one is length n and the
other 1, then the work is O(lg n). The work of update is also less with tree sequences than
with array sequences.

The work for operations map and tabulate are the same as those for array sequences; their
span incurs an extra logarithmic overhead. The work and span of filter are the same for
both.

Cost Specification 20.6 (Tree Sequences). We specify the tree-sequence costs as follows.
The notation T (−) refer to the trace of the corresponding operation. The specification for
scan assumes that f has constant work and span.

Operation Work Span
length a 1 1
singleton x 1 1
isSingleton x 1 1
isEmpty x 1 1
nth a i lg|a| lg|a|

tabulate f n 1 +

n∑
i=0

W (f(i)) 1 + lg n+
n

max
i=0

S (f(i))

map f a 1 +
∑
x∈a

W (f(x)) 1 + lg|a|+ max
x∈a

S (f(x))

filter f a 1 +
∑
x∈a

W (f(x)) 1 + lg|a|+ max
x∈a

S (f(x))

subseq(a, i, j) 1 + lg(|a|) 1 + lg(|a|)

append a b 1 + | lg(|a|/|b|)| 1 + | lg(|a|/|b|)|

flatten a 1 + |a| lg
(∑

x∈a |x|
)

1 + lg(|a|+
∑
x∈a |x|)

inject a b 1 + (|a|+ |b|) lg|a| 1 + lg(|a|+ |b|)

ninject a b 1 + (|a|+ |b|) lg|a| 1 + lg(|a|+ |b|)

collect f a 1 +W (f) · |a| lg|a| 1 + S (f) · lg2|a|

iterate f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

reduce f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) lg|a| · max
f(y,z)∈T (−)

S (f(y, z))

scan f x a |a| lg|a|

4 List Sequences

The Cost Specification below defines the cost for list sequences. The specification repre-
sents the cost for a class of implementations that use (linked) lists to represent the sequence.
The determining cost in list-based implementations is the sequential nature of the repre-
sentation: accessing the element at position i requires traversing the list from the head to i,

4. LIST SEQUENCES 141

which leads to O (i) work and span. List-based implementations therefore expose hardly
any parallelism. Their main advantage is that they require quick access to the head and
the tail of the sequence, which are defined as the first element and the suffix of the se-
quence that starts at the second element respectively.

The work of each operation is similar to the array-based specification. Since the data struc-
ture mostly serial, the span of each operation is essentially the same as that of its work,
except that the total is taken over the spans of its components. The work and span of
subseq operation depends on the beginning position of the subsequence, because list-based
representation can share their suffixes.

Cost Specification 20.7 (List Sequences). We specify the list-sequence costs as follows. The
notation T (−) refer to the trace of the corresponding operation. The specification for scan
assumes that f has constant work and span.

Operation Work Span
length a 1 1
singleton x 1 1
isSingleton x 1 1
isEmpty x 1 1
nth a i i i

tabulate f n 1 +

n∑
i=0

W (f(i)) 1 +

n∑
i=0

S (f(i))

map f a 1 +
∑
x∈a

W (f(x)) 1 +
∑
x∈a

S (f(x))

filter f a 1 +
∑
x∈a

W (p(x)) 1 +
∑
x∈a

S (p(x))

subseq a (i, j) 1 + i 1 + i

append a b 1 + |a| 1 + |a|

flatten a 1 + |a|+
∑
x∈a |x| 1 + |a|+

∑
x∈a |x|

update a (i, x) 1 + |a| 1 + |a|

inject a b 1 + |a|+ |b| 1 + |a|+ |b|

ninject a b 1 + |a|+ |b| 1 + |a|+ |b|

collect f a 1 +W (f) · |a| lg |a| 1 + S (f) · |a| lg |a|

iterate f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

reduce f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

scan f a |a| |a|

Remark. Since they are serial, list-based sequences are usually ineffective for parallel algo-
rithm design.

Chapter 21

Examples

This chapter presents example use of the sequence Chapter . and its cost specification .
The examples include several solutions to a classic problem in computer science, that of
computing prime numbers. In addition, we also briefly discuss how we might generalize
the comprehensions based notation introduced earlier for building sequences to operate
on multiple domains (or valiables).

1 Miscellaneous Examples

Problem 21.1 (Points in 2D). We wish to create a sequence consisting of points in two
dimensional space (x, y) whose coordinates are natural numbers that satisfy the conditions:

0 ≤ x < n and 1 ≤ y < n.

For example, for n = 3, we would like to construct the sequence

〈 (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2) 〉 .

Give an algorithm that solves this problem and write the algorithm in both plain SPARC
notation and in notation using comprehensions.

Algorithm 21.1 (2D Points). The following algorithm generates the desired point sequence:

points2D n =
flatten (tabulate (lambda x . tabulate (lambda y . (x, y + 1))

(n− 1))
n).

142

1. MISCELLANEOUS EXAMPLES 143

Using the basic sequence comprehension notation Syntax 18.2, we can express the same
code more succinctly as

points2D n = flatten 〈 〈 (x, y) : 1 ≤ y < n 〉 : 0 ≤ x < n 〉 .

By extending the comprehension notation slightly to allow for multiple variables, we ex-
press the same algorithm as

points2D n = 〈 (x, y) : 1 ≤ y < n, 0 ≤ x < n 〉 .

Example 21.1. For a given n, the algorithm first generates a sequence of the form

〈 〈 (0, 1), (0, 2), . . . , (0, n− 1) 〉 (21.1)
〈 (1, 1), (1, 2), . . . , (1, n− 1) 〉 (21.2)
... (21.3)
〈 (n− 1, 1), (n− 1, 2), . . . , (n− 1, n− 1) 〉 (21.4)
〉 (21.5)

and then concatenates the inner sequences by using flatten .

Important. Note that in the second “multivariate comprehensions” approach used in the
above algorithm , flatten is hidden. When using such multivariate notation, we therefore
have to account for the cost of flatten .

Exercise 21.2 (Analyzing 2D Points). Analyze the cost of the algorithm for generating 2D
points given above .

Problem 21.3 (Points in 3D). Building on Problem 21.1, suppose that we wish to generate
points in 3D and restrict the points to those whose coordinates (x, y, z) are natural numbers
that satisfy the conditions that

0 ≤ x ≤ n− 1, 1 ≤ y ≤ n, and 2 ≤ z ≤ n+ 1.

Give an algorithm for solving this problem, using both the plain SPARC notation and se-
quence comprehensions.

Algorithm 21.2. Using the basic sequence comprehension notation Syntax 18.2, we can
write the code for computing the sequence of all such points as

points3D n =
flatten 〈 flatten 〈 〈 (x, y, z) : 2 ≤ z ≤ n+ 1 〉 : 1 ≤ y ≤ n 〉 : 0 ≤ x ≤ n− 1 〉 .

We can also write the same algorithm more succinctly as

points3D n =
〈 (x, y, z) : 0 ≤ x ≤ n− 1, 1 ≤ y ≤ n, 2 ≤ z ≤ n+ 1 〉 .

As in Algorithm 21.1, the multivariate notation results in a succinct algorithm but reason-
ing about the cost of the algorithm requires translating the algorithm to the more basic
notation so that hidden flatten’s can be accounted for.

144 CHAPTER 21. EXAMPLES

Problem 21.4 (Cartesian Product). Present an algorithm that returns the Cartesian product
of two sequences. For example, for the sequences a = 〈 1, 2 〉, and
b = 〈 3.0, 4.0, 5.0 〉, the algorithm should return the Cartesian product of a and b, which is

a× b = 〈 (1, 3.0), (1, 4.0), (1, 5.0), (2, 3.0), (2, 4.0), (2, 5.0) 〉 .

Algorithm 21.3 (Cartesian Product). Using the basic sequence comprehension notation Syn-
tax 18.2, we can write the algorithm for computing the Cartesian Product of two sequences
as

CartesianProduct (a, b) =
flatten (map (lambda x .map (lambda y . (x, y)) b) a).

Using the multivariate sequence comprehension notation, we can write the same algorithm
as

CartesianProduct (a, b) =
〈 (x, y) : x ∈ a, y ∈ b 〉 .

Exercise 21.5 (All contiguous subsequences). Present an algorithm that generates all con-
tiguous subsequences of a given sequence.

Solution. The following algorithm finds all contiguous subsequences of sequence a:

〈 a 〈 i, . . . , j 〉 : 0 ≤ i < |a|, i ≤ j < |a| 〉 .

The same algorithm can be written more simply as

〈 a 〈 i, . . . , j 〉 : 0 ≤ i ≤ j < |a| 〉 .

This is equivalent, in simplified sequence comprehensions notation, to

flatten 〈 〈 a[i · · · i+ j] : i ≤ j < |a| 〉 : 0 ≤ i < |a| 〉

We can further translate this to

flatten (tabulate (lambda i . tabulate (lambda j. a[i · · · i+ j]) (21.6)
(|a| − i− 1) (21.7)

|a|). (21.8)

Exercise 21.6 (Cost Analysis of All Subsequences). Analyze the cost of your algorithm for
Exercise 21.5.

Solution. Consider the algorithm from Solution 1:

〈 a[i · · · j] : 0 ≤ i < |a|, i ≤ j < |a| 〉 ,

1. MISCELLANEOUS EXAMPLES 145

which extracts all contiguous subsequences from the sequence a.

Recall that the notation is equivalent to a nested tabulate first over the indices i, and then
inside over the indices j. The results are then flatten’ed. The nesting of tabulate’s allows
all the calls to a[i · · · j] (i.e., subseq) to run in parallel. Let n = |a|. There are a total of

n∑
i=1

i = n(n+ 1)/2 = O(n2)

contiguous subsequences and hence that many calls to subseq , each of which has constant
work and span according to the cost specifications. The work of the nested tabulate’s and
the subseq ’s is therefore O(n2). The span of the inner tabulate is maximum over the span
of the inner subseq ’s, which is O (1). The span of the outer tabulate is the maximum over
the inner tabulate’s, which is again O (1). The flatten at the end requires O(n2) work and
O(lg n) span, because the total length of all subsequences is n(n+1)

2 = O(n2), and |a| = n.
The total work and span are therefore

W (e) = O(|a|2), and
S (e) = O(lg |a|).

Exercise 21.7 (Comprehension with Conditionals). Given sequences a of natural numbers
and b of letters of the alphabet, we wish to compute the sequence that pairs each even
element of a with all elements of b that are vowels.

Solution. We can writes this simply by adding the filtering predicates isEven , which holds
for even numbers, and isVowel , which holds for vowels.

〈 (x, y) : x ∈ a, y ∈ b | isEven x, isVowel 〉

In our more basic notation, this translates to

flatten 〈 〈 (x, y) : y ∈ b | isVowel y 〉 : x ∈ a | isEven x 〉 .

Remark (Eliminating flatten). In this section, we considered 2D and 3D geometric exam-
ples over the space of points whose coordinates are natural numbers. For these specific
examples, we can eliminate the need for flatten by projecting the multidimensional space
into a single dimensional space and using arithmetic over natural numbers to recover the
coordinates of the points. This technique, however, does not generalize. For example, if we
map over two strings (sequences of characters), then there is no analogous way to project
efficiently the two strings into a single string that we can map over.

Remark (Comprehensions). Many programming languages support syntax based on set-
comprehensions, sometimes directly for sets (e.g., SETL), or for other collections of values
such as lists, sequences, or mappings (e.g. Python, Haskell and Javascript). The com-
prehensions syntax, however, is not uniform among the languages. Indeed even among
mathematical texts on set theory, the syntax for set comprehensions varies. In our usage,
we try to be self consistent, but we are not always consistent with usage found elsewhere.

146 CHAPTER 21. EXAMPLES

2 Computing Primes

Problem 21.8 (Primes). The primes problem requires finding all prime numbers less than
a given natural number n.

Recall that a natural number n is a prime if it has exactly two distinct divisors 1 and itself.
For example, the number 1 is not prime, but 2, 3, 7, and 9967 are. For simplicity we assume
in the rest of this section, that n ≥ 2.

Observation. If a natural number n is not prime, then it has a divisor that is at most
√
n.

The observation holds, because for any i× j = n, either i or j is less than or equal to
√
n.

Algorithm 21.4 (Brute Force Primality Test).

isPrime n =
let

all = 〈n mod i : 1 ≤ i ≤ b
√
n c 〉

divisors = 〈x : x ∈ all | x = 0 〉
in
|divisors| = 1

end

Cost of Brute Force Primality Test. Let’s calculate the work and span of this algorithm
based on the array sequence cost specification. The algorithm constructs a sequence of
length b

√
n c and then filters it. Since the work for computing i mod n and checking that a

value is zero x = 0 is constant, based on the array-sequence costs, we can write work as

WisPrime (n) = O

1 +

b√n c∑
i=1

O (1)

 = O
(√
n
)
.

Similarly we can write span as:

SisPrime (n) = O

(
lg
√
n+
b√n c
max
i=1

O (1)

)
= O (lg n) .

The lg
√
n additive terms come from the cost specification for filter .

Since parallelism is the ratio of work to span, it is

O

(√
n

lg
√
n

)
.

This is not an abundant amount of parallelism but adequate especially, because work is
small.

2. COMPUTING PRIMES 147

Algorithm 21.5 (Brute Force Solution to the Primes Problem). Now that we can test for
primality of a number, we can solve the primes problem by testing the numbers up to n.
We can write the code for such a brute-force algorithm as follows.

primesBF n =
let

all = 〈 i : 1 < i < n 〉
primes = 〈x : x ∈ all | isPrime(x) 〉

in
primes

end

Let’s analyze work and span, again using array sequences. Constructing the sequence all
using tabulate requires linear work. Filtering through all requires work that is the sum of
the work of the calls to isPrime; thus we have

WprimesBF (n) = O

(
n−1∑
i=2

1 +WisPrime (i)

)

= O

(
n−1∑
i=2

1 +
√
i

)
= O

(
n3/2

)
.

Similarly, the span is dominated by the maximum of the span of calls to isPrime and a
logarithmic additive term.

SprimesBF (n) = = O
(

lg n+
n

max
i=2

SisPrime (i)
)

= O
(

lg n+
n

max
i=2

lg i
)

= O (lg n)

The parallelism is hence

WprimesBF (n)

SprimesBF (n)
=
n3/2

lg n
.

This is plenty of parallelism but comes at the expense of a large amount of work.

We can improve the work for the algorithm, because the algorithm does a lot of redundant
work by repeatedly checking with the divisors. To test whether a number m is prime, the
algorithm checks its divisors, it then checks essentially the same divisors for multiples of
m, such as 2m, 3m, . . ., which largely overlap, because if a number dividesm, it also divides
its multiples.

We eliminate this redundancy by more actively eliminating numbers that are composites,
i.e., not primes. The basic idea is to create a collection of composite numbers up to n and

148 CHAPTER 21. EXAMPLES

use this as a sieve. Generating such a sieve is easy: we just have to include for any number
i ≤
√
n, its multiples of up to n

i . Having generated the sieve, what remains is to run the
numbers up to n through the sieve. To do this in parallel, we can use use inject or in
fact (non-deterministic) ninject , because all updates into the same position injects the same
value.

Exercise 21.9. To generate all composite numbers between 2 and n, prove that it suffices to
consider all i ∈ N 1 ≤ i ≤

√
n and all of i’s multiples up to n

i .

Solution. By the observation above , any composite number n has a divisor that is at most√
n. In therefore sufficies to consider multiples of numbers less or equal to

√
n.

Algorithm 21.6 (Prime Sieve). The pseudo-code below presents the prime-sieve algorithm.
The idea is to do construct the sieve as a length-n sequence of the Boolean value true, and
then update the sequence by writing false into all positions that correspond to composite
numbers. The remaining true values indicate the prime numbers.

primeSieve n =
let
(* Composite numbers. *)
cs = 〈 i ∗ j : 2 ≤ i ≤ b

√
n c , 2 ≤ j ≤ n/i 〉

sieve = 〈 (x,false) : x ∈ cs 〉
all = 〈true : 0 ≤ i < n 〉
isPrime = ninject all sieve
primes = 〈 i : 2 ≤ i < n | isPrime[i] = true 〉

in
primes

end

Cost of the Sieve Algorithm. For the analysis, we shall consider the phases of the algo-
rithm and show that the work and span are functions of the total number of composites
which we denote by m.

• Generating each composite takes constant work and because it is just a multiplication.
The work for generating the sequence of composites is linear in the total number of
composites, m. The span is O(lg n) because of the flatten . Constructing the sieve
requires linear work in its length, which is m, and constant span.

• The work of ninject is also proportional to the length of sieve , m, and its span is
constant.

• The work for computing primes , using tabulate and filter is proportional to n, and
the span is O(lg n).

Therefore the total work is proportional to the number composites m, which is larger than
n, and the total span is O(lg (n+m)). To calculate m, we can add up the number of multi-
ples each i from 2 to b

√
nc have, i.e.,

2. COMPUTING PRIMES 149

m =

b√n c∑
i=2

⌈n
i

⌉

≤ (n+ 1)

b√n c∑
i=2

1

i

≤ (n+ 1)H(
⌊√

n
⌋
)

≤ (n+ 2) lnn1/2

=
n+ 2

2
lnn.

Here H(n) is the nth harmonic number, which is known to be bounded below by lnn and
above by lnn+ 1. We therefore have

WprimeSieve (n) = O(n lg n), and
SprimeSieve (n) = O(lg n).

We have thus reduced the work fromO
(
n3/2

)
to something much more reasonable: O (n lg n).

Remark. The algorithm for computing primes described here dates back to antiquity and
attributed to Eratosthenes of Cyrene, a Greek mathematician.

Chapter 22

Ephemeral and Single-Threaded
Sequences

This chapter covers implementations of sequences that support constant work updates.

1 Persistent and Emphemeral Implementations

Persistent Data Structures. The implementations and the cost models that we have dis-
cussed so far are “non-destructive” in the sense that if we use a sequence, by for example,
passing the sequence to an operation such as map, update, or inject the sequence remains
the same after the operation completes. Such implementations are sometimes called pure
or persistent.

Persistence is generally a desirable property. Some algorithms benefit from persistence and
it is safe for parallelism. But persistence does come with a cost, because we are not allowed
to update data destructively in place. For example, in array sequences , the update a (i, v)
and inject a b operations require Ω(|a|) work because they have to copy the sequence a. In
tree sequences , update a b and inject a b require Θ(lg |a|) and Θ(lg |a|+ lg |b|) work, but in
some algorithms this is still high.

Ephemeral Data Structures. Persistence is not always necessary. For example, an algo-
rithm may use a data structure in a “linear” fashion, where it uses or more precisely “con-
sumes” an instance of the data structure no more than once. Linearity is relatively common,
especially in sequential algorithms. For example, an algorithm may, at each step, consume
one instance of a data structure and create a new instance, which is then consumed in an-
other step. In such use cases, we may employ destructive updates in the implementation

150

2. EPHEMERAL SEQUENCES 151

of the data structure: because an instance is never consumed more than once, it is safe to
destruct or reuse it when making a new instance. We refer to an implementation of a data
structure that destroys existing instances as ephemeral.

Disadvantages of Ephemeral Implementations. Even though they can be efficient, ephemeral
implementations have one important disadvantage: they are generally not safe for paral-
lelism. As an example, consider the following three sequences:

a = 〈 0, 1, . . . , n− 1 〉
b = 〈 (0, 0), (1, 2), (2, 4), . . . , (n− 1, 2n− 2) 〉
c = 〈 (0, 1), (1, 3), (2, 5), . . . , (n− 1, 2n− 1) 〉

Using ephemeral sequences, the result of the following piece of code, which injects the
sequence b and c into another sequence a is non-deterministic:

inject a b || inject a c.

This piece of code has as many as 2n distinct outcomes: the element at position i is either
the ith even number of ith odd number.

Ephemeral implementations can therefore make reasoning about the correctness parallel
algorithms challenging, because we have to consider an exponential number of possibili-
ties. An earlier chapter covers this topic in more detail. This does not mean, however,
that emphemeral data structures should be avoided at all cost. They are usually acceptable
in sequential algorithms. Even in parallel algorithms, it is sometimes possible to use them
in a structured fashion and establish that they don’t harm correctness.

2 Ephemeral Sequences

Constant Work Updates. We can create an ephemeral version of array sequences by
changing the update , inject , and ninject primitives to update the input array destructively.
For an update sequence of length m, the resulting implementation has the following im-
proved bounds:

• O(1) work and span for update,

• O(m) work and O(lg d) span for inject , where d is the degree of the of the update
sequence,

• O(m) work and O(1) span for ninject .

Note that this implementation is significantly more work efficient than the persistent one,
and thus can make a real difference in complexity if the algorithm performs many up-
dates.

152 CHAPTER 22. EPHEMERAL AND SINGLE-THREADED SEQUENCES

3 Single-Threaded Sequences

Single-threaded sequence data structure offers a specific interface that can in some cases,
combine the best of ephemeral and persistence sequences. The data structure is persistent—
its functions have no externally visible effects—but its implementation internally uses be-
nign effects. These benign effects make the cost specification more subtle.

Example 22.1. Recall that the function update a (i, v) updates sequence a at location i with
value v returning the new sequence, and that inject a b updates sequence a using a se-
quence b of index-value pairs (each value is written to the corresponding index. Using
arrays costs, update requires Θ(|a|) work, and inject requires Θ(|a|+ |b|) work.

We can implement inject using update as follows.

inject a b = iterate update a (reverse b)

This code iterates over a making each of the updates specified in b. The problem, beyond
being completely sequential, is that each update does Θ(|a|) work so the total work is
O(|a| · |b|) instead of O(|a|+ |b|). The problem is that it is a waste to copy the sequence for
every update.

Data Type 22.1 (Single Threaded Sequences). For any element typeα, theα- single threaded
sequence (stseq) data type is the type Tα consisting of the set of all α stseq’s, and the fol-
lowing functions.

fromSeq : Sα → Tα
toSeq : Tα → Sα
nth : Tα → N → α
update : Tα → (N× α) → Tα
inject : Tα → SN×α → Tα

where Sα are standard sequences, and nth , update , and inject behave as they do for stan-
dard sequences.

An stseq is basically a sequence but with very little functionality. Other than converting to
and from sequences, the only functions are to read from a position of the sequence (nth),
update a position of the sequence (update), or update multiple positions in the sequence
(inject). To use other functions from the sequence library, one needs to covert an stseq back
to a sequence (using toSeq).

To define the cost specification we need to distinguish between the latest version of an
stseq , and earlier versions. Whenever we update a sequence, we create a new version,
and the old version is still around due to the persistence. The cost specification then gives
different costs for updating the latest version and old versions. Here we only define the
cost for updating and accessing the latest version, because this is the only way we will be
using an stseq .

3. SINGLE-THREADED SEQUENCES 153

Cost Specification 22.2 (Single Threaded Array Sequence).

Work Span
fromSeq a O (|a|) O (1)
toSeq a O (|a|) O (1)
nth a i O (1) O (1)
update a (i, v) O (1) O (1)
inject a b O(|b|) O (lg(degree(d)))

In the cost specification the work for both nth and update is O (1), which is asymptotically
as good as we can get. Again, however, this is only when a is the latest version of a se-
quence (i.e. no one else has updated it). The work for inject is proportional to the number
of updates. It can be viewed as a parallel version of update .

Example 22.2 (Inject with Update Revisited). If we return to our previous example:

inject a b = iterate update a (reverse b)

Using single threaded array sequences, the work is now just Θ(|b|) since each of the |b|
updates take constant work, and every update is on the last version. The span, however,
is also Θ(|b|) since iterate is fully sequential. Therefore the built in inject is significantly
better for parallelism, but they both take the same amount of work.

Applications in this Book. In this book we can use stseq ’s for some graph algorithms,
including breadth-first search (BFS) and depth-first search (DFS), and for hash tables.

3.1 Implementation

You might be curious about how single threaded sequences can be implemented so than
they act purely functional but match the given cost specification. Here we will just briefly
outline one approach.

The idea is to keep with each sequence a version number, and for each position in the
sequence a version list. The version number is incremented each time the sequence is
updated either with update or inject . A version list is a linked list of all the updates to the
corresponding position, each with the version number of when the update was made. The
most recent version is kept at the head of the list, and the rest are kept in decreasing order.
A mutable (impure) array is used to keep a pointer to the head of each list, and the version
number is also mutable.

We now consider how to do lookups and updates on the most recent version. For a lookup
we can just look into the given location and take the first value from the head of the linked
list. This takes constant work. To do an update requires updating the version number,
grabbing the appropriate list, adding the value and version number to the front of the
list, and then writing back the new head of the list using mutation (if done right, this is

154 CHAPTER 22. EPHEMERAL AND SINGLE-THREADED SEQUENCES

a benign effect). The update also takes constant work. Looking up or updating an old
version is more expensive. A lookup requires grabbing the list from the given position,
and then looking through the list for the correct version. An update requires copying the
whole array.

There are two tricky aspects. The first is ensuring that the lists do not get too large. This can
be implemented by copying the whole array once the number of updates equals the length
of the sequence. The second is to ensure safety in a parallel setting, which can be achieved
by using atomic read-modify-write operations. We will briefly cover such operations in the
final part of this course.

Chapter 23

Tree Sequences

In this chapter, we present an overview of an implementation of sequences based on bal-
anced trees. The implementation is parameterized based on a minimal implementation of
trees, which basically just allows cutting a tree in two (exposing), and appending two trees
(joining).
Important. This is a freshly drafted chapter. It is incomplete and likely has bugs (don’t
hesitate to point them out). It is currently written at a high level, without going into the
details. We don’t use tree sequences much in this book, so the reader can safely skip this
material.

1 Primitive Tree Sequences

As with the case of arrays, we build a full tree implementation on top of a minimal inter-
face. In later chapters we show how to implement this interface efficiently.

Data Type 23.1 (Primitive Tree Sequences). For any element type α, the α tree sequence
data type Sα is defined as:

type Tα = Zero | One of α | Two of Sα × Sα
length : Sα → N
expose : Sα → Tα
join : Tα → Sα

The expose function takes a tree sequence and returns Zero if it is empty One(x) if it con-
tains a single element x, and Two(L,R) otherwise. In the third case the results L and R are
the result of some cut of the sequence into two pieces, consisting of the left side L and the
right side R, respectively.

155

156 CHAPTER 23. TREE SEQUENCES

From the point of view of a tree, the expose function is telling us whether the tree is empty,
has a single value, or is a node with two children, L and R.

The join function can be viewed as the inverse. If given a Zero it will create an empty tree
sequence. If given One(v) it will create a tree sequence with a single element v. If given
Two(L,R) it appends the two tree sequences L and R together.

From the point of view of a tree, the join function is building an empty tree, a single valued
tree, or it is joining two trees to form a new tree. The third case can be thought of as creating
a new node with L andR as children. However, the implementation has to be smarter than
that. In particular the two trees L and R might have very different sizes and heights. In
this case the join might need to rebalance the tree to keep the result almost balanced.

Using the primitive tree sequence datatype we can implement all the functionality of the
sequence datatype. Furthermore, assuming certain cost bounds on the functionality of the
primitive sequence interface, all the costs will satisfy the cost bounds discussed in Section 3.

To define costs for our primitive tree sequences we assume that every tree sequence T has
a integer rank associated with it, which will be denoted as r(T), and that the ranks satisfy
the following conditions:

1. r(T) ∈ O(log |T |),

2. for expose(T) = Two(L,R):
r(L) + 1 ≤ r(T) ≤ r(L) + 2 and
r(R) + 1 ≤ r(T) ≤ r(R) + 2

3. r(join(Two(L,R))) ≤ max(r(L), r(R)) + 1

The rank can intuitively be thought as the height of the tree. The first condition says that
the rank (“height”) is logarithmic in the size. This indicates that the tree is reasonably
balanced (all leaves are within order log of the size). The second condition says that the
parent must have a larger rank than both its children, but not more than two greater than
either child. This means that the rank must be an upper bound on the height since the rank
decreases by at least one when going to each child. The third condition says that if you join
two trees, the resulting tree will have a rank that is at most one more than the larger rank
of the two. Note that the resulting tree might have a rank that is equal to the larger rank.
This does not break the second rule since the join might involve rotations that rearrange
the tree to keep its rank low.

It turns out that these conditions are true for a variety of balancing schemes including red-
black trees (rank is height), AVL trees (rank is based on black height), and weight-balanced
trees (rank is the log of the size using an appropriate base).

Cost Specification 23.2 (Primitive Tree Sequences). We specify the primitive tree sequence

2. PARAMETRIC IMPLEMENTATION OF TREE SEQUENCES 157

costs as follows.

Operation Work and Span
length a 1
expose a 1
join(Zero) or join(One(x)) 1
join(Two(L,R)) 1 + |r(L)− r(R)|

Hence the cost of joining two trees is proportional the absolute value of the difference of
their ranks.

Note that there is no parallelism in these operations. Parallelism will be used in building
the sequence functions from them.

In this chapter we will not describe how to satisfy these bounds, but they can be satisfied
with a variety of trees including AVL trees, Red-Black trees and Weight Balanced trees.
Intuitively the bounds should make some sense. Exposing just requires looking at the root
of the tree and returning the two children if not empty or a singleton. Keeping track of the
length just requires storing the size of the subtree in each node of the tree and looking it
up.

The join(Two(L,R)) is the only particularly interesting case. Intuitively if input treesL and
R are the same rank, then it should be cheap since we can just create a new node as their
parent and not require any balancing. The amount of rebalancing required is proportional
to the difference in rank, and hence the specified cost.

2 Parametric Implementation of Tree Sequences

We now describe how to implement most of the sequence ADT interface using primitive
tree sequences. The implementation is given by the following algorithms.

158 CHAPTER 23. TREE SEQUENCES

Algorithm 23.3 (Tree Sequence Functions).

empty = join(Zero)

singleton x = join(One(x))

append(a, b) = join(Two(a, b))

nth S i =
case (expose S) of

Zero ⇒ error
| One(x)⇒ if (i = 0) then x else error
| Two(L,R)⇒
if (i > |L|) then nth R (i− |L|)
else nth L i

map f S =
case (expose S) of

Zero ⇒ empty
| One(v)⇒ singleton(f(x))
| Two(L,R)⇒ append(mapfL || mapfR)

tabulate f n =
let tab (s, e) =

if (e ≤ s) then empty
else if (e = s+ 1) then singleton(f(s))
else append(tab(s, (s+ e)/2) || tab((s+ e)/2, e))

in tab(0, n) end

filter f S =
case (expose S) of

Zero ⇒ empty
| One(x)⇒ if f(x) then S else empty
| Two(L,R)⇒ append(filter f L || filter f R)

drop S n =
case (expose S) of

Zero ⇒ empty
| One(x)⇒ if (n = 0) then singleton(x)

else empty
| Two(L,R)⇒
if (n > |L|) then drop(R,n− |L|)
else append(drop(L, n), R)

update S (i, v) =
case (expose S) of

Zero ⇒ empty
| One(x)⇒ if (i = 0) then singleton(v) else S
| Two(L,R)⇒
if (i > |L|) then append(L, update R (i− |L|, v))
else append(update L (i, v), R)

subseq S (a, n) = take(drop(S, a), n)

flatten S = reduce append empty S

2. PARAMETRIC IMPLEMENTATION OF TREE SEQUENCES 159

For now we leave it as an exercise to show that these match the tree-sequence cost bounds.
Some of them such as nth , map and tabulate are relatively straightforward. The functions
nth , filter and drop are trickier since they involve joins on two trees that are not necessarily
almost the same size.

Part VI

Algorithm Design And Analysis

160

Chapter 24

Introduction

Designing algorithms requires a toolbox of design techniques. In this chapter we will de-
scribe some of these techniques. Basic Techniques Chapter covers the two most basic
techniques, which are algorithmic reductions and brute force. In the first we simply con-
vert one problem to another for which we already have a solution. For the second, we find
a solution, or the best solution by trying “all possibilities”. Divide and Conquer Chapter
covers Divide-and-Conquer. This is an approach you have most likely seen before, but we
go into some more depth. Contraction Chapter covers a technique called “contraction”.
The basic idea is to contract a problem into a single smaller instance of itself, recurse on the
smaller instance, and then use it to help solve the larger instance. MCSS Chapter covers
an example problem, the Maximum Contiguous Subsequence Sum (MCSS) problem, and
shows how it can be solved by using many different techniques.

In later parts we will cover other techniques such as randomization, and dynamic pro-
gramming.

161

Chapter 25

Basic Techniques

This chapter covers two basic algorithm-design techniques: reduction and brute force.

1 Algorithmic Reduction

Definition 25.1 (Algorithmic Reduction). We say that a problem A is reducable to another
problem B, if any instance of A can be reduced to one or more instances of B. This means
that it is possible to solve any instance of A by following the a three step process (also
illustrated below).

• Transform the instance of problem A to one or many instances of problem B.

• Solve all instances of problem B.

• Use results to B instances to compute result to the A instance.

We sometimes refer to problemB as a subproblem ofA, especially if the reduction involves
producing multiple instances of B.

162

2. BRUTE FORCE 163

Efficiency of Reduction. The efficiency of an algorithm obtained via reduction depends
on the complexity of the problem being reduced to, and the cost of transforming the in-
stances and putting together the results to compute final result. It is therefore important
to ensure that the costs of the instance transformation and the cost of computing the final
result remain small in comparison to the cost of the problem being reduced to.

We generally think of a reduction as being efficient if the total cost of the input and output
transformations are asymptotically the same as that of the problem being reduced to.

Example 25.1 (Reduction from Maximal to Sorting). We can reduce the problem of finding
the maximal element in a sequence to the problem of (comparison) sorting. To this end,
we sort the sequence in ascending order and then select the last element, which is one the
largest elements in the input sequence.

In this reduction, we don’t need to transform the input. To compute the final result, we
retrieve the last element in the sequence, which usually requires logarithmic work or less.
Because comparison sorting itself requires Θ(n lg n) work for a sequence of n elements,
the reduction is efficient. But, the resulting algorithm is not a work-efficient: it requires
Θ(n lg n) work, whereas we can find the maximum element of a sequence in Θ(n) work.

Example 25.2 (Reduction from Minimal to Maximal). Suppose that we wish to find the
minimal element in a sequence but only know how to find the maximal element efficiently
in linear work. We can reduce the minimality problem to the maximality problem by in-
verting the sign of all the elements in the input, finding the maximal value of the trans-
formed input, and then inverting the sign of the result to obtain the minimum. Because
these computations require linear work in the size of the input sequence, and because find-
ing the maximal element requires linear work, this reduction is quite efficient.

The resulting algorithm, which requires linear work in total, is also asymptotically work
efficient.

Remark. Reduction is a powerful technique and can allow us to solve a problem by re-
ducing it to another problem, which might appear very different or even unrelated. For
example, we might be able to reduce a problem on strings such as that of finding the short-
est superstring of a set of strings to a graph problem. We have seen an example of this
earlier in genome sequencing.
Remark (Proving Hardness by Reduction). Reduction technique can also be used “in the
other direction” to show that some problem is at least as hard as another or to establish a
lower bound. In particular, if we know (or conjecture) that problemA is hard (e.g., requires
exponential work), and we can reduce it to problem B (e.g., using polynomial work), then
we know that B must also be hard. Such reductions are central to the study of complexity
theory.

2 Brute Force

The brute-force technique involves enumerating all possible solutions, a.k.a., candidate
solutions to a problem, and checking whether each candidate solution is valid. Depend-

164 CHAPTER 25. BASIC TECHNIQUES

ing on the problem, a solution may be returned as soon as it is found, or the search may
continue until a better solution is found.

Example 25.3 (Brute-Force Sorting). We are asked to sort a set of keys a. As a first algo-
rithm, we can apply the brute force technique by considering the candidate-solution space
(sequence of keys), enumerating this space by considering each candidate, and checking
that it is sorted.

More precisely speaking, this amounts to trying all permutations of a and testing that each
permutation is sorted. We return as soon as we find a sorted permutation. Because there
are n! permutations and n! is very large even for small n, this algorithm is inefficient. For
example, using Sterling’s approximation, we know that 100! ≈ 100

e

100 ≥ 10100. There are
only about 1080 atoms in the universe so there is probably no feasible way we could apply
the brute force method directly. We conclude that this approach to sorting is not tractable,
because it would require a lot of energy and time for all but tiny inputs.

Remark. The total number of atoms in the (known) universe, which is less than 10100 is a
good number to remember. If your solution requires this much work or time, it is probably
intractable.
Important. Brute-force algorithms are usually naturally parallel. Enumerating all candidate
solutions (e.g., all permutations, all elements in a sequence) is typically easy to do in par-
allel and so is testing that a candidate solution is indeed a valid solution. But brute-force
algorithms are usually not work efficient and therefore not desirable—in algorithm design,
our first priority is to minimize the total work and only then the span.

Example 25.4 (Maximal Element). Suppose that we are given a sequences of natural num-
bers and we wish to find the maximal number in the sequence. To apply the brute force
technique, we first identify the solution space, which consists of the elements of the in-
put sequence. The brute-force technique advises uses to try all candidate solutions. We
thus pick each element and test that it is greater or equal to all the other elements in the
sequence. When we find one such element, we know that we have found the maximal
element.

This algorithm requires Θ(n2) comparisons and can be effective for very small inputs, but
it is far from an optimal algorithm, which would perform Θ(n) comparisons. .

Example 25.5 (Brute-Force Overlaps). Given two strings a and b, let’s define the (maxi-
mum) overlap between a and b as the largest suffix of a that is also a prefix of b. For ex-
ample, the overlap between “15210” and “2105” is “210”, and the overlap between “15210”
and “1021” is “10”.

We can find the overlap between a and b by using the brute force technique. We first note
that the solution space consists of the suffixes of a that are also prefixes of b. To apply brute
force, we consider each possible suffix of a and check if it is a prefix of b. We then select the
longest such suffix of a that is also a prefix of b.

The work of this algorithm is |a| · |b|, i.e., the product of the lengths of the strings. Because
we can try all positions in parallel, the span is determined by the span of checking that a
particular prefix is also a suffix, which isO(lg |b|). Selecting the maximum requiresO(lg |a|)
span. Thus the total span is O(lg (|a|+ |b|)).

2. BRUTE FORCE 165

Exercise 25.1. The analysis given in the example above is not “tight” in the sense that
there is a bound that is asymptotically dominated by O(|a| · |b|). Can you improve on the
bound?

Example 25.6 (Brute-Force Shortest Paths). Consider the following problem: we are given
a graph where each edge is assigned distance (e.g., a nonnegative real number), and asked
to find the shortest path between two given vertices in the graph.

Using brute-force, we can solve this problem by enumerating the solution space, which is
the set of all paths between the given two vertices, and selecting the path with the smallest
total distance. To compute the total distance over the path, we sum up the distances of all
edges on the path.

Example 25.7 (Brute-Force Shortest Distances). Consider the following variant of the short-
est path problem: we are given a graph where each edge is assigned a distance (e.g., a
nonnegative real number), and asked to find the shortest distance between two given ver-
tices in the graph. This problem differs from the one above, because it asks for the shortest
distance rather than the path.

Using brute-force, we might want to solve this problem by enumerating the solution set,
which is the real numbers starting from zero, and selecting the smallest one. But, this is
impossible, because real numbers are not countable, and cannot be enumerated.

One solution is to use the reduction technique and reduce the problem to the shortest-path
version of the problem described above and then compute the distance of the returned
path.

As an additional refinement, we can reformulate the shortest-path problem to return the
distance of the shortest path in addition to the path itself. With this refinement, computing
the final result requires no additional computation beyond returning the distance.

Important (Strengthening). We used an important technique in the shortest-paths example
where we refined the problem that we are reducing to so that it returns us more information
than strictly necessary. This technique is called strengthening and is commonly employed
to improve efficiency by reducing redundancy.

Example 25.8 (Brute-Force Shortest Paths (Decision Version)). Consider the “decision prob-
lem” variant of the shortest path problem: we are given a graph where each edge is as-
signed a distance (e.g., a nonnegative real number), and we are given a budget, which is a
distance value. We are asked to check whether there is a path between two given vertices
in the graph that is shorter than the given budget. This problem differs from the shortest
path problem, because it asks us to return a “Yes” or “No” answer. Such problems are
called decision problems.

Using brute force, we could enumerate all candidate solutions, which are either “Yes” or
“No”, and test whether each one is indeed a valid solution. In this case, this does not help,
because we are back to our original problem that we started with. Again, we can “refine”
our brute-force approach a bit by reducing it to the original shortest-path problem , and
then checking whether the distance of the resulting path is larger than the budget.

166 CHAPTER 25. BASIC TECHNIQUES

Remark. Experienced algorithms designers perform reductions between different variants
of the problem as shown in the last two examples “quietly” (Example 25.7 and Exam-
ple 25.8). That is, they don’t explicitly state the reduction but simply apply the brute-force
technique to a slightly different set of candidate solutions. For beginners and even for
experienced designers, however, recognizing such reductions can be instructive.

Remark (Utility of Brute Force). Even though brute-force algorithms are usually inefficient,
they can be useful.

• Brute-force algorithms are usually easy to design and are a good starting point to-
ward a more efficient algorithm. They can help in understanding the structure of the
problem, and lead to a more efficient algorithm.

• In practice, a brute-force algorithm can help in testing the correctness of a more effi-
cient algorithm by offering a solution that is easy to implement correctly.

Chapter 26

Divide and Conquer

This chapter describes the divide-and-conquer technique, an important algorithm-design
technique, and applies it to several problems. Divide and conquer is an effective technique
for solving a variety of problems, and usually leads to efficient and parallel algorithms.

1 Divide and Conquer

A divide-and-conquer algorithm has a distinctive anatomy: it has a base case to handle
small instances and an inductive step with three distinct phases: “divide”, “recur”, and
“combine.” The divide phase divides the problem instance into smaller instances; the
recur phase solves the smaller instances; and the combine phase combines the results for
the smaller instance to construct the result to the larger instance.

Definition 26.1 (Divide-And-Conquer Algorithm). A divide-and-conquer algorithm has
the following structure.

Base Case: When the instance I of the problem P is sufficiently small, compute the solu-
tion P (I) perhaps by using a different algorithm.

Inductive Step:

1. Divide instance I into some number of smaller instances of the same problem
P .

2. Recur on each of the smaller instances and compute their solutions.

3. Combine the solutions to obtain the solution to the original instance I .

Example 26.1. The drawing below illustrates the structure of a divide-and-conquer algo-
rithm that divides the problem instance into three independent subinstances.

167

168 CHAPTER 26. DIVIDE AND CONQUER

Properties of Divide-and-Conquer Algorithms. Divide-and-Conquer has several impor-
tant properties.

• It follows the structure of an inductive proof, and therefore usually leads to relatively
simple proofs of correctness. To prove a divide-and-conquer algorithm correct, we
first prove that the base case is correct. Then, we assume by strong (or structural) in-
duction that the recursive solutions are correct, and show that, given correct solutions
to smaller instances, the combined solution is correct.

• Divide-and-conquer algorithms can be work efficient. To ensure efficiency, we need
to make sure that the divide and combine steps are efficient, and that they do not
create too many sub-instances.

• The work and span for a divide-and-conquer algorithm can be expressed as a math-
ematical equation called recurrence , which can be usually be solved without too
much difficulty.

• Divide-and-conquer algorithms are naturally parallel, because the sub-instances can
be solved in parallel. This can lead to significant amount of parallelism, because each
inductive step can create more independent instances. For example, even if the algo-
rithm divides the problem instance into two subinstances, each of those subinstances
could themselves generate two more subinstances, leading to a geometric progres-
sion, which can quickly produce abundant parallelism.

1. DIVIDE AND CONQUER 169

Analysis of Divide-and-Conquer Algorithms. Consider an algorithm that divides a prob-
lem instance of size n into k > 1 independent subinstances of sizes n1, n2, . . . nk, recursively
solves the instances, and combine the solutions to construct the solution to the original in-
stance.

We can write the work of such an algorithm using the recurrence then

W (n) = Wdivide(n) +

k∑
i=1

W (ni) + Wcombine(n) + 1.

The work recurrence simply adds up the work across all phases of the algorithm (divide,
recur, and combine).

To analyze the span, note that after the instance is divided into subinstance, the subin-
stances can be solved in parallel (because they are independent), and the results can be
combined. The span can thus be written as the recurrence:

S(n) = Sdivide(n) +
k

max
i=1

S(ni) + Scombine(n) + 1.

Note. The work and span recurrences for a divide-and-conquer algorithm usually follow
the recursive structure of the algorithm, but is a function of size of the arguments instead
of the actual values.

Example 26.2 (Maximal Element). We can find the maximal element in a sequence using
divide and conquer as follows. If the sequence has only one element, we return that el-
ement, otherwise, we divide the sequence into two equal halves and recursively and in
parallel compute the maximal element in each half. We then return the maximal of the
results from the two recursive calls. For a sequence of length n, we can write the work and
span for this algorithm as recurrences as follows:

W (n) =

{
Θ(1) if n ≤ 1
2W (n/2) + Θ(1) otherwise

S(n) =

{
Θ(1) if n ≤ 1
S(n/2) + Θ(1) otherwise.

This recurrences yield

W (n) = Θ(n) and
S(n) = Θ(lg n).

Algorithm 26.2 (Reduce with Divide and Conquer). The reduce primitive performs a com-
putation that involves applying an associative binary operation op to the elements of a se-
quence to obtain (reduce the sequence to) a final value. For example, reducing the sequence
〈 0, 1, 2, 3, 4 〉with the + operation gives us 0 + 1 + 2 + 3 + 4 = 10. If the operation requires
constant work (and thus span), then the work and span of a reduction is Θ(n) and Θ(lg n)
respectively.

170 CHAPTER 26. DIVIDE AND CONQUER

We can write the code for the reduce primitive on sequences as follows.

reduceDC f id a =
if isEmpty a then

id
else if isSingleton a then
a[0]

else
let

(l, r) = splitMid a
(a, b) = (reduceDC f id l || reduceDC f id r)

in
f(a, b)

end

2 Merge Sort

In this section, we consider the comparison sorting problem and the merge-sort algorithm,
which offers a divide-and-conquer algorithm for it.

Definition 26.3 (The Comparison-Sorting Problem). Given a sequence a of elements from
a universe U , with a total ordering given by <, return the same elements in a sequence r in
sorted order, i.e. r[i] ≤ r[i+ 1], 0 < i ≤ |a| − 1.

Algorithm 26.4 (Merge Sort). Given an input sequence, merge sort divides it into two
sequences that are approximately half the length, sorts them recursively, and merges the
sorted sequences. Mergesort can be written as follows.

mergeSort a =
if |a| ≤ 1 then
a

else
let

(l, r) = splitMid a
(l′, r′) = (mergeSort l || mergeSort r)

in
merge(l′, r′)

end

Note. In the merge sort algorithm given above the base case is when the sequence is empty
or contains a single element. In practice, however, instead of using a single element or
empty sequence as the base case, some implementations use a larger base case consisting
of perhaps ten to twenty keys.

3. SEQUENCE SCAN 171

Correctness and Cost. To prove correctness we first note that the base case is correct.
Then by induction we note that l′ and r′ are sorted versions of l and r. Because l and r
together contain exactly the same elements as a, we conclude that merge (l′, r′) returns a
sorted version of a.

For the work and span analysis, we assume that merging can be done in Θ(n) work and
Θ(lg n) span, where n is the sum of the lengths of the two sequences. We can thus write the
work and span for this sorting algorithm as

W (n) =

{
Θ(1) if n ≤ 1
2W (n/2) + Θ(n) otherwise

S(n) =

{
Θ(1) if n ≤ 1
S(n/2) + Θ(lg n) otherwise.

The recurrences solve to

W (n) = Θ(n lg n)

S(n) = Θ(lg2 n).

Remark (Quick Sort). Another divide-and-conquer algorithm for sorting is the quick-sort
algorithm. Like merge sort, quick sort requires Θ(n log n) work, which is optimal for
the comparison sorting problem, but only “in expectation” over random decisions that
it makes during its execution. While merge sort has a trivial divide step and interesting
combine step, quick sort has an interesting divide step but trivial combine step. We will
study quick sort in greater detail.

3 Sequence Scan

Intuition for Scan with Divide and Conquer. To develop some intuition on how to de-
sign a divide-and-conquer algorithm for the sequence scan problem, let’s start by dividing
the sequence in two halves, solving each half, and then putting the results together.

For example, consider the sequence 〈 2, 1, 3, 2, 2, 5, 4, 1 〉. If we divide in the middle and
scan over the two resulting sequences we obtain (b, b′) and (c, c′), such that

(b, b′) = (〈 0, 2, 3, 6 〉 , 8) , and
(c, c′) = (〈 0, 2, 7, 11 〉 , 12) .

Note now that b already gives us the first half of the solution. To compute the second half,
observe that in calculating c in the second half, we started with the identity instead of the
sum of the first half, b′. Therefore, if we add the sum of the first half, b′, to each element of
c, we would obtain the desired result.

172 CHAPTER 26. DIVIDE AND CONQUER

Algorithm 26.5 (Scan with Divide and Conquer). By refining the intuitive description
above, we can obtain a divide-and-conquer algorithm for sequences scan, which is given
below.

scanDC f id a =
if |a| = 0 then

(〈 〉 , id)
else if |a| = 1 then

(〈 id 〉 , a[0])
else
let

(b, c) = splitMid a
((l, b′), (r, c′)) = (scanDC f id b || scanDC f id c)
r′ = 〈 f(b′, x) : x ∈ r 〉

in
(append (l, r′), f(b′, c′))

end

Remark. Observe that this algorithm takes advantage of the fact that id is really the identity
for f , i.e. f(id, x) = x.

Cost Analysis. We consider the work and span for the algorithm. Note that the combine
step requires a map to add b′ to each element of c, and then an append. Both these take
O(n) work and O(1) span, where n = |a|. This leads to the following recurrences for the
whole algorithm:

W (n) = 2W (n/2) +O(n) ∈ O(n log n)
S(n) = S(n/2) +O(1) ∈ O(log n).

Although this is much better than O(n2) work, we can do better by using another design
technique called contraction.

4 Euclidean Traveling Salesperson Problem

We consider a variant of the well-known Traveling Salesperson Problem (TSP) and design
a divide-and-conquer heuristic for it. This variant, known as the Euclidean Traveling Sales-
person Problem (eTSP), is NP hard. It requires solving the TSP problem in graphs where
the vertices (e.g., cities) lie in a Euclidean space and the edge weights (e.g., distance mea-
sure between cities) is the Euclidean distance. More specifically, we’re interested in the
planar version of the eTSP problem, defined as follows:

Definition 26.6 (The Planar Euclidean Traveling Salesperson Problem). Given a set of
points P in the 2-d plane, the planar Euclidean traveling salesperson (eTSP) problem is
to find a tour of minimum total distance that visits all points in P exactly once, where the
distance between points is the Euclidean (i.e. `2) distance.

4. EUCLIDEAN TRAVELING SALESPERSON PROBLEM 173

Example 26.3. Assuming that we could go from one place to another using your personal
airplane, this is the problem we would want to solve to find a minimum length route visit-
ing your favorite places in Pittsburgh.

As with the TSP, eTSP is NP-hard, but it is easier to approximate. Unlike the TSP problem,
which only has constant approximations, it is known how to approximate this problem to
an arbitrary but fixed constant accuracy ε in polynomial time (the exponent of n has 1/ε
dependency). That is, such an algorithm is capable of producing a solution that has length
at most (1 + ε) times the length of the best tour.
Note. In Section 2, we cover another approximation algorithm for a metric variant of TSP
that is based on Minimum Spanning Trees (MST). That approximation algorithm gives a
constant-approximation guarantee.

Intuition for a Divide and Conquer Algorithm for eTSP. We can solve an instance of the
eTPS problem by splitting the points by a cut in the plane, solving the eTSP instances on
the two parts, and then merging the solutions in some way to construct a solution for the
original problem.

For the cut, we can pick a cut that is orthogonal to the coordinate lines. We could for
example find the dimension along which the points have a larger spread, and then cut just
below the median point along that dimension.

This division operation gives us two smaller instances of eTSP, which can then be solved
independently in parallel, yielding two cycles. To construct the solution for the original
problem, we can merge the solutions. To merge the solution in the best possible way, we
can take an edge from each of the two smaller instances, remove them, and then bridge the
end points across the cut with two new edges. For each such pair of edges, there are two
possible ways that we can bridge them, because when we are on the one side, we can jump
to any one of the endpoints of the two bridges. To construct, the best solution, we can try
out which one of these yields the best solution and take that one.

To choose which swap to make, we consider all pairs of edges of the recursive solutions
consisting of one edge e` = (u`, v`) from the left and one edge er = (ur, vr) from the right

174 CHAPTER 26. DIVIDE AND CONQUER

and determine which pair minimizes the increase in the following cost:

swapCost((u`, v`), (ur, vr)) = ‖u` − vr‖+ ‖ur − v`‖ − ‖u` − v`‖ − ‖ur − vr‖

where ‖u− v‖ is the Euclidean distance between points u and v.

Algorithm 26.7 (Divide-and-Conquer eTSP). By refining the intuition describe above, we
arrive at a divide-and-conquer algorithm for solving eTPS, whose pseudo-code is shown
below.

eTSP (P) =
if |P | < 2 then
raise TooSmall

else if |P | = 2 then
〈 (P [0], P [1]), (P [1], P [0]) 〉

else
let

(P`, Pr) = split P along the longest dimension
(L,R) = (eTSP P`) || (eTSP Pr)
(c, (e, e′)) = minValfirst {(swapCost(e, e′), (e, e′)) : e ∈ L, e′ ∈ R}

in
swapEdges (append (L,R), e, e′)

end

The function minValfirst uses the first value of the pairs to find the minimum, and returns
the (first) pair with that minimum. The function swapEdges(E, e, e′) finds the edges e and
e′ in E and swaps the endpoints. As there are two ways to swap, it picks the cheaper one.

Remark. This heuristic divide-and-conquer algorithm is known to work well in practice.

Cost Analysis. Let’s analyze the cost of this algorithm in terms of work and span. We
have

W (n) = 2W (n/2) +O(n2)

S(n) = S(n/2) +O(log n)

We have already seen the recurrence S(n) = S(n/2) + O(log n), which solves to O(log2 n).
Here we’ll focus on solving the work recurrence.

To solve the recurrence, we apply a theorem proven earlier , and obtain

W (n) = O(n2).

5. DIVIDE AND CONQUER WITH REDUCE 175

Strengthening. In applications of divide-and-conquer technique that we have consider
so far in this chapter, we divide a problem instance into instances of the same problem. For
example, in sorting, we divide the original instance into smaller instances of the sorting
problem. Sometimes, it is not possible to apply this approach to solve a given problem,
because solving the same problem on smaller instances does not provide enough informa-
tion to solve the original problem. Instead, we will need to gather more information when
solving the smaller instances to solve the original problem. In this case, we can strengthen
the original problem by requiring information in addition to the information required by
the original problem. For example, we might strengthen the sorting problem to return to us
not just the sorted sequence but also a histogram of all the elements that count the number
of occurrences for each element.

5 Divide and Conquer with Reduce

Many divide-and-conquer algorithms have the following structure, where emptyVal , base,
and myCombine span for algorithm specific values.

myDC a =
if |a| = 0 then

emptyVal
else if |a| = 1 then

base(a[0])
else
let (l, r) = splitMid a in

(l′, r′) = (myDC l || myDC r)
in

myCombine (l′, r′)
end

Algorithms that fit this pattern can be implemented in one line using the sequence reduce
function. Turning a divide-and-conquer algorithm into a reduce-based solution is as simple
as invoking reduce with the following parameters

reduce myCombine emptyVal (map base a).

Important. This pattern does not work in general for divide-and-conquer algorithms. In
particular, it does not work for algorithms that do more than an simple split that partitions
their input in two parts in the middle. For example, it cannot be used for implementing
the quick-sort algorithm, because the divide step partitions the data with respect to a pivot.
This step requires picking a pivot, and then filtering the data into elements less than, equal,
and greater than the pivot. It also does not work for divide-and-conquer algorithms that
split more than two ways, or make more than two recursive calls.

Chapter 27

Contraction

This chapter describes the contraction technique for algorithm design and applies it to
several problems.

1 Contraction Technique

A contraction algorithm has a distinctive anatomy: it has a base case to handle small in-
stances and an inductive step with three distinct phases: “contract, “recur”, and “expand.”
It involves solving recursively smaller instances of the same problem and then expanding
the solution for the larger instance.

Definition 27.1 (Contraction). A contraction algorithm for problem P has the following
structure.

Base Case: If the problem instance is sufficiently small, then compute and return the solu-
tion, possibly using another algorithm.

Inductive Step(s): If the problem instance is sufficiently large, then

• Apply the following two steps, as many times as needed.

1. Contract: “contract”, i.e., map the instance of the problem P to a smaller
instance of P .

2. Solve: solve the smaller instance recursively.

• Expand the solutions to smaller instance to solve the original instance.

Remark. Contraction differs from divide and conquer in that it allows there to be only one
independent smaller instance to be recursively solved. There could be multiple dependent
smaller instances to be solved one after another (sequentially).

176

2. REDUCE WITH CONTRACTION 177

Properties of Contraction. Contraction algorithms have several important properties.

• Due to their inductive structure, we can establish the correctness of a contraction
algorithm using principles of induction: we first prove correctness for the base case,
and then prove the general (inductive) case by using strong induction, which allows
us to assume that the recursive call is correct.

• The work and span of a contraction algorithm can be expressed as a mathematical
recurrence that reflects the structure of the algorithm itself. Such recurrences can
then unually be solved using well-understood techniques, and without significant
difficulty.

• Contraction algorithms can be work efficient, if they can reduce the problem size
geometrically (by a constant factor greater than 1) at each contraction step, and if the
contraction and the expansions steps are efficient.

• Contraction algorithms can have a low span (high parallelism), if size of the problem
instance decreases geometrically, and if contraction and expansion steps have low
spans.

Example 27.1 (Maximal Element). We can find the maximal element in a sequence a using
contraction as follows. If the sequence has only one element, we return that element, oth-
erwise, we can map the sequence a into a sequence bwhich is half the length by comparing
the elements of a at consecutive even-odd positions and writing the larger into b. We then
find the largest in b and return this as the result.

For example, we map the sequence 〈 1, 2, 4, 3, 6, 5 〉 to 〈 2, 4, 6 〉. The largest element of this
sequence, 6 is then the largest element in the input sequence.

For a sequence of length n, we can write the work and span for this algorithm as recur-
rences as follows

W (n) =

{
Θ(1) if n ≤ 1
W (n/2) + Θ(n) otherwise

S(n) =

{
Θ(1) if n ≤ 1
S(n/2) + Θ(1) otherwise.

Using the techniques discussed at the end of this chapter, we can solve the recurrences to
obtain W (n) = Θ(n) and S(n) = Θ(lg n).

2 Reduce with Contraction

The reduce primitive performs a computation that involves applying an associative binary
operation op to the elements of a sequence to obtain (reduce the sequence to) a final value.
For example, reducing the sequence 〈 0, 1, 2, 3, 4 〉with the + operation gives us 0 + 1 + 2 +
3 + 4 = 10. Recall that the type signature for reduce is as follows.

reduce (f : α ∗ α→ α) (id : α) (a : Sα) : α,

178 CHAPTER 27. CONTRACTION

where f is a binary function, a is the sequence, and id is the left identity for f .

Even though we can define reduce broadly for both associative and non-associative func-
tions, in this section, we assume that the function f is associative.

Generalizing the algorithm for computing the maximal element leads us to an implementa-
tion of an important parallelism primitive called reduce. The crux in using the contraction
technique is to design an algorithm for reducing an instance of the problem to a geomet-
rically smaller instance by performing a parallel contraction step. To see how this can be
done, consider instead applying the function f to consecutive pairs of the input.

For example if we wish to compute the sum of the input sequence

〈 2, 1, 3, 2, 2, 5, 4, 1 〉

by using the addition function, we can contract the sequence to

〈 3, 5, 7, 5 〉 .

Note that the contraction step can be performed in parallel, because each pair can be con-
sidered independently in parallel.

By using this contraction step, we have reduced the input size by a factor of two. We
next solve the resulting problem by invoking the same algorithm and apply expansion to
construct the final result. We note now that by solving the smaller problem, we obtain a
solution to the original problem, because the sum of the sequence remains the same as that
of the original. Thus, the expansion step requires no additional work.

Algorithm 27.2 (Reduce with Contraction). An algorithm for reduce using contraction is
shown below; for simplicity, we assume that the input size is a power of two.

(* Assumption: |a| is a power of 2 *)
reduceContract f id a =
if |a| = 1 then
a[0]

else
let
b = 〈 f(a[2i], a[2i+ 1]) : 0 ≤ i < b|a|/2c 〉

in
reduceContract f id b

end

Cost of Reduce with Contraction. Assuming that the function being reduced over per-
forms constant work, parallel tabulate in the contraction step requires linear work, we can
thus write the work of this algorithm as

W (n) = W (n/2) + n.

3. SCAN WITH CONTRACTION 179

This recurrence solves to O(n).

Assuming that the function being reduced over performs constant span, parallel tabulate
in the contraction step requires constant span; we can thus write the work of this algorithm
as

S(n) = S(n/2) + 1.

This recurrence solves to O(log n).

3 Scan with Contraction

We describe how to implement the scan sequence primitive efficiently by using contraction.
Recall that the scan function has the type signature

scan (f : α ∗ α→ α) (id : α) (a : Sα) : (Sα ∗ α)

where f is an associative function, a is a sequence, and id is the identity element of f . When
evaluated with a function and a sequence, scan can be viewed as applying a reduction to
every prefix of the sequence and returning the results of such reductions as a sequence.

Example 27.2. Applying scan ‘ + ‘, i.e., “plus scan” on the sequence 〈 2, 1, 3, 2, 2, 5, 4, 1 〉
returns

(〈 0, 2, 3, 6, 8, 10, 15, 19 〉 , 20) .

We will use this as a running example.

Based on its specification, a direct algorithm for scan is to apply a reduce to all prefixes
of the input sequence. Unfortunately, this easily requires quadratic work in the size of the
input sequence.

We can see that this algorithm is inefficient by noting that it performs lots of redundant
computations. In fact, two consecutive prefixes overlap significantly but the algorithm
does not take advantage of such overlaps at all, computing the result for each overlap
independently.

By taking advantage of the fact that any two consecutive prefixes differ by just one element,
it is not difficult to give a linear work algorithm (modulo the cost of the application of the
argument function) by using iteration.

Such an algorithm may be expressed as follows

scan f id a = h (iterate g (〈 〉 , id) a) ,

where

g((b, y), x) = ((append 〈 y 〉 b), f(y, x))

180 CHAPTER 27. CONTRACTION

and

h(b, y) = ((reverse b), y)

where reverse reverses a sequence.

This algorithm is correct but it almost entirely sequential, leaving no room for parallelism.

Scan via Contraction, the Intuition. Because scan has to compute some value for each
prefix of the given sequence, it may appear to be inherently sequential. We might be in-
clined to believe that any efficient algorithms will have to keep a cumulative “sum,” com-
puting each output value by relying on the “sum” of the all values before it.

We will now see that we can implement scan efficiently using contraction. To this end, we
need to reduce a given problem instance to a geometrically smaller instance by applying a
contraction step. As a starting point, let’s apply the same idea as we used for implementing
reduce with contraction .

Applying the contraction step from the reduce algorithm described above, we would re-
duce the input sequence

〈 2, 1, 3, 2, 2, 5, 4, 1 〉

to the sequence

〈 3, 5, 7, 5 〉 ,

which if recursively used as input would give us the result

(〈 0, 3, 8, 15 〉 , 20).

Notice that in this sequence, the elements in even numbered positions are consistent with
the desired result:

(〈 0, 2, 3, 6, 8, 10, 15, 19 〉 , 20).

Half of the elements are correct because the contraction step, which pairs up the elements
and reduces them, does not affect, by associativity of the function being used, the result at
a position that do not fall in between a pair.

To compute the missing element of the result, we will use an expansion step and com-
pute each missing elements by applying the function element-wise to the corresponding
elements in the input and the results of the recursive call to scan. The drawing below illus-
trates this expansion step.

3. SCAN WITH CONTRACTION 181

Algorithm 27.3 (Scan Using Contraction, for Powers of 2). Based on the intuitive descrip-
tion above, we can write the pseudo-code for scan as follows. For simplicity, we assume
that n is a power of two.

(* Assumption: |a| is a power of two. *)
scan f id a =
if |a| = 0 then
(〈 〉 , id)
else if |a| = 1 then

(〈 id 〉 , a[0])
else
let
a′ = 〈 f(a[2i], a[2i+ 1]) : 0 ≤ i < n/2 〉
(r, t) = scan f id a′

in

(〈 pi : 0 ≤ i < n 〉 , t), where pi =

{
r[i/2] even(i)

f(r[i/2], a[i− 1]) otherwise

end

Cost of Scan with Contraction. Let’s assume for simplicity that the function being ap-
plied has constant work and constant span. We can write out the work and span for the
algorithm as a recursive relation as

W (n) = W (n/2) + n, and
S(n) = S(n/2) + 1,

because 1) the contraction step which tabulates the smaller instance of the problem per-
forms linear work in constant span, and 2) the expansion step that constructs the output
by tabulating based on the result of the recursive call also performs linear work in constant
span.

These recursive relations should look familiar. They are the same as those that we ended
up with when we analyzed the work and span of our contraction-based implementation of
reduce and yield

W (n) = O(n)

S(n) = O(log n).

Chapter 28

Maximum Contiguous
Subsequence Sum

This chapter reviews the classic problem of finding the contiguous subsequence of a se-
quence with the maximal value, and provides several algorithms for the problem by apply-
ing several design techniques including brute force , reduction , and divide and conquer
.

1 The Problem

Definition 28.1 (Subsequence). A subsequence b of a sequence a is a sequence that can
be derived from a by deleting zero or more elements of a without changing the order of
remaining elements.

Example 28.1. Several examples follow.

• The sequence 〈 0, 2, 4 〉 is a subsequence of 〈 0, 1, 2, 2, 3, 4, 5 〉.

• The sequence 〈 2, 4, 3 〉 is a not subsequence of 〈 0, 1, 2, 2, 3, 4, 5 〉 but 〈 2, 3, 4 〉 is.

Definition 28.2 (Contiguous Subsequence). A contiguous subsequence is a subsequence
that appears contiguously in the original sequence. For any sequence a of n elements, the
subsequence

b = a[i · · · j], 0 ≤ i ≤ j < n,

consisting of the elements of a at positions i, i+ 1, . . . , j is a contiguous subsequence of b.

182

1. THE PROBLEM 183

Example 28.2. For a = 〈1,−2, 0, 3,−1, 0, 2,−3 〉, here are some contiguous subsequences:

• 〈 1 〉,

• 〈 − 2, 0, 3 〉, and

• 〈 3,−1, 0, 2,−3 〉.

The sequence 〈 − 1, 2,−3 〉 is not a contiguous subsequence, even though it is a subse-
quence.

Definition 28.3 (The Maximum Contiguous Subsequence (MCS) Problem). Given a se-
quence of integers, the Maximum Contiguous Subsequence Problem (MCS) requires find-
ing the contiguous subsequence of the sequence with maximum total sum, i.e.,

MCS (a) = arg max 0 ≤ i, j < |a|

(
j∑
k=i

a[k]

)
.

We define the sum of an empty sequence to be −∞.

Example 28.3. For a = 〈 1,−2, 0, 3,−1, 0, 2,−3 〉 , a maximum contiguous subsequence is,
〈 3,−1, 0, 2 〉; another is 〈 0, 3,−1, 0, 2 〉 .

Definition 28.4 (The Maximum Contiguous Subsequence Sum (MCSS) Problem). Given a
sequence of integers, the Maximum Contiguous Subsequence Sum Problem (MCSS)

requires finding the total sum of the elements in the contiguous subsequence of the se-
quence with maximum total sum, i.e.,

MCSS (a) = max

{
j∑
k=i

a[k] : 0 ≤ i, j < |a|

}
.

Example 28.4. For a = 〈 1,−2, 0, 3,−1, 0, 2,−3 〉 〉 , a maximum contiguous subsequence is,
〈 3,−1, 0, 2 〉 ; another is 〈 0, 3,−1, 0, 2 〉 . Thus MCSS (a) = 4.

For the empty sequence, MCSS = −∞ because the sum of an empty sequence is defined
as −∞.

Note. Here we only consider sequences of integers and the addition operation to compute
the sum, the techniques that we describe should apply to sequences of other types and
other associative sum operations.

Lower Bound. To solve the MCSS problem, we need to inspect, at the very least, each
and every element of the sequence. This requires linear work in the length of the sequence
and thus solve the MCSS problem requires Ω(n) work.

184 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

Note (History of the Problem). The study of maximum contiguous subsequence problem
goes to 1970’s. The problem was first proposed in by Ulf Grenander, a Swedish statistician
and a professor of applied mathematics at Brown University, in 1977. The problem has
several names, such maximum subarray sum problem, or maximum segment sum prob-
lem, the former of which appears to be the name originally used by Grenander. Grenander
intended it to be a simplified model for maximum likelihood estimation of patterns in dig-
itized images, whose structure he wanted to understand.

According to Jon Bentley (Jon Bentley, Programming Pearls (1st edition), page 76.) in 1977,
Grenander described the problem to Michael Shamos of Carnegie Mellon University who
overnight designed a divide and conquer algorithm, which corresponds to our first divide-
and-conquer algorithm . When Shamos and Bentley discussed the problem and Shamos’
solution, they thought that it was probably the best possible. A few days later Shamos
described the problem and its history at a Carnegie Mellon seminar attended by statistician
Joseph (Jay) Kadane, who designed the work efficient algorithm within a minute. Kadane’s
algorithm correspond to the linear work and span algorithm described below.

Roadmap. The remaining sections apply various algorithm-design techniques to the MCS
and MCSS problems. To exercise our vocabulary for algorithm design, the content is or-
ganized to identify carefully the design techniques, sometimes at a level of precision that
may, especially in subsequent reads, feel pedantic.

2 Brute Force

This section presents a first solution to the MCSS problem by using the brute force tech-
nique .

Algorithm 28.5 (MCSS: Brutest Force). We can solve the MCSS problem by brute force.
First, we identify the set of candidate solutions as the set of all integers. Then we enu-
merate all integers and, for each one, check that there is a contiguous subsequence whose
sum is equal to that integer. We stop when we find the largest integer with a matching
subsequence.

Perhaps obviously, such an algorithm would not terminate, because we don’t know when
to stop. Notice, however, that the solution is bounded by the sum of all positive integers in
the sequence. We can thus stop the search when we reach that bound.

This algorithm terminates but has the undesirable characteristic that its bound depends on
the values of the elements in the sequence rather that its length.

Reduction to MCS. Our first algorithm is rather inefficient in the worst case, because
it tries a large number of candidate solutions. We can achieve a better bound by reduc-
ing MCSS problem to the Maximum Contiguous Subsequence (MCS) problem , which

2. BRUTE FORCE 185

requires finding the contiguous subsequence with the largest sum.

The reduction itself is straightforward: because both problems operate on the same input,
there is no need to transform the input. To compute the output, we sum the elements in the
sequence returned by the MCS problem. Using reduce, this requiresO(n) work andO(lg n)
span. Thus, the work and span of the reduction is O(n) and O(lg n) respectively.

Algorithm 28.6 (MCS: Brute Force). We can solve the MCS problem by brute force: we
enumerate all candidate solutions, which consist of all the contiguous subsequences of the
sequence, and find the one with the largest sum. To generate all contiguous subsequences,
we can generate all pairs of integers (i, j), 0 ≤ i ≤ j < n, compute the sum of the subse-
quence that corresponds to the pair, and pick the one with the largest total. We write the
algorithm as follows:

MCSBF a =
let

maxSum ((i, j, s), (k, `, t)) = if s > t then (i, j, s) else (k, `, t)
b = 〈 (i, j, reduce + 0 a[i · · · j]) : 0 ≤ i ≤ j < n 〉
(i, j, s) = reduce maxSum (−1,−1,−∞) b

in
(i, j)

end

Cost of Brute Force MCS. Using array sequence costs, generating the n2 subsequences
requires a total of O(n2) work and O(lg n) span. Reducing over each subsequence us-
ing reduce adds linear work per subsequence, bringing the total work to O(n3). The final
reduce that select the maximal subsequence require O(n2) work. The total work is thus
dominated by the computation of sums for each subsequence, and therefore is O(n3).

Because we can generate all pairs in parallel and compute their sum in parallel in Θ(lg n)
span using reduce, the algorithm requires Θ(lg n) span.

Algorithm 28.7 (MCSS: Brute Force). Our first algorithm uses brute force technique and a
reduction to the MCS problem, which we again solve by brute force using the brute-force
MCS algorithm . We can write the algorithm as follows:

MCSSBF a =
let

(i, j) = MCSBF a
sum = reduce ’+ ’ 0 a[i · · · j]

in
sum

end.

Strengthening. The brute force algorithm has some redundancy: to find the solution,
it computes the result for the MCS problem and then computes the sum of the result se-

186 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

quence, which is already computed by the MCS algorithm. We can eliminate this redun-
dancy by strengthening the MCS problem and requiring it to return the sum in addition to
the subsequence.

Exercise 28.1. Describe the changes to the algorithms Algorithm 28.6 and Algorithm 28.7 to
implement the strengthening described above. How does strengthening impact the work
and span costs?

Algorithm 28.8 (MCSS: Brute Force Strengthened). We can write the algorithm based on
strengthening directly as follows. Because the problem description requires returning only
the sum, we simplify the algorithm by not tracking the subsequences.

MCSSBF a =
let
b = 〈 reduce + 0 a[i · · · j] : 0 ≤ i ≤ j < n 〉

in
reduce max −∞ b

end

Cost Analysis. Let’s analyze the work and span of the strengthened brute-force algo-
rithm by using array sequences and by appealing to our cost bounds for reduce, subseq ,
and tabulate . The cost bounds for enumerating all possible subsequences and computing
their sums is as follows.

W (n) = 1 +
∑

1≤i≤j≤n

Wreduce(j − i) ≤ 1 + n2 ·Wreduce(n) = Θ(n3)

S(n) = 1 + max
1≤i≤j≤n

Sreduce(j − i) ≤ 1 + Sreduce(n) = Θ(lg n)

The final step of the brute-force algorithm is to find the maximum over these Θ(n2) com-
binations. Since the reduce for this step has Θ(n2) work and Θ(lg n) span the cost of the
final step is subsumed by other costs analyzed above. Overall, we have an Θ(n3)-work
Θ(lg n)-span algorithm.
Note. Note that the span requires the maximum over

(
n
2

)
≤ n2 values, but since lg nk =

k lg n, this is simply Θ(lg n).

Summary. When trying to apply the brute-force technique to the MCSS problem, we
encountered a problem. We solved this problem by reducing MCSS problem to another
problem, MCS. We then realized a redundancy in the resulting algorithm and eliminated
that redundancy by strengthening MCS. This is a quite common route when designing a
good algorithm: we find ourselves refining the problem and the solution until it is (close
to) perfect.

3 Applying Reduction

In the previous section , we used the brute-force technique to develop an algorithm that has

3. APPLYING REDUCTION 187

logarithmic span but large (cubic) work. In this section, we apply the reduction technique
to obtain a low span and work-efficient (linear work) algorithm for the MCSS problem.

3.1 Auxiliary Problems

Overlapping Subsequences and Redundancy. To understand how we might improve
the amount of work, observe that the brute-force algorithm performs a lot of repeated and
thus redundant work. To see why, consider the subsequences that start at some location.
For each position, e.g., the middle, the algorithm considers a subsequence that starts at the
position and at any other position that comes after it. Even though each subsequence dif-
fers from another by a single element (in the ending positions), the algorithm computes
the total sum for each of these subsequences independently, requiring linear work per
subsequence. The algorithm does not take advantage of the overlap between the many
subsequences it considers.

Reducing Redundancy. We can reduce redundancy by taking advantage of the overlaps
and computing all subsequences that start or end at a given position together. Our basic
strategy in applying the reduction technique is to use this observation. To this end, we
define two problems that are closely related to the MCSS problem, present efficient and
parallel algorithm for these problems, and then reduce the MCSS to them.

Definition 28.9 (MCSSS). The Maximum Contiguous Subsequence Sum with Start, ab-
breviated MCSSS, problem requires finding the maximum contiguous subsequence of a
sequence that starts at a given position.

Definition 28.10 (MCSSE Problem). The Maximum Contiguous Subsequence with Ending,
i.e., the MCSSE problem requires finding the maximum contiguous subsequence ending
at a specified end position.

Reducing MCSS to MCSSS and MCSSE. Observe that we can reduce the MCSS prob-
lem to MCSSS problem by enumerating over all starting positions, solving MCSSS for
each position, and taking the maximum over the results. A similar reduction works for the
MCSSE problem.

Because the inputs to all these problems are essentially the same, we don’t need to trans-
form the input. To compute the output for MCSS, we need to perform a reduce. The
reduction itself is thus efficient.

Algorithm 28.11 (An Optimal Alggorithm for MCSSS). We can solve the MCSSS problem
by first computing the sum for all subsequences that start at the given position using scan

188 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

and then finding their maximum.

MCSSSOpt a i =
let
b = scanI ’+ ’ 0 a [i · · · (|a| − 1)]

in
reduce max −∞ b

end

Because the algorithm performs one scan and one reduce, it performs Θ(n − i) work in
Θ(lg n− i) span. This is asymptotically optimal because, any algorithm for the MCSSS
problem must inspect as least n− i elements of the input sequence.

Algorithm 28.12 (An Optimal Algorithm for MCSSE). To solve the MCSSE problem effi-
ciently and in low span, we observe that any contiguous subsequence of a given sequence
can be expressed in terms of the difference between two prefixes of the sequence: the sub-
sequence A[i · · · j] is equivalent to the difference between the subsequence A[0 · · · j] and
the subsequence A[0 · · · i− 1].

Thus, we can compute the sum of the elements in a contiguous subsequence as

reduce ’+ ’ 0 a[i · · · j] = (reduce ’+ ’ 0 a[0 · · · j])− (reduce ’+ ’ 0 a[0 · · · i− 1])

where the “-” is the subtraction operation on integers.

This observation leads us to a solution to the MCSSE problem. Consider an ending po-
sition j and suppose that we have the sum for each prefix that ends at i < j. Since we
can express any subsequence ending at position j by subtracting the corresponding prefix,
we can compute the sum for the subsequence A[i · · · j] by subtracting the sum for the pre-
fix ending at j from the prefix ending at i − 1. Thus the maximum contiguous sequence
ending at position j starts at position i which has the minimum of all prefixes up to i. We
can compute the minimum prefix that comes before j by using just another scan. These
observations lead to the following algorithm.

MCSSEOpt a j =
let

(b, v) = scan ’+ ’ 0 a[0 · · · j]
w = reduce min ∞ b

in
v − w

end

Using array sequences, this algorithm performs Θ(j) work and Θ(lg(j)) span. This is op-
timal because any algorithm for MCSSE must inspect at least j elements of the input se-
quence.

3. APPLYING REDUCTION 189

3.2 Reduction to MCSSS

Algorithm 28.13 (MCSS: Reduced Force). We can find a more efficient brute-force algo-
rithm for MCSS by reducing the problem to MCSSS and using the optimal algorithm for
it .

The idea is to try all possible start positions, solve the MCSSS problem for each, and select
their maximum. The code for the algorithm is shown below.

MCSSReducedForce a =
reduce max −∞ 〈 (MCSSSOpt a i) : 0 ≤ i < n 〉 .

In the worst case, the algorithm performs Θ(n2) work in Θ(lg n) span, delivering a linear-
factor improvement in work.

Remark. By reducing MCSS to MCSSS, we were able to eliminate a certain kind of redun-
dancy: namely those that occur when solving for subsequences starting at a given position.
In the next section, we will see, how to improve our bound further.

3.3 Reduction to MCSSE

Algorithm 28.14 (MCSS by Reduction to MCSSE). We can solve the MCSS problem by
enumerating all instances of the MCSSE problem and selecting the maximum.

MCSSReducedForce2 a =
reduce max −∞ 〈 (MCSSEOpt a i) : 0 ≤ i < |a| 〉

This algorithm has O(n2) work and O(lg n) span.

The two algorithms obtained by reduction to MCSSS and reduction to MCSSE both
reduce some of the redundant work, but not all, because they don’t reduce redundancies
when solving for subsequences ending (or starting) at different positions. Next, we will
see, how to eliminate these redundant computations.

Lemma 28.1 (MCSSE Extension). Suppose that we are given the maximum contiguous
sequence, Mi ending at position i. We can compute the maximum contiguous sequence
ending at position i+ 1, Mi+1, from this by noticing that

• Mi+1 = Mi ++ 〈 a[i] 〉, or

• Mi+1 = 〈 a[i] 〉 ,

depending on the sum for each.

Exercise 28.2. Prove the MCSSE Extension lemma .

190 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

The algorithm for solving MCSS by reduction to MCSSE solves many instances of MCSSE
in parallel. If we give up some parallelism, it turns out that we can improve the work
efficiency further based on the MCSSE Extension lemma . The idea is to iterate over the
sequence and solve the MCSSE problem for each ending position. To solve the MCSSE
problem, we then take the maximum over all positions.

Algorithm 28.15 (MCSS with Iteration). The SPARC code for the algorithm for MCSS
obtained by reduction to MCSSE is shown below. We use the function iteratePrefixes to
iterate over the input sequence and construct a sequence whose ith position contains the
solution to the MCSSE problem at that position.

MCSSIterative a =
let
f (sum, x) =
if sum + x ≥ x then

sum + x
else
x

b = iteratePrefixes f −∞ a
in

reduce max −∞ b
end

Cost Analysis. Using array sequences, iteratePrefixes and reduce we are both linear work,
because the functions f and max both perform constant work. Because of iteratePrefixes ,
the span is also linear.

Algorithm 28.16 (MCSS: Work Optimal and Low Span). In our scan-based algorithm
for MCSSE , we used the observation that the maximal contiguous subsequence ending
at a given position is identified by subtracting the prefix at the ending position from the
minimum sum over all preceeding prefixes. Our new algorithm, uses the same intuition
but refines it further by noticing that

• we can compute the sum for all prefixes in one scan, and

• we can compute the minimum prefix sum preceeding all positions in one scan.

After computing these quantities, all that remains is to take the difference and select the
maximum.

3. APPLYING REDUCTION 191

MCSSOpt a =
let

(b, v) = scan ’+ ’ 0 a
c = append b 〈 v 〉
(d,) = scan min ∞ c
e = 〈 c[i]− d[i] : 0 < i < |a| 〉

in
reduce max −∞ e

end

Example 28.5. Consider the sequence a

a = 〈 1,−2, 0, 3,−1, 0, 2,−3 〉 .

Compute

(b, v) = scan + 0 a
c = append b 〈 v 〉 .

We have c = 〈 0, 1,−1,−1, 2, 1, 1, 3, 0 〉.

The sequence c contains the prefix sums ending at each position, including the element at
the position; it also contains the empty prefix.

Using the sequence c, we can find the minimum prefix up to all positions as

(d,) = scan min ∞ c

to obtain

d = 〈∞, 0, 0,−1,−1− 1,−1,−1,−1 〉 .

We can now find the maximum subsequence ending at any position i by subtracting the
value for i in c from the value for all the prior prefixes calculated in d.

Compute

e = 〈 c[i]− d[i] : 0 < i < |a| 〉
= 〈 1,−1, 0, 3, 2, 2, 4, 1 〉 .

It is not difficult to verify in this small example that the values in e are indeed the maximum
contiguous subsequences ending in each position of the original sequence. Finally, we take
the maximum of all the values is e to compute the result

reduce max −∞ e = 4.

192 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

Cost of the Algorithm. Using array sequences, and the fact that addition and minimum
take constant work, the algorithm performs Θ(n) work in Θ(lg n) span. The algorithm is
work optimal because any algorithm must inspect each and every element of the sequence
to solve the MCSS problem.

4 Divide And Conquer

4.1 A First Solution

Dividing the Input. To apply divide and conquer, we first need to figure out how to
divide the input. There are many possibilities, but dividing the input in two halves is
usually a good starting point, because it reduces the input for both subproblems equally,
reducing thus the size of the largest component, which is important in bounding the overall
span. Correctness is usually independent of the particular strategy of division.

Let us divide the sequence into two halves, recursively solve the problem on both parts,
and combine the solutions to solve the original problem.

Example 28.6. Let a = 〈 1,−2, 0, 3,−1, 0, 2,−3 〉. By using the approach, we divide the
sequence into two sequences b and c as follows

b = 〈 1,−2, 0, 3 〉

and

c = 〈−1, 0, 2,−3 〉

We can now solve each part to obtain 3 and 2 as the solutions to the subproblems. Note
that there are multiple sequences that yield the maximum sum.

Using Solutions to Subproblems. To construct a solution for the original problem from
those of the subproblems, let’s consider where the solution subsequence might come from.
There are three possibilities.

1. The maximum sum lies completely in the left subproblem.

2. The maximum sum lies completely in the right subproblem.

3. The maximum sum overlaps with both halves, spanning the cut.

The three cases are illustrated below

4. DIVIDE AND CONQUER 193

The first two cases are already solved by the recursive calls, but not the last. Assuming we
can find the largest subsequence that spans the cut, we can write our algorithm as shown
below.

Algorithm 28.17 (Simple Divide-and-Conquer for MCSS). Using a function called bestAcross
to find the largest subsequence that spans the cut, we can write our algorithm as follows.

MCSSDC a =
if |a| = 0 then
−∞

else if |a| = 1 then
a[0]

else
let

(b, c) = splitMid a
(mb,mc) = (MCSSDC b ||MCSSDC c)
mbc = bestAcross (b, c)

in
max{mb,mc,mbc}

end

Algorithm 28.18 (Maximum Subsequence Spanning the Cut). We can reduce the problem
of finding the maximum subsequence spanning the cut to two problems that we have seen
already: Maximum-Contiguous-Subsequence Sum with Start, MCSSS, and Maximum-
Contiguous-Subsequence Sum at Ending, MCSSE. The maximum sum spanning the cut
is the sum of the largest suffix on the left plus the largest prefix on the right. The prefix
of the right part is easy as it directly maps to the solution of MCSSS problem at position
0. Similarly, the suffix for the left part is exactly an instance of MCSSE problem. We can
thus use the algorithms that we have seen in the previous section for solving this problem,
Algorithm 28.11, and, Algorithm 28.12 respectively.

The cost of both of these algorithms is Θ(n) work and Θ(lg n) span and thus the total cost
is also the same.

Example 28.7. In the example above, the largest suffix on the left is 3, which is given by
the sequence 〈 3 〉 or 〈 0, 3 〉.

194 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

The largest prefix on the right is 1 given by the sequence 〈−1, 0, 2 〉. Therefore the largest
sum that crosses the middle is 3 + 1 = 4.

4.1.1 Correctness

To prove a divide-and-conquer algorithm correct, we use the technique of strong induction,
which enables to assume that correctness remains correct for all smaller subproblems. We
now present such a correctness proof for the algorithm MCSSDC .

Theorem 28.2 (Correctness of the algorithm MCSSDC). Let a be a sequence. The algorithm
MCSSDC returns the maximum contiguous subsequence sum in a gives sequence—and
returns −∞ if a is empty.

Proof. The proof will be by (strong) induction on length of the input sequence. Our in-
duction hypothesis is that the theorem above holds for all inputs smaller than the current
input.

We have two base cases: one when the sequence is empty and one when it has one element.
On the empty sequence, the algorithm returns −∞ and thus the theorem holds. On any
singleton sequence 〈 x 〉, the MCSS is x, because

max

{
j∑
k=i

a[k] : 0 ≤ i < 1, 0 ≤ j < 1

}
=

0∑
k=0

a[0] = a[0] = x .

The theorem therefore holds.

For the inductive step, let a be a sequence of length n ≥ 1, and assume inductively that
for any sequence a′ of length n′ < n, the algorithm correctly computes the maximum
contiguous subsequence sum. Now consider the sequence a and let b and c denote the left
and right subsequences resulted from dividing a into two parts (i.e., (b, c) = splitMida).
Furthermore, let a[i · · · j] be any contiguous subsequence of a that has the largest sum,
and this value is v. Note that the proof has to account for the possibility that there may
be many other subsequences with equal sum. Every contiguous subsequence must start
somewhere and end after it. We consider the following 3 possibilities corresponding to
how the sequence a[i · · · j] lies with respect to b and c:

• If the sequence a[i · · · j] starts in b and ends c. Then its sum equals its part in b (a
suffix of b) and its part in c (a prefix of c). If we take the maximum of all suffixes
in c and prefixes in b and add them this is equal the maximum of all contiguous
sequences bridging the two, because max {x+ y : x ∈ X, y ∈ Y }} = max {x ∈ X} +
max {y ∈ Y }. By assumption this equals the sum of a[i · · · j] which is v. Furthermore
by induction mb and mc are sums of other subsequences so they cannot be any larger
than v and hence max{mb,mc,mbc} = v.

4. DIVIDE AND CONQUER 195

• If a[i · · · j] lies entirely in b, then it follows from our inductive hypothesis thatmb = v.
Furthermore mc and mbc correspond to the maximum sum of other subsequences,
which cannot be larger than v. So again max{mb,mc,mbc} = v.

• Similarly, if ai..j lies entirely in c, then it follows from our inductive hypothesis that
mc = max{mb,mc,mbc} = v.

We conclude that in all cases, we return max{mb,mc,mbc} = v, as claimed.

4.1.2 Cost Analysis

By Algorithm 28.18, we know that the maximum subsequence crossing the cut in Θ(n)
work and Θ(lg n) span. Note also that splitMid requires O(1) work and span for array
sequences and O(lg n) work and span for tree sequences, so in either case the work and
span are bounded by O(lg n). We thus have the following recurrences with array-sequence
or tree-sequence specifications

W (n) = 2W (n/2) + Θ(n)

S(n) = S(n/2) + Θ(lg n).

Using the definition of big-Θ, we know that

W (n) ≤ 2W (n/2) + k1 · n+ k2,

where k1 and k2 are constants. By using the tree method, we can conclude that W (n) =
Θ(n lg n) and S(n) = lg2 n.

Solving the Recurrence Using Substitution Method. Let’s now redo the recurrences
above using the substitution method. Specifically, we’ll prove the following theorem using
(strong) induction on n.

Theorem 28.3. Let a constant k > 0 be given. If W (n) ≤ 2W (n/2) + k · n for n > 1 and
W (1) ≤ k for n ≤ 1, then we can find constants κ1 and κ2 such that

W (n) ≤ κ1 · n lg n+ κ2.

Proof. Let κ1 = 2k and κ2 = k. For the base case (n = 1), we check that W (1) = k ≤ κ2. For
the inductive step (n > 1), we assume that

W (n/2) ≤ κ1 · n2 lg(n2) + κ2,

196 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

And we’ll show that W (n) ≤ κ1 · n lg n + κ2. To show this, we substitute an upper bound
for W (n/2) from our assumption into the recurrence, yielding

W (n) ≤ 2W (n/2) + k · n
≤ 2(κ1 · n2 lg(n2) + κ2) + k · n
= κ1n(lg n− 1) + 2κ2 + k · n
= κ1n lg n+ κ2 + (k · n+ κ2 − κ1 · n)

≤ κ1n lg n+ κ2,

where the final step follows because k · n+ κ2 − κ1 · n ≤ 0 as long as n > 1.

4.2 Divide And Conquer with Strengthening

Our first divide-and-conquer algorithm performs O(n lg n) work, which is O(lg n) factor
more than the optimal. In this section, we shall reduce the work to O(n) by being more
careful about avoiding redundant work.

Intuition. Our divide-and-conquer algorithm has an important redundancy: the maxi-
mum prefix and maximum suffix are computed recursively to solve the subproblems for
the two halves but are computed again at the combine step of the divide-and-conquer al-
gorithm.

Because these are computed as part of solving the subproblems, we could return them
from the recursive calls. To do this, we will strengthen the problem so that it returns the
maximum prefix and suffix. This problem, which we shall call MCSSPS, matches the
original MCSS problem in its input and returns strictly more information. Solving MCSS
using MCSSPS is therefore trivial. We thus focus on the MCSSPS problem.

Solving MCSSPS. We can solve this problem by strengthening our divide-and-conquer
algorithm from the previous section. We need to return a total of three values:

• the max subsequence sum,

• the max prefix sum, and

• the max suffix sum.

At the base cases, when the sequence is empty or consists of a single element, this is easy to
do. For the recursive case, we need to consider how to produce the desired return values
from those of the subproblems. Suppose that the two subproblems return (m1, p1, s1) and
(m2, p2, s2).

4. DIVIDE AND CONQUER 197

One possibility to compute as result

(max(s1 + p2,m1,m2), p1, s2).

Note that we don’t have to consider the case when s1 or p2 is the maximum, because that
case is checked in the computation of m1 and m2 by the two subproblems.

This solution fails to account for the case when the suffix and prefix can span the whole
sequence.

We can fix this problem by returning the total for each subsequence so that we can compute
the maximum prefix and suffix correctly. Thus, we need to return a total of four values:

• the max subsequence sum,

• the max prefix sum,

• the max suffix sum, and

• the overall sum.

Having this information from the subproblems is enough to produce a similar answer tuple
for all levels up, in constant work and span per level. Thus what we have discovered is
that to solve the strengthened problem efficiently we have to strengthen the problem once
again. Thus if the recursive calls return (m1, p1, s1, t1) and (m2, p2, s2, t2), then we return

(max(s1 + p2,m1,m2),max(p1, t1 + p2),max(s1 + t2, s2), t1 + t2).

198 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

Algorithm 28.19 (Linear Work Divide-and-Conquer MCSS).

MCSSDCAux a =
if |a| = 0 then

(−∞,−∞,−∞, 0)
else if |a| = 1then

(a[0], a[0], a[0], a[0])
else
let

(b, c) = splitMid a
((m1, p1, s1, t1), (m2, p2, s2, t2)) = (MCSSDCAux b || MCSSDCAux c)

in
(max (s1 + p2,m1,m2),
max (p1, t1 + p2),
max (s1 + t2, s2),
t1 + t2)

end
MCSSDC a =
let

(m, , ,) = MCSSDCAux a
in
m

end

Cost Analysis. Since splitMid requires O(lg n) work and span in both array and tree se-
quences, we have

W (n) = 2W (n/2) +O(lg n)

S(n) = S(n/2) +O(lg n).

The O(lg n) bound on splitMid is not tight for array sequences, where splitMid requires
O(1) work, but this loose upper bound suffices to achieve the bound on the work that we
seek. Note that the span is the same as before, so we’ll focus on analyzing the work. Using
the tree method, we have

4. DIVIDE AND CONQUER 199

Therefore, the total work is upper-bounded by

W (n) ≤
lgn∑
i=0

k12i lg(n/2i)

It is not so obvious to what this sum evaluates, but we can bound it as follows:

W (n) ≤
lgn∑
i=0

k12i lg(n/2i)

=

lgn∑
i=0

k1

(
2i lg n− i · 2i

)
= k1

(
lgn∑
i=0

2i

)
lg n− k1

lgn∑
i=0

i · 2i

= k1(2n− 1) lg n− k1

lgn∑
i=0

i · 2i.

We’re left with evaluating s =
∑lgn
i=0 i · 2i. Observe that if we multiply s by 2, we have

2s =

lgn∑
i=0

i · 2i+1 =

1+lgn∑
i=1

(i− 1)2i,

so then

s = 2s− s =

1+lgn∑
i=1

(i− 1)2i −
lgn∑
i=0

i · 2i

= ((1 + lg n)− 1) 21+lgn −
lgn∑
i=1

2i

= 2n lg n− (2n− 2).

Substituting this back into the expression we derived earlier, we have W (n) ≤ k1(2n −
1) lg n− 2k1(n lg n− n+ 1) ∈ O(n) because the n lg n terms cancel.

We can solve the recurrency by using substitution method also. We’ll make a guess that
W (n) ≤ κ1n− κ2 lg n− k3. More precisely, we prove the following theorem.

Theorem 28.4. Let k > 0 be given. If W (n) ≤ 2W (n/2) + k · lg n for n > 1 and W (n) ≤ k
for n ≤ 1, then we can find constants κ1, κ2, and κ3 such that

W (n) ≤ κ1 · n− κ2 · lg n− κ3.

Proof. Let κ1 = 3k, κ2 = k, κ3 = 2k. We begin with the base case. Clearly, W (1) = k ≤
κ1 − κ3 = 3k − 2k = k. For the inductive step, we substitute the inductive hypothesis into

200 CHAPTER 28. MAXIMUM CONTIGUOUS SUBSEQUENCE SUM

the recurrence and obtain

W (n) ≤ 2W (n/2) + k · lg n
≤ 2(κ1

n
2 − κ2 lg(n/2)− κ3) + k · lg n

= κ1n− 2κ2(lg n− 1)− 2κ3 + k · lg n
= (κ1n− κ2 lg n− κ3) + (k lg n− κ2 lg n+ 2κ2 − κ3)

≤ κ1n− κ2 lg n− κ3,

where the final step uses the fact that (k lg n−κ2 lg n+2κ2−κ3) = (k lg n−k lg n+2k−2k) =
0 ≤ 0 by our choice of κ’s.

Part VII

Probability

201

Chapter 29

Introduction

This part covers discrete probability theory. The first chapter describes probability spaces,
events, probabilities and conditional probabilities. The second chapter describes random
variables. The third chapter presents expectations, which can be used to summarize
random variables by their average or mean value.

202

Chapter 30

Probability Spaces

This chapter introduces the basics of discrete probability theory.

1 Probability Spaces and Events

Probability theory is a mathematical study of uncertain situations such as a dice game. In
probability theory, we model a situation with an uncertain outcome as an experiment and
reason carefully about the likelihood of various outcomes in precise mathematical terms.

Example 30.1. Suppose we have two fair dice, meaning that each is equally likely to land
on any of its six sides. If we toss the dice, what is the chance that their numbers sum to
4? To determine the probability we first notice that there are a total of 6 × 6 = 36 distinct
outcomes. Of these, only three outcomes sum to 4 (1 and 3, 2 and 2, and 3 and 1). The
probability of the event that the number sum up to 4 is therefore

of outcomes that sum to 4

of total possible outcomes
=

3

36
=

1

12

Sample Spaces and Events. A sample space Ω is an arbitrary and possibly infinite (but
countable) set of possible outcomes of a probabilistic experiment. Any experiment will
return exactly one outcome from the set. For the dice game, the sample space is the 36 pos-
sible outcomes of the dice, and an experiment (roll of the dice) will return one of them. An
event is any subset of Ω, and most often representing some property common to multiple
outcomes. For example, an event could correspond to outcomes in which the dice add to
4—this subset would be of size 3. We typically denote events by capital letters from the
start of the alphabet, e.g. A, B, C. We often refer to the individual elements of Ω as elemen-
tary events. We assign a probability to each event. Our model for probability is defined as
follows.

203

204 CHAPTER 30. PROBABILITY SPACES

Definition 30.1 (Probability Space). A probability space consists of a sample space Ω rep-
resenting the set of possible outcomes, and a probability measure, which is a function P
from all subsets of Ω (the events) to a probability (real number). These must satisfy the
following axioms.

• Nonnegativity: P [A] ∈ [0, 1].

• Additivity: for any two disjoint events A and B (i.e., A ∩B = ∅),

P [A ∪B] = P [A] + P [B] .

• Normalization: P [Ω] = 1.

Note (Infinite Spaces). Probability spaces can have countably infinite outcomes. The addi-
tivity rule generalizes to infinite sums, e.g., the probability of the event consisting of the
union of infinitely many number of disjoint events is the infinite sum of the probability of
each event.
Note. When defining the probability space, we have not specified carefully the exact nature
of events, because they may differ based on the experiment and what we are interested in.
We do, however, need to take care when setting up the probabilistic model so that we can
reason about the experiment correctly. For example, each outcome of the sample space
must correspond to one unique actual outcome of the experiment. In other words, they
must be mutually exclusive. Similarly, any actual outcome of the experiment must have a
corresponding representation in the sample space.

Example 30.2 (Throwing Dice). For our example of throwing two dice, the sample space
consists of all of the 36 possible pairs of values of the dice:

Ω = {(1, 1), (1, 2), . . . , (2, 1), . . . , (6, 6)}.

Each pair in the sample space corresponds to an outcome of the experiment. The outcomes
are mutually exclusive and cover all possible outcomes of the experiment.

For example, having the first dice show up 1 and the second 4 is an outcome and corre-
sponds to the element (1, 4) of the sample space Ω.

The event that the “the first dice is 3” corresponds to the set

A = {(d1, d2) ∈ Ω | d1 = 3}
= {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)} .

The event that “the dice sum to 4” corresponds to the set

B = {(d1, d2) ∈ Ω | d1 + d2 = 4}
= {(1, 3), (2, 2), (3, 1)} .

Assuming the dice are unbiased, the probability measure is defined by all elementary
events having equal probability, i.e.,

∀x ∈ Ω, P [{x}] =
1

36
.

2. PROPERTIES OF PROBABILITY SPACES 205

The probability of the event A (that the first dice is 3) is thus

P [A] =
∑
x∈A

P [{x}] =
6

36
=

1

6
.

If the dice were biased so the probability of a given value is proportional to that value, then
the probability measure would be P [{(x, y)}] = x

21 ×
y
21 , and the probability of the event

B (that the dice add to 4) would be

P [B] =
∑
x∈B

P [{x}] =
1× 3 + 2× 2 + 3× 1

21× 21
=

10

441
.

2 Properties of Probability Spaces

Given a probability space, we can prove several properties of probability measures by us-
ing the three axioms that they must satisfy.

For example, if for two events A and B. We have

• if A ⊆ B, then P [A] ≤ P [B],

• P [A ∪B] = P [A] + P [B]−P [A ∩B].

2.1 The Union Bound

The union bound, also known as Boole’s inequality, is a simple way to obtain an upper
bound on the probability of any of a collection of events happening. Specifically for a
collection of events A0, A2, . . . , An−1 the bound is:

P

 ⋃
0≤i<n

Ai

 ≤ n−1∑
i=0

P [Ai]

This bound is true unconditionally. To see why the bound holds we note that the elemen-
tary events in the union on the left are all included in the sum on the right (since the union
comes from the same set of events). In fact they might be included multiple times in the
sum on the right, hence the inequality. In fact the sum on the right could add to more than
one, in which case the bound is not useful. The union bound can be useful in generating
high-probability bounds for algorithms. For example, when the probability of each of n
events is very low, e.g. 1/n5 and the sum remains very low, e.g. 1/n4.

206 CHAPTER 30. PROBABILITY SPACES

2.2 Conditional Probability

Conditional probability allows us to reason about dependencies between observations. For
example, suppose that your friend rolled a pair of dice and told you that they sum up to
6, what is the probability that one of dice has come up 1? Conditional probability has
many practical applications. For example, given that a medical test for a disease comes up
positive, we might want to know the probability that the patient has the disease. Or, given
that your computer has been working fine for the past 2 years, you might want to know
the probability that it will continue working for one more year.

Definition 30.2 (Conditional Probability). For a given probability space, we define the con-
ditional probability of an event A given B, as the probability of A occurring given that B
occurs as

P [A |B] =
P [A ∩B]

P [B]
.

The conditional probability measures the probability that the event A occurs given that B
does. It is defined only when P [B] > 0.

Conditional Probability is a Probability Measure. Conditional probability satisfies the
three axioms of probability measures and is itself a probability measure. We can thus treat
conditional probabilities just as ordinary probabilities. Intuitively, conditional probability
can be thought as a focusing and re-normalization of the probabilities on the assumed event
B.

Example 30.3. Consider throwing two fair dice and calculate the probability that the first
dice comes us 1 given that the sum of the two dice is 4. Let A be the event that the first dice
comes up 1 and B the event that the sum is 4. We can write A and B in terms of outcomes
as

A = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)} and
B = {(1, 3), (2, 2), (3, 1)}.

We thus have A ∩B = {(1, 3)}. Since each outcome is equally likely,

P [A |B] =
P [A ∩B]

P [B]
=
|A ∩B|
|B|

=
1

3
.

2.3 Law of Total Probability

Conditional probabilities can be useful in estimating the probability of an event that may
depend on a selection of choices. The total probability theorem can be handy in such cir-
cumstances.

2. PROPERTIES OF PROBABILITY SPACES 207

Theorem 30.1 (Law of Total Probability). Consider a probabilistic space with sample space
Ω and let A0, . . . , An−1 be a partition of Ω such that P [Ai] > 0 for all 0 ≤ i < n. For any
event B the following holds:

P [B] =

n−1∑
i=0

P [B ∩Ai]

=

n−1∑
i=0

P [Ai]P [B |Ai]

Example 30.4. Your favorite social network partitions your connections into two kinds,
near and far. The social network has calculated that the probability that you react to a post
by one of your far connections is 0.1 but the same probability is 0.8 for a post by one of
your near connections. Suppose that the social network shows you a post by a near and far
connection with probability 0.6 and 0.4 respectively.

Let’s calculate the probability that you react to a post that you see on the network. Let
A0 and A1 be the event that the post is near and far respectively. We have P [A0] = 0.6
and P [A1] = 0.4. Let B the event that you react, we know that P [B |A0] = 0.8 and
P [B |A1] = 0.1.

We want to calculate P [B], which by total probability theorem we know to be

P [B] = P [B ∩A0] + P [B ∩A1]
= P [A0]P [B |A0] + P [A1]P [B |A1] .
= 0.6 · 0.8 + 0.4 · 0.1
= 0.52.

2.4 Independence

It is sometimes important to reason about the dependency relationship between events.
Intuitively we say that two events are independent if the occurrence of one does not affect
the probability of the other. More precisely, we define independence as follows.

Definition 30.3 (Independence). Two events A and B are independent if

P [A ∩B] = P [A] ·P [B] .

We say that multiple events A0, . . . , An−1 are mutually independent if and only if, for any
non-empty subset I ⊆ {0, . . . , n− 1},

P

[⋂
i∈I

Ai

]
=
∏
i∈I

P [Ai] .

208 CHAPTER 30. PROBABILITY SPACES

Independence and Conditional Probability. Recall that P [A |B] = P[A∩B]
P[B] when P [B] >

0. Thus if P [A |B] = P [A] then P [A ∩B] = P [A]·P [B]. We can thus define independence
in terms of conditional probability but this works only when P [B] > 0.

Example 30.5. For two dice, the events A = {(d1, d2) ∈ Ω | d1 = 1} (the first dice is 1) and
B = {(d1, d2) ∈ Ω | d2 = 1} (the second dice is 1) are independent since

P [A]×P [B] = 1
6 ×

1
6 = 1

36

= P [A ∩B] = P [{(1, 1)}] = 1
36 .

However, the event C ≡ {X = 4} (the dice add to 4) is not independent of A since

P [A]×P [C] = 1
6 ×

3
36 = 1

72

6= P [A ∩ C] = P [{(1, 3)}] = 1
36 .

A and C are not independent since the fact that the first dice is 1 increases the probability
they sum to 4 (from 1

12 to 1
6).

Exercise 30.1. For two dice, let A be the event that first roll is 1 and B be the event that the
sum of the rolls is 5. Are A and B independent? Prove or disprove.

Consider now the same question but this time define B to be the event that the sum of the
rolls is 7.

Chapter 31

Random Variables

This chapter introduces the random variables and their use in probability theory.

Definition 31.1 (Random Variable). A random variable X is a real-valued function on the
outcomes of an experiment, i.e., X : Ω → R, i.e., it assigns a real number to each outcome.
For a given probability space there can be many random variables, each keeping track of
different quantities. We typically denote random variables by capital letters from the end
of the alphabet, e.g. X , Y , and Z. We say that a random variable is discrete if its range
is finite or countable infinite. Throughout this book, we only consider discrete random
variables.

Example 31.1. For throwing two dice, we can define random variable as the sum of the
two dice

X(d1, d2) = d1 + d2 ,

the product of two dice

Y (d1, d2) = d1 × d2 ,

or the value of the first dice the two dice:

Z(d1, d2) = d1 .

Definition 31.2 (Indicator Random Variable). A random variable is called an indicator
random variable if it takes on the value 1 when some condition is true and 0 otherwise.

Example 31.2. For throwing two dice, we can define indicator random variable as getting
doubles

Y (d1, d2) =

{
1 if d1 = d2

0 if d1 6= d2 .

Using our shorthand, the event {X = 4} corresponds to the event “the dice sum to 4”.

209

210 CHAPTER 31. RANDOM VARIABLES

Notation. For a random variable X and a value x ∈ R, we use the following shorthand
for the event corresponding to X equaling x:

{X = x} ≡ {y ∈ Ω | X(y) = x} ,

and when applying the probability measure we use the further shorthand

P [X = x] ≡ P [{X = x}] .

Example 31.3. For throwing two dice, and X being a random variable representing the
sum of the two dice, {X = 4} corresponds to the event “the dice sum to 4”, i.e. the set

{y ∈ Ω | X(y) = 4} = {(1, 3), (2, 2), (3, 1)} .

Assuming unbiased coins, we have that

P [X = 4] = 1/12 .

Remark. The term random variable might seem counter-intuitive because it is actually a
function not a variable. As such, a random variable is not really random, because it is
a well defined deterministic function on the sample space. However, when thought in
conjunction with the random experiment that selects the events, a random variable takes
on its value based on a random process.

1 Probability Mass Function

Definition 31.3 (Probability Mass Function). For a discrete random variable X , we define
its probability mass function or PMF, written PX(·), for short as a function mapping each
element x in the range of the random variable to the probability of the event {X = x}, i.e.,

PX(x) = P [X = x] .

Example 31.4. The probability mass function for the indicator random variable X indicat-
ing whether the outcome of a roll of dice is comes up even is

PX(0) = P [{X = 0}] = P [{1, 3, 5}] = 1/2, and
PX(1) = P [{X = 1}] = P [{2, 4, 6}] = 1/2.

The probability mass function for the random variable X that maps each outcome in a roll
of dice to the smallest Mersenne prime number no less than the outcome is

PX(3) = P [{X = 3}] = P [{1, 2, 3}] = 1/2, and
PX(7) = P [{X = 7}] = P [{4, 5, 6}] = 1/2.

2. BERNOULLI, BINOMIAL, AND GEOMETRIC RVS 211

Note that much like a probability measure, a probability mass function is a non-negative
function. It is also additive in a similar sense: for any distinct x and x′, the events {X = x}
and {X = x′} are disjoint. Thus for any set x̄ of values of X , we have

P [X ∈ x̄] =
∑
x∈x̄

PX(x).

Furthermore, since X is a function on the sample space, the events corresponding to the
different values of X partition the sample space, and we have∑

x

PX(x) = 1.

These are the important properties of probability mass functions: they are non-negative,
normalizing, and are additive in a certain sense.

We can also compute the probability mass function for multiple random variables defined
for the same probability space. For example, the joint probability mass function for two
random variables X and Y , written PX,Y (x, y) denotes the probability of the event {X =
x} ∩ {Y = y}, i.e.,

PX,Y (x, y) = P [{X = x} ∩ {Y = y}] = P [X = x, Y = y] .

Here P [X = x, Y = y] is shorthand for P [{X = x} ∩ {Y = y}].

In our analysis or randomized algorithms, we shall repeatedly encounter a number of well-
known random variables and create new ones from existing ones by composition.

2 Bernoulli, Binomial, and Geometric RVs

Bernoulli Random Variable. Suppose that we toss a coin that comes up a head with
probability p and a tail with probability 1 − p. The Bernoulli random variable takes the
value 1 if the coin comes up heads and 0 if it comes up tails. In other words, it is an
indicator random variable indicating heads. Its probability mass function is

PX(x) =

{
p if x = 1
1− p if x = 0.

Binomial Random Variable. Consider n Bernoulli trials with probability p. We call the
random variable X denoting the number of heads in the n trials as the Binomial random
variable. Its probability mass function for any 0 ≤ x ≤ n is

PX(x) =

(
n

x

)
px (1− p)n−x.

212 CHAPTER 31. RANDOM VARIABLES

Geometric Random Variable. Consider performing Bernoulli trials with probability p
until the coin comes up heads and X denote the number of trials needed to observe the
first head. The random variable X is called the geometric random variable. Its probability
mass function for any 0 < x is

PX(x) = (1− p)x−1p.

3 Functions of Random Variables

It is often useful to “apply” a function to one or more random variables to generate a new
random variable. Specifically if we have a function f : R → R and a random variable X
we can compose the two giving a new random variable:

Y (x) = f(X(x))

We often write this shorthand as Y = f(X). Similarly for two random variables X and Y
we write Z = X + Y as shorthand for

Z(x) = X(x) + Y (x)

or equivalently

Z = λx.(X(x) + Y (x))

The probability mass function for the new variable can be computed by “massing” the
probabilities for each value. For example, for a function of a random variable Y = f(X),
we can write the probability mass function as

PY (y) = P [Y = y] =
∑

x | f(x)=y

PX(x) .

Example 31.5. Let X be a Bernoulli random variable with parameter p. We can define a
new random variable Y as a transformation of X by a function f(·). For example, Y =
f(X) = 9X + 3 is random variable that transforms X , e.g., X = 1 would be transformed to
Y = 12. The probability mass function for Y reflects that ofX , Its probability mass function
is

PY (y) =

{
p if y = 12
1− p if y = 3.

Example 31.6. Consider the random variable X with the probability mass function

PX(x) =

0.25 if x = −2
0.25 if x = −1
0.25 if x = 0
0.25 if x = 1

4. CONDITIONING 213

We can calculate the probability mass function for the random variable Y = X2 as follows
PY (y) =

∑
x | x2=y PX(x). This yields

PY (y) =

 0.25 if y = 0
0.5 if y = 1
0.25 if y = 4.

4 Conditioning

In the same way that we can condition an event on another, we can also condition a random
variable on an event or on another random variable. Consider a random variable X and
an event A in the same probability space, we define the conditional probability mass
function of X conditioned on A as

PX | A = P [X = x |A] =
P [{X = x} ∩A]

P [A]
.

Since for different values of x, {X = x} ∩ A’s are disjoint and since X is a function over
the sample space, conditional probability mass functions are normalizing just like ordinary
probability mass functions, i.e.,

∑
x∈X PX | A(x) = 1. Thus just as we can treat conditional

probabilities as ordinary probabilities, we can treat conditional probability mass functions
also as ordinary probability mass functions.

Example 31.7. Roll a pair of dice and letX be the sum of the face values. LetA be the event
that the second roll came up 6. We can find the conditional probability mass function

PX | A(x) = P[{X=x}∩A]
P[A]

=

{
1/36
1/6 = 1/6 if x = 7, . . . , 12.

0 otherwise

Conditional Probability Mass Function. Since random variables closely correspond with
events, we can condition a random variable on another. More precisely, letX and Y be two
random variables defined on the same probability space. We define the conditional prob-
ability mass function of X with respect to Y as

PX | Y (x | y) = P [X = x | Y = y] .

We can rewrite this as

PX | Y (x | y) = P [X = x | Y = y]

= P[X=x,Y=y]
P[Y=y]

=
PX,Y (x,y)

PY y
.

214 CHAPTER 31. RANDOM VARIABLES

Conditional PMFs are PMFs. Consider the function PX | Y (x | y) for a fixed value of y.
This is a non-negative function of x, the event corresponding to different values of x are
disjoint, and they partition the sample space, the conditional mass functions are normaliz-
ing ∑

x

PX | Y (x | y) = 1.

Conditional probability mass functions thus share the same properties as probability mass
functions.

By direct implication of its definition, we can use conditional probability mass functions to
calculate joint probability mass functions as follows

PX,Y (x, y) = PX(x)PY |X(y | x)
PX,Y (x, y) = PY (y)PX | Y (x | y).

As we can compute total probabilities from conditional ones as we saw earlier in this sec-
tion, we can calculate marginal probability mass functions from conditional ones:

PX(x) =
∑
y

PX,Y (x, y) =
∑
y

PY (y)PX | Y (x | y).

5 Independence

As with the notion of independence between events, we can also define independence
between random variables and events. We say that a random variable X is independent of
an event A, if

for all x : P [{X = x} ∩A] = P [X = x] ·P [A] .

When P [A] is positive, this is equivalent to

PX | A(x) = PX(x).

Generalizing this to a pair of random variables, we say a random variableX is independent
of a random variable Y if

for all x, y : P [X = x, Y = y] = P [X = x] ·P [Y = y]

or equivalently

for all x, y : PX,Y (x, y) = PX(x) ·PY (y).

In our two dice example, a random variable X representing the value of the first dice and
a random variable Y representing the value of the second dice are independent. However
X is not independent of a random variable Z representing the sum of the values of the two
dice.

Chapter 32

Expectation

This chapter introduces expectation and its use in probability theory.

1 Definitions

The expectation of a random variable X in a probability space (Ω,P) is the sum of the
random variable over the elementary events weighted by their probability, specifically:

EΩ,P[X] =
∑
y∈Ω

X(y) ·P [{y}] .

For convenience, we usually drop the (Ω,P []) subscript on E since it is clear from the
context.

Example 32.1. Assuming unbiased dice (P [(d1, d2)] = 1/36), the expectation of the random
variable X representing the sum of the two dice is:

E [X] =
∑

(d1,d2)∈Ω

X(d1, d2)× 1

36
=

∑
(d1,d2)∈Ω

d1 + d2

36
= 7.

If we bias the coins so that for each dice the probability that it shows up with a particular
value is proportional to the value, we have P [(d1, d2)] = (d1/21)× (d2/21) and:

E [X] =
∑

(d1,d2)∈Ω

(
(d1 + d2)× d1

21
× d2

21

)
= 8

2

3
.

It is usually more natural to define expectations in terms of the probability mass function
of the random variable

E [X] =
∑
x

x ·PX(x).

215

216 CHAPTER 32. EXPECTATION

Example 32.2. The expectation of an indicator random variable X is the probability that
the associated predicate is true (i.e. that X = 1):

E [X] = 0 ·PX(0) + 1 ·PX(1).

= PX(1).

Example 32.3. Recall that the probability mass function for a Bernoulli random variable is

PX(x) =

{
p if x = 1
1− p if x = 0.

Its expectation is thus

E[X] = p · 1 + (1− p) · 0 = p.

Example 32.4. Recall that the probability mass function for geometric random variable X
with parameter p is

PX(x) = (1− p)x−1p.

The expectation of X is thus

E[X] =

∞∑
x=1

x · (1− p)x−1p

= p ·
∞∑
x=1

x · (1− p)x−1

Bounding this sum requires some basic manipulation of sums. Let q = (1− p) and rewrite
the sum as p ·

∑∞
x=0 xq

x−1. Note now the term xqx−1 is the derivative of qx with respect
to q. Since the sum

∑∞
x=0 q

x = 1/(1 − q), its derivative is 1/(1 − q)2 = 1/p2. We thus have
conclude that E[X] = 1/p.

Example 32.5. Consider performing two Bernoulli trials with probability of success 1/4.
Let X be the random variable denoting the number of heads.

The probability mass function for X is

PX(x) =

 9/16 if x = 0
3/8 if x = 1
1/16 if x = 2.

Thus E [X] = 0 + 1 · 3/8 + 2 ∗ 1/16 = 7/8.

2. COMPOSING EXPECTATIONS 217

2 Composing Expectations

Recall that functions or random variables are themselves random variables (defined on the
same probability space), whose probability mass functions can be computed by consider-
ing the random variables involved. We can thus also compute the expectation of a random
variable defined in terms of others. For example, we can define a random variable Y as a
function of another variable X as Y = f(X). The expectation of such a random variable
can be calculated by computing the probability mass function for Y and then applying the
formula for expectations. Alternatively, we can compute the expectation of a function of a
random variable X directly from the probability mass function of X as

E[Y] = E[f(X)] =
∑
x

f(x)PX(x).

Similarly, we can calculate the expectation for a random variable Z defined in terms of
other random variables X and Y defined on the same probability space, e.g., Z = g(X,Y),
as computing the probability mass function for Z or directly as

E[Z] = E[g(X,Y)] =
∑
x,y

g(x, y)PX,Y (x, y).

These formulas generalize to function of any number of random variables.

3 Linearity of Expectations

An important special case of functions of random variables is the linear functions. For
example, let Y = f(X) = aX + b, where a, b ∈ R.

E [Y] = E [f(X)] = E [aX + b]
=

∑
x f(x)PX(x)

=
∑
x (ax+ b)PX(x)

= a
∑
x xPX(x) + b

∑
xPX(x)

= aE [X] + b.

Similar to the example, above we can establish that the linear combination of any number
of random variables can be written in terms of the expectations of the random variables.
For example, let Z = aX + bY + c, where X and Y are two random variables. We have

E [Z] = E [aX + bY + c] = aE [X] + bE [Y] + c.

218 CHAPTER 32. EXPECTATION

The proof of this statement is relatively simple.

E [Z] = E [aX + bY + c]
=

∑
x,y (ax+ by + c)PX,Y (x, y)

= a
∑
x,y xPX,Y (x, y) + b

∑
x,y yPX,Y (x, y) +

∑
x,y cPX,Y (x, y)

= a
∑
x

∑
y xPX,Y (x, y) + b

∑
y

∑
x yPX,Y (x, y) +

∑
x,y cPX,Y (x, y)

= a
∑
x x
∑
y PX,Y (x, y) + b

∑
y y
∑
xPX,Y (x, y) +

∑
x,y cPX,Y (x, y)

= a
∑
x xPX(x) + b

∑
y yPY (y) + c

= aE [X] + bE [Y] + c.

An interesting consequence of this proof is that the random variables X and Y do not have
to be defined on the same probability space. They can be defined for different experiments
and their expectation can still be summed. To see why note that we can define the joint
probability mass function PX,Y (x, y) by taking the Cartesian product of the sample spaces
of X and Y and spreading probabilities for each arbitrarily as long as the marginal proba-
bilities, PX(x) and PY (y) remain unchanged.

The property illustrated by the example above is known as the linearity of expectations.
The linearity of expectations is very powerful often greatly simplifying analysis. The rea-
soning generalizes to the linear combination of any number of random variables.

Linearity of expectation occupies a special place in probability theory, the idea of replacing
random variables with their expectations in other mathematical expressions do not gener-
alize. Probably the most basic example of this is multiplication of random variables. We
might ask is E [X]× E [Y] = E [X × Y]? It turns out it is true when X and Y are indepen-
dent, but otherwise it is generally not true. To see that it is true for independent random
variables we have (we assume x and y range over the values of X and Y respectively):

E [X]×E [Y] = (
∑
x xP [{X = x}])

(∑
y yP [{Y = y}]

)
=

∑
x

∑
y(xyP [{X = x}]P [{Y = y}])

=
∑
x

∑
y(xyP [{X = x} ∩ {Y = y}]) due to independence

= E [X × Y]

For example, the expected value of the product of the values on two (independent) dice is
therefore 3.5× 3.5 = 12.25.

Example 32.6. In a previous example , we analyzed the expectation on X , the sum of the
two dice, by summing across all 36 elementary events. This was particularly messy for the
biased dice. Using linearity of expectations, we need only calculate the expected value of
each dice, and then add them. Since the dice are the same, we can in fact just multiply by
two. For example for the biased case, assuming X1 is the value of one dice:

E [X] = 2E [X1]
= 2×

∑
d∈{1,2,3,4,5,6} d×

d
21

= 2× 1+4+9+16+25+36
21

= 8 2
3 .

4. CONDITIONAL EXPECTATION 219

4 Conditional Expectation

Definition 32.1 (Conditional Expectation). We define the conditional expectation of a ran-
dom variable X for a given value y of Y as

E [X | Y = y] =
∑
x

xPX|Y (x | y).

Theorem 32.1 (Total Expectations Theorem). The expectation of a random variable can be
calculated by “averaging” over its conditional expectation given another random variable:

E [X] =
∑
y

PY (y)E [X | Y = y].

5 Variance and Standard Deviation

Definition 32.2 (Variance). The variance of a random variable is defined as

σ2 = E
[
(X − µ)2

]
.

Definition 32.3 (Standard Deviation). The variance of a random variable is defined as the
square-root of its variance.

σ =
√
E [(X − µ)2].

6 Markov’s Inequality

Consider a non-negative random variable X . We can ask how much can X exceed its
expected value. Because the expectation is taken by averaging X over all outcomes, and
it cannot take on negative values, X cannot take on a much larger value with significant
probability. If it did it would contribute too much to the sum. More generally X cannot be
a multiple of β larger than its expectation with probability greater than 1/β. This is because
this part on its own would contribute more than βE [X] × 1

β = E [X] to the expectation,
which is a contradiction.

Theorem 32.2 (Markov’s Inequality). If X is a non-negative random variable, then

P [X ≥ α] ≤ E [X]

α
.

or equivalently (by substituting α = βE [X])

P [X ≥ βE [X]] ≤ 1

β
.

220 CHAPTER 32. EXPECTATION

Proof. Let Y be a random variable that lower bounds X as follows

Y =
0 if X < α
α otherwise.

By definition, Y ≤ X and therefore E [Y] ≤ E [X]. Furthermore,

E [Y] = αP [Y = α]
= αP [X ≥ α] ≤ E [X] .

Thus it follows that P [X ≥ α] ≤ E [X] /α.

Theorem 32.3 (Reverse-Markov Inequality). IfX is a random variable that is upper bounded
by some constant u then for any x < u

P [X ≤ x] ≤ E [u−X]

u− x
.

Proof. Define random variable Y as Y = u−X . We have

P [X ≤ x] = P [Y ≥ u− x] .

We know that Y ≥ 0 and thus we can apply it Markov’s inequality to bound this quantity
as follows.

P [X ≤ x] = P [Y ≥ u− x]

= E[Y]
u−x

= u−E[X]
u−x

7 Chebyshev’s Inequality

Markov’s inequality applies only to non-negative random variables. Chebyshev’s inequal-
ity generalizes Markov’s for all random variables. It basically states that a random variable
strays away from its mean slowly as controlled by its variance.

Theorem 32.4 (Chebyshev’s Inequality). If X is a random variable with expectation µ and
variance σ2, then

P [|X − µ| ≥ γ] ≤ σ2

γ2
.

or equivalently

P [|X − µ| ≥ kσ] ≤ 1

k2
,

8. CHERNOFF BOUNDS 221

Proof. Define the random variable Y = (X − µ)2 and note that Y is non-negative. Apply
now Markov’s inequality with α = γ2 to obtain

P
[
(X − µ)2 ≥ γ2

]
≤

E
[
(X − µ)2

]
γ2

.

Note now that the event (X − µ)2 ≥ γ2 is the same as |X − µ| ≥ γ and by the definition of
variance of random variable , we have

P [|X − µ| ≥ γ] ≤ σ2

γ2
.

Substituting γ = kσ yields the second form.

8 Chernoff Bounds

Chernoff bounds apply when a random variable is the sum of indicatator random vari-
ables, e.g., the binomial distribution (the sum of independent Bernoulli trials).

Theorem 32.5 (Chernoff Bound for Binomials). If X is a Binomial random variable with
expectation µ, then the following tail bounds hold for any δ > 0

P [X < (1− δ)µ] <
(

e−δ

(1−δ)1−δ

)µ
Lower tail

P [X > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
Upper tail

These bounds can be simplified for more constraints values of δ as follows.

P [X < (1− δ)µ] < e
−µδ2

2 Simplified lower tail, when0 < δ < 1

P [X > (1 + δ)µ] < e
−µδ2

4 Simplified upper tail, when 0 < δ < 2e− 1
P [X > (1 + δ)µ] < 2−δµ Simplified upper tail, when δ > 2e− 1

Chapter 33

A Darts Game

We introduce a game of dart that abstracts the way many randomized algorithms operate.

Note. This chapter is superseeded by the next chapter.

Consider a game of dart, where we throw a dart on concentric circles labeled from 0.0 at the
center to 1.0 at the perimeter. We are given a problem instance of size n and our goal is to
reduce the instance size to 1 or smaller by dividing the instance by the outcome of the dart
throw. We stop when the size of the task reaches 1.0 or smaller. Throughout, we assume
that each throw is independent—prior outcomes have no impact on the current throw.

Example 33.1. Suppose we start with a task of size n and our first throw hits 0.6, reducing
our task size to 0.6n. If 0.6n ≤ 1, then we stop. Otherwise we take another throw.

Points and Penalty. To play the game, we bet on the number of throws that we want to
take. If we do not succeed after the number of throws we bet, then we pay a predetermined
penalty such as n or n2 dollars. If we succeed, there is no penalty. Each throw in the game
costs 1 point and our goal is to minimize the cost, including the penalty.

1 Fixed Success Probability

In this section, we analyze the game by assuming that we have specific information about
the probability distribution of the dart throws.

Probability of Success. Suppose that we are given a probability p and a rate 1 > r > 0
such that

222

1. FIXED SUCCESS PROBABILITY 223

• with probability p > 0, a throw hits ring (or rate) r,

• with probability 1− p, a throw hits ring 1

For example, we might have r = 3/4 with probability 1/2.

We cansider the event that the throw hits ring r < 1 as “success” and the event that the
throw hits ring 1 as “failure”.
Note. If the throw hits r = 1, then the instance size remains the same.

Goal. We aim to devise a strategy for playing the game to minimize the total cost (number
of throws plus penalty). For the analysis, define R = 1/r.

Expected Number of Succesful Throws. Suppose that we want to take k
p logR n throws

where k ≥ 1 is a constant that we will calculate. Define

• the indicator random variable Ti to indicate success at throw i ≥ 0, and

• T as the sum of Ti’s.

We know that T is a binomial and its expected value is

E [T] = k logR n.

The Insight. We chose to take k
p logR n throws, because with this many throws, we expect

k logR n successful throws. If logR n of these throws is successful, then we would win
because

n · rlogR n = n · 1

RlogR n
= 1.

But, this is a probabilistic game and we may fail to have so many successful throws. So we
use the constant k as our “buffer”. We shall determine the specific value for k to increase
odds of success.

Probability of Failure. Because the number of successful throws is a binomial, we can
apply Chernoff bounds to bound the tail probability of failure and bound the expected
penalty. To understand how much buffer we need, let us calculate the probability for ob-
taining half as many successful throws as we expected. Recall that Chernoff bounds state
that for a random variable T with mean µ, for 0 < δ < 1, we have

P [T < (1− δ)µ] < e
−µδ2

2 .

224 CHAPTER 33. A DARTS GAME

Setting δ = 0.5 and µ = k logR n, we obtain

P [T < 0.5µ] < e
−µ0.25

2 = 1/e0.125µ

= 1/e0.125k logR n

= 1/e
0.125k
loge R

loge n

= 1/ec loge n

= 1/nc.

Thus, the probability of failure, i.e., reaching half the number of succesful throws that we
expect is 1

nc , where c = 0.125k
loge R

= k
8 loge R

for any k ≥ 2.

Bounding Expected Penalty. Given that the probability of failure is 1/nc, we can bound
expected penalty by adjusting c according to the penalty. Specifically, given a penalty func-
tion f(n), we wish to bound the expected penalty by 1

1

nc
· f(n) ≤ 1.

Based on this, we then calculate k by using the formula k = 8c logeR.

Example 33.2. If we are given the penalty function of f(n) = n, then we want to set c ≥ 1,
because this would bound expected penalty by 1

n · n = 1. Thus we can calculate k as

k = max (8 logeR, 2).

Example 33.3. If we are given the penalty function of f(n) = n2, then we want to set c ≥ 1,
because this would bound expected penalty by 1

n · n = 1. Thus we can calculate k as

k = max (16 logeR, 2).

Bounding the Number of Throws Plus Penalty. Putting everything together, we can cal-
culate an asymptotic bound on the number of throws plus the penalty. We first determine
our constant k such that the expected penalty is 1 and we play the game for k logR n throws.
The expected total number of throws is thu 1 + k logR n = O(logR n) = O(lg n).

Expected Instance Size. Given a starting instance size of n, we can calculate the expec-
tation of the instance size Ni at round i. For i = 0, this is Ni = n. For i = 1. the
expectation is E[N1] = prn + (1 − p)n = n(1 − p + pr). In general, the expectation is
E[Ni+1] = (1− p+ pr) · E[Ni].

For example if r = 0.5 and p = 0.4 then the expected instance size at round i is (0.8)i · n.

1. FIXED SUCCESS PROBABILITY 225

Expected Work. When applying the dart game to analyze an algorithm, we consider the
work that the algorithm performs at each throw. Because the instance size at each throw
is randomized, the work itself is a random variable. Assuming that we set the game as
described, the total work W is penalty plus the work for each throw i denoted by Wi

W (n) = 1 +

k logR n∑
i=0

Wi(Ni).

By linearity of expectations, we have

E[W (n)] = 1 +

k logR n∑
i=0

E[Wi(Ni)].

Example 33.4. Suppose that at each round the work is linear in the size of the instance. We
know that the expectated instance size at round i is (1− p+ pr)i · n. The total work is thus∑k logR n
i=0 n(1− p+ pr)i.

For example if r = 0.5 and p = 0.4 then the expectation is (0.8)i · n. The total work is thus
E[W] = O(n).

Expected Span. When using the dart game to analyze an algorithm, we consider the span
of the algorithm at each throw. Because the instance size at each round is a random vari-
able, the span itself is a random variable. Assuming that we set the game as described, the
total span S is the penalty plus the span for each throw i denoted by Si

S(n) = 1 +

k logR n∑
i=0

Si(Ni).

By linearity of expectations, we have

E[S(n)] = 1 +

k logR n∑
i=0

E[Si(Ni)].

Example 33.5. Suppose that at each round the span is logarithmic in the size of the instance.
Because the logarithm function is concave we know that for a random variable

E [lgX] ≤ lgE [X].

Because the expected span at round i is E[Si(Ni)] = O(lg (1− p+ pr)in) = O(lg n), the
total span is E[S] = O(lg2 n).

226 CHAPTER 33. A DARTS GAME

2 Expected Size

In the previous section, we played the game by assuming that we know about the prob-
ability distribution of throws to define a notion of “success”. In this section, we consider
the case where we do not know the probability distribution for the throws but we know
expected instance size reduction at each round re. For example, we may consider an algo-
rithm, where the instance size reduces by an expected factor of 0.5 at each throw.

Consider a throw and let n be the instance size and letX be a random variable correspond-
ing to the instance size after the throw. Define the random variable Y = n−X for the part
of the instance that has been eliminated with a throw. Because, E [X] = ren, we have

E [Y] = n−E [X] = (1− re)n.

Consider now the probability of the event that the throw removes less than half the ex-
pected amount. Because the random variable Y is upper bounded by ns, we can bound
this probability by using Reverse Markov Inequality as

P [Y ≤ 0.5(1− re)n] ≤ n−E[Y]
n−0.5(1−re)n

≤ n−(1−re)n
n−0.5(1−re)n

≤ ren
n−0.5n+0.5ren

≤ re
0.5(1+re)

This probability is an increasing function of re. For re = 0, it is 0 and for re = 1, it is 1. Thus
for any 0 < re < 1, the probability is between 0 and 1.

Consider the throw for the event that Y ≤ 0.5(1 − re)n, which happens with probability
re

0.5(1+re)
. We can think of this event as a “miss”, because it fails to remove sufficiently large

fraction of the instance. In our new game, we “map” this event to a miss where the instance
size does not decrease. We then map the complement event, where Y > 0.5(1 − re)n to a
hit. In the case of a hit, we haveX = n−Y ≤ n−0.5(1−re)n ≤ 0.5(1+re)n. The probability
of a hit is

1− re
0.5(1+re)

= 0.5(1+re−re)
0.5(1+re)

= 0.5
0.5(1+re)

= 1
1+re

In summary, our new game has the hit ratio of r = 0.5(1− re) with the hit probability

p =
1

1 + re
.

Note finally that this new game requires more throws because

2. EXPECTED SIZE 227

• in the case that the old game fails to reduce the instance sufficiently, the new game
does not change the instance size at all, and

• in the case that the old game succeeds in reducing the instance size sufficiently, the
new game reduces it by an equivalent or smaller ratio.

Remark. This approach is useful because we are typically interested in asymptotic upper
bounds.

Part VIII

Randomization

228

Chapter 34

Introduction

This chapter introduces randomized algorithms and presents an overview of the tech-
niques used for analyzing them.

1 Randomized Algorithms

Definition 34.1 (Randomized Algorithm). We say that an algorithm is randomized if it
makes random choices. Algorithms typically make their random choices by consulting
a source of randomness such as a (pseudo-)random number generator.

Example 34.1. A classic randomized algorithm is the quick-sort algorithm, which selects a
random element, called the pivot, and partitions the input into two by comparing each ele-
ment to the pivot. To select a randomly chosen pivot from n elements, the algorithm needs
lg n bits of random information, usually drawn from a pseudo-random number generator.

Definition 34.2 (Las Vegas and Monte Carlo Algorithms). There are two distinct uses of
randomization in algorithms.

The first method, which is more common, is to use randomization to weaken the cost guar-
antees, such as the work and span, of the algorithm. That is, randomization is used to
organize the computation in such a way that the impact is on the cost but not on the cor-
rectness. Such algorithms are called Las Vegas algorithms.

Another approach is to use randomization to weaken the correctness guarantees of the
computation: an execution of the algorithm might or might not return a correct answer.
Such algorithms are called Monte Carlo algorithms.

Note. In this book, we only use Las Vegas algorithms. Our algorithm thus always return
the correct answer, but their costs (work and span) will depend on random choices.

229

230 CHAPTER 34. INTRODUCTION

Random Distance Run. Every year around the middle of April the Computer Science
Department at Carnegie Mellon University holds an event called the “Random Distance
Run”. It is a running event around the track, where the official die tosser rolls a die im-
mediately before the race is started. The die indicates how many initial laps everyone has
to run. When the first person is about to complete the laps, the die is rolled again to de-
termine the additional laps to be run. Rumor has it that Carnegie Mellon scientists have
successfully used their knowledge of probabilities to train for the race and to adjust their
pace during the race (e.g., how fast to run at the start).

Thanks to Carnegie Mellon CSD PhD Tom Murphy for the design of the 2007 T-shirt.

1.1 Advantages of Randomization

Randomization is used quite frequently in algorithm design, because of its several advan-
tages.

• Simplicity: randomization can simplify the design of algorithms, sometimes dramat-

1. RANDOMIZED ALGORITHMS 231

ically.

• Efficiency: randomization can improve efficiency, e.g., by facilitating “symmetry
breaking” without relying on communication and coordination.

• Robustness: randomization can improve the robustness of an algorithm, e.g., by re-
ducing certain biases.

Example 34.2 (Primality Testing). A classic example where randomization simplifies algo-
rithm design is primality testing. The problem of primality testing requires determining
whether a given integer is prime. By applying the theories of primality developed by Rus-
sian mathematican Arthujov, Miller and Rabin developed a simple randomized algorithm
for the problem that only requires polynomial work. For over 20 years it was not known
whether the problem could be solved in polynomial work without randomization. Even-
tually a polynomial time algorithm was developed, but it is more complex and computa-
tionally more costly than the randomized version. Hence in practice everyone still uses the
randomized version.

Definition 34.3 (Symmetry Breaking). In algorithm design, the term symmetry breaking
refers to an algorithm’s ability to distinguish between choices that otherwise look equiva-
lent. For example, parallel algorithms sometimes use symmetry breaking to select a portion
of a larger structure, such as a subset of the vertices of a graph, by making local decisions
without necessarily knowing the whole of the structure. Randomization can be used to
implement symmetry breaking.

Example 34.3. Suppose that we wish to select a subsequence of a sequence under the con-
dition that no adjacent elements are selected. For example, given the sequence

〈 0, 1, 2, 3, 4, 5, 6, 7 〉 ,

we could select

〈 0, 2, 4, 6 〉 ,

or

〈 1, 3, 6 〉 ,

but not

〈 0, 1, 3, 6 〉 .

An algorithm can make such a selection by “flipping a coin” for each element and selecting
the element if it has flipped heads and its next (following) neighbor has flipped tails.

Exercise 34.1. Prove that the algorithm described above is correct.

Exercise 34.2. What is the expected length of the selected subsequence in terms of the
length of the input sequence?

232 CHAPTER 34. INTRODUCTION

Algorithmic Bias. As algorithms take on more and more sophisticated decisions, the
questions of bias naturally arise. Deterministic algorithm are particularly susceptible to
creating bias when they make decisions based on partial or imperfect decisions and repeat
that same decisions on many problem instances. Randomness can reduce such bias, e.g.,
by choosing one of the alternatives based on some probability distribution.

Example 34.4. Consider the algorithm operating a self driving vehicle. In certain circum-
stances, the algorithm might have to choose one of two actions none of which are desirable.
If the algorithm makes its decisions deterministically, then it will repeat the same decision
in identical situations, leading to a bias towards one of the bad choices. Such an algorithm
could thus make biased decisions, which in total could lead to ethically unacceptable out-
comes.

1.2 Disadvantages of Randomization

Complexity of Analysis. Even though randomization can simplify algorithms, it usually
complicates their analysis. Because we only have to analyze an algorithm once, but use it
many times, we consider this cost to be acceptable.

Uncertainty. Randomization can increase uncertainity. For example, a randomized al-
gorithm could get unlucky in the random choices that it makes and take a long time to
compute the answer. In some applications, such as real-time systems, this uncertainty may
be unacceptable.

Example 34.5. The randomized quicksort algorithm can perform anywhere from Ω(n2) to
Θ(n lg n) work and a run of quicksort that requires Ω(n2) work could take a very long time
to complete. Depending on the application, it can therefore be important to improve the
algorithm to avoid this worst case.

2 Analysis of Randomized Algorithms

Definition 34.4 (Expected and High-Probability Bounds). In analyzing costs for random-
ized algorithms there are two types of bounds that are useful: expected bounds, and high-
probability bounds.

• Expected bounds inform us about the average cost across all random choices made
by the algorithm.

• High-probability bounds inform us that it is very unlikely that the cost will be above
some bound. For an algorithm, we say that some property is true with high proba-
bility if it is true with probability p(n) such that

lim
n→∞

(p(n)) = 1,

2. ANALYSIS OF RANDOMIZED ALGORITHMS 233

where n is an algorithm specific parameter, which is usually the instance size.

As the terms suggest, expected bounds characterize average-case behavior whereas high-
probability bounds characterize the common-case behavior of an algorithm.

Example 34.6. If an algorithm has Θ(n) expected work, it means that when averaged over
all random choices it makes in all runs, the algorithm performs Θ(n) work. Because ex-
pected bounds are averaged over all random choices in all possible runs, there can be runs
that require more or less work. For example once in every 1/n tries the algorithm might
require Θ(n2) work, and (or) once in every

√
n tries the algorithm might require Θ(n3/2)

work.

Example 34.7. As an example of a high-probability bound, suppose that we have n ex-
periments where the probability that work exceeds O(n lg n) is 1/nk. We can use the
union bound to prove that the total probability that the work exceeds O(n lg n) is at most
n·1/nk = 1/nk−1. This means that the work isO(n lg n) with probability at least 1−1/nk−1.
If k > 2, then we have a high probability bound of O(n lg n) work.

Remark. In computer science, the function p(n) in the definition of high probability is usu-
ally of the form 1 − 1

nk
where n is the instance size or a similar measure and k is some

constant such that k ≥ 1.

Analyzing Expected Work. Expected bounds are quite convenient when analyzing work
(or running time in traditional sequential algorithms). This is because the linearity of ex-
pectations allows adding expectations across the components of an algorithm to get the
overall expected work. For example, if the algorithm performs n tasks each of which take
on average 2 units of work, then the total work on average across all tasks will be n×2 = 2n
units.

Analyzing Expected Span. When analyzing span, expectations are less helpful, because
bounding span requires taking the maximum of random variables, rather than their sum.
And the expectation of the maximum of two randow variables is not equal to the maxi-
mum of expectations of the random variables. To bound the span, we will usually need
stronger guarantees than expectation, typically in the form of high probability bounds.
High-probability bounds allow us to bound the expectation of the maximum of a number
of random variables by showing that it is highly unlikely for any one of them to be large.

Exercise 34.3. Consider a game in which we draw some number of tasks at random such
that a task has length n with probability 1/n and has length 1 otherwise. The expected
length of a task is therefore bounded by 2. Imagine now drawing n tasks and waiting for
all them to complete, assuming that each task can proceed in parallel independently of
other tasks. Prove that the expected completion time is not constant.

Note. The exercise corresponds closely to computing the span of a computation, because
the time waited depends on the length of the longest task.

Exercise 34.4. Repeat the same exercise with slightly different probabilities: a randomly
chosen task has length n with probability 1/n3 and 1 otherwise. Prove now that the ex-
pected completion time is bounded by a constant.

Chapter 35

Order Statistics

This chapter presents the problem of computing the order statistics of a sequence and a
randomized algorithm for this problem.

1 The Order Statistics Problem

Definition 35.1 (Order Statistics Problem). Given a sequence, an integer k where 0 ≤ k <
|a|, and a comparison operation < that defines a total order over the elements of the se-
quence, find the kth order statistics, i.e., kth smallest element (counting from zero) in the
sequence.

Reduction to Sorting. We can solve this problem by reducing it to sorting: we first sort
the input and then select the kth element. Assuming that comparisons require constant
work, the resulting algorithm requires O(n lg n) work, but we wish to do better: in partic-
ular we would like to achieve linear work and O(lg2 n) span.

2 Randomized Algorithm for Order Statistics

This section presents a randomized algorithm for computing order statistics that uses the
contraction technique: it solves a given problem instance by reducing it a problem instance
whose size is geometrically smaller in expectation.

Algorithm 35.2 (Contraction-Based Select). For the purposes of simplicity, let’s assume
that sequences consist of unique elements and consider the following algorithm that uses
randomization to contract the problem to a smaller instance. The algorithm divides the

234

2. RANDOMIZED ALGORITHM FOR ORDER STATISTICS 235

input into left and right sequences, ` and r, and figures out the side kth smallest must be in,
and explores that side recursively. When exploring the right side, r, the algorithm adjusts
the parameter k because the elements less or equal to the pivot p are being thrown out
(there are |a| − |r| such elements).

1 select a k =
2 let
3 p = pick a uniformly random element from a
4 ` = 〈x ∈ a | x < p 〉
5 r = 〈x ∈ a | x > p 〉
6 in
7 if (k < |`|) then select ` k
8 else if (k < |a| − |r|) then p
9 else select r (k − (|a| − |r|))
10 end

Example 35.1. Example runs of select illustrated by a pivot tree. For illustrative pur-
poses, we show all possible recursive calls being explored down to singleton sequences. In
reality, the algorithm explores only one path.

• The path highlighted with red is the path of recursive calls taken by select when
searching for the first-order statistics, k = 0.

• The path highlighted with brown is the path of recursive calls taken by selectwhen
searching for the fifth-order statistics, k = 4.

• The path highlighted with green is the path of recursive calls taken by select when
searching for the eight-order statistics, k = 7.

236 CHAPTER 35. ORDER STATISTICS

3 Analysis

We analyze the work and span of the randomized algorithm for order statistics and show
that the select algorithm on input of size n performs O(n) work in expectation and has
O(lg2 n) span with high probability.

3.1 Analysis with the Dart Game

We present an analysis of the select algorithm by applying the dart game method .

Darts and Probabilities. Recall the rank of an element in a sequence is the position of the
element in the corresponding sorted sequence. Consider the rank of the pivot selected at
a call to select. If the selected pivot has rank greater than n/4 and less than 3n/4, then
the size of the input passed to the next recursive call is at most 3n/4. Because all elements
are equally likely to be selected as a pivot the probability that the selected pivot has rank
greater than n/4 and less than 3n/4 is 3n/4−n/4

n = 1/2. The figure below illustrates this.

Thus, the instance size decreases by 3/4 with probability 1/2 at every recursive call. We
can thus model each recursive call to the algorithm as throwing a dart in the dart game,
where r = 3/4 and p = 1/2. We set the penalty to O(n) because the algorith takes O(n)
work in the worst case.

Number of Recursive Calls. By application of dart game, we know that afterO(lg n) dart
throws (recursive calls), the algorithm completes with probability 1− 1

n .

Work and Span. To analyze the work and span, note that at each recursive call (dart
throw) work is linear and span is logarithmic. The expected instance size at round i is
bounded by 0.875i, because 1−p+pr = 0.875, and thus we can essentially the same analysis
as in the dart game for calculating expected work and expected span . We conclude that
the expected work is O(n) and expected span is O(lg2 n).

3. ANALYSIS 237

3.2 A Direct Analysis

The Recurrences. Let n = |a| and consider the partition of a into ` and r. Define

X(n) =
max{|`|, |r|}

n

as the fractional size of the larger side. Because filter requires linear work and logarithmic
span, we can write the work and span of the algorithm as

W (n) ≤W (X(n) · n) +O(n)

S(n) ≤ S(X(n) · n) +O(lg n).

Bounding the Expected Fraction. For the analysis, we will bound E [X(n)], i.e., the ex-
pected fraction of the instance size solved by the recursive call. Because all elements are
equally likely to be chosen, we can calculate the size of ` and size of r as a function of the
rank of the pivot, i.e., its position in the sort of the input sequence. If the pivot has rank i,
then ` has length i and r has length n − i − 1. The drawing illustrates the sizes of ` and r
and their maximum as a function of the rank of the pivot.

Since the algorithm chooses the pivot uniformly randomly, i.e., with probability 1/n, we
can write the expectation for X(n) as

E [X(n)] =
1

n

n−1∑
i=0

max{i, n− i− 1}
n

≤ 1

n

n−1∑
j=n/2

2

n
· j ≤ 3

4

(Recall that
∑y
i=x i = 1

2 (x+ y)(y − x+ 1).)

238 CHAPTER 35. ORDER STATISTICS

Important. Note that expectation bound holds for all input sizes n.

The calculation of E [X(n)] tells us that in expectation, X(n) is a smaller than 1. Thus when
bounding the work we should have a nice geometrically decreasing sum that adds up to
O(n). But it is not quite so simple, because the constant fraction is only in expectation.
For example, we could get unlucky for a few contraction steps and leading to little or no
reduction in the size of the input sequence.

We next show that that even if we are unlucky on some steps, the expected size will indeed
go down geometrically. Together with the linearity of expectations this will allow us to
bound the work.

Theorem 35.1 (Expected Size of Input). Starting with size n, the expected size of a in algo-
rithm select after d recursive calls is at most

(
3
4

)d
n.

Proof. The proof is by induction on the depth of the recursion d. In the base case, d = 0 and
the lemma holds trivially. For the inductive case assume that the lemma holds for some
d ≥ 0. Consider now the (d + 1)th recursive call. Let Yd be the random variable denoting
the instance size and let Zd denote the pivot chosen, at the depth dth. For any value of y
and z, let f(y, z) be the fraction of the input reduced by the choice of the pivot at position
z for an input of size y. We can write the expectation for the input size at (d+ 1)st call as

E[Yd+1] =
∑
y,z yf(y, z)PYd,Zd(y, z)

=
∑
y

∑
z yf(y, z)PYd(y)PZd | Yd(z | y)

=
∑
y yPYd(y)

∑
z f(y, z)PZd | Yd(z | y)

≤
∑
y yPYd(y)E [X(y)].

≤ 3
4

∑
y yPYd(y).

≤ 3
4E [Yd] .

Note that we have used the bound

E [X(y)] =
∑
z

f(y, z)PZd | Yd(z | y) ≤ 3

4
,

which we established above.

We thus conclude that E [Yd+1] ≤ 3
4E [Yd], which this trivially solves to the bound given in

the theorem, since at d = 0 the input size is n.

Remark. Note that the proof of this theorem would have been relatively easy if the succes-
sive choices made by the algorithm were independent but they are not, because the size to
the algorithm at each recursive call depends on prior choices of pivots.

3.2.1 Work Analysis

We now have all the ingredients to complete the analysis.

3. ANALYSIS 239

The work at each level of the recursive calls is linear in the size of the input and thus can
be written as Wselect(n) ≤ k1n+ k2, where n is the input size. Because at least one element,
the pivot, is taken out of the input for the recursive call at each level, there are at most n
levels of recursion. Thus, by using the theorem below, we can bound the expected work as

E [Wselect(n)] ≤
n∑
i=0

(k1E [Yi] + k2)

E [Wselect(n)] ≤
n∑
i=0

(k1n

(
3

4

)i
+ k2)

≤ k1n

(
n∑
i=0

(
3

4

)i)
+ k2n

≤ 4k1n+ k2n

∈ O(n).

Note. As we shall see in subsequent chapters, many contraction algorithms have the same
property that the problem instances go down by an expected constant factor at each con-
traction step.

3.2.2 Span Analysis using Markov Inequality

Because the span at each level is O(lg n) and because the depth is at most n, we can bound
the span of the algorithm by O(n lg n) in the worst case. But we expect the average span
to be better because chances of picking a poor pivot over and over again, which would be
required for the linear span is unlikely.

To bound the span in the expected case, we shall use bound on the expected input size
established above, and bound the number of levels in select with high probability.

A High-Probability Bound for Span. Consider depth d = 10 lg n. At this depth, the
expected instance size upper bounded by

n

(
3

4

)10 lgn

.

With a little math this is equal to n× n−10 lg(4/3) ≈ n−3.15.

By Markov’s inequality , if the expected size is at most n−3.15 then the probability of that
the size is at least 1 is bounded by

P [Y10 lgn ≥ 1] ≤ E[Y10 lgn]

1
=

1

n3.15
≤ 1

n3
.

240 CHAPTER 35. ORDER STATISTICS

In applying Markov’s inequality, we choose 1, because we know that the algorithm termi-
nates for that input size. We have therefore shown that the number of steps is O(lg n) with
high probability, i.e., with probability 1− 1

n3 . Each step has spanO(lg n) so the overall span
is O(lg2 n) with high probability.

Note that by increasing the constant factor from 10 to 20, we could decrease the probability
to n−7.15, which is extremely unlikely: for n = 106 this is 10−42.

Expectated Bound for Span. Using the high probability bound, we can bound the ex-
pected span by using the Total Expectations Theorem .

For brevity let the random variable Y be defined as Y = Y10 lgn,

E [S] =
∑
y PY (y)E [S | Y = y] .

=
∑
y≤1 PY (y)E [S | Y = y] +

∑
y>1 PY (y)E [S | Y = y]

≤ 1 ·O(lg2 n) + 1
n3O(n)

= O(lg2 n).

The expectation calculation above has two terms.

• The first term considers the case of y < 1. In this case, we know that the span is
Θ(lg2 n), because the span of each recursive call is Θ(lg n), as dominated by the span
of the filter operation. The probability that y < 1 is at most 1.

• The second part considers the case of y ≥ 1. We know that this case happens with
probability at most 1

n3 and thus can afford to use a loose bound on the expected span,
e.g., total expected work, which is O(n). As a result, this part contributes only a
constant to the total.

3.2.3 Span Analysis Using Chernoff Bound

We present an analysis of the span by using Chernoff bounds. This analysis is similar to
the analysis of span from the Dart game but we include it here as an example of a concrete
application of Chernoff bounds.

By Dart Game reasoning , we know, that at each recursive call the probability that the
input size decreases by a factor of 3/4 is 1/2, which we can think of as “hit”.

Define an indicator random variable Si to denote the event that this occurs in recursive call
i ≥ 0; we have:

P [Si = 1] = 1/2.

Let the random variable S denote the total number of “hits, i.e., Si’s for i = 0 . . . 2c lg n for
some constant c > 1. This is a binomial random variable and with mean c lg n.

4. EXERCISES 241

High Probability Bound for Span. Because S is binomial random variable, we can ap-
ply Chernoff bounds to bound the probability that S exceeds a constant fraction of its
expectation. For δ = 2, we have for some constant d

P [X > (1 + δ)c lg n] < e
−δ2·c lgn

4

≤ e−d lnn

≤ 1
nd

< 1
n

Thus, we conclude that the total number of recursive calls with O(lg n) with high proba-
bility. Because each recursive call has a span of O(lg n), the total span is O(lg2 n) with high
probability.

Expected Bound for Span. Using the high probability bound, we can bound the expected
span by using the Total Expectations Theorem .

We know that with probability at least 1 − 1/n the span is O(lg2 n) and with probability
1/n the span is at most n lg n, because there are at most n recursive calls, each with span n.
Thus expected span is

(1− 1/n) ·O(lg2 n) + 1/n ·O(n) = O(lg2 n).

4 Exercises

Exercise 35.1. When bounding the expected work , we have used the fact that the input
size decreases at least one in each round and bounded the total number of recursive calls
by n. Redo the analysis, without using this fact.

Exercise 35.2. In establishing the expected span, we upper bounded the expected span
by O(n lg n). Another way is to bound the expected span by expected work. Redo the
expected span analysis by using expected span instead of work.

Exercise 35.3. Prove that the pivot tree has O(lg n) height, and is therefore balanced, with
high probability.

Chapter 36

The Quick Sort Algorithm

This chapter presents an analysis of the randomized Quick sort algorithm. The first sec-
tion presents the quicksort algorithm and its variants. The second section analyzes the
randomized variant.

1 Quicksort

Algorithm 36.1 (Generic Quicksort). The code below show the quicksort algorithm, where
the pivot-choosing step is intentionally left under-specified. Quicksort exposes plenty of
parallelism:

• the two recursive recursive calls are parallel, and

• the filters for selecting elements greater, equal, and less than the pivot are also inter-
nally parallel.

242

1. QUICKSORT 243

1 quicksort a =
2 if |a| = 0 then a
3 else
4 let
5 p = pick a pivot from a
6 a1 = 〈x ∈ a | x < p 〉
7 a2 = 〈x ∈ a | x = p 〉
8 a3 = 〈x ∈ a | x > p 〉
9 (s1, s3) = (quicksort a1) || (quicksort a3)
10 in
11 s1++a2++s3

12 end

Pivot Tree. Each call to quicksort either makes no recursive calls (the base case) or two
recursive calls. We can therefore represent an execution of quicksort as a binary search tree,
where the nodes—tagged with the pivots chosen—represent the recursive calls and the
edges represent the caller-callee relationships. We refer to such a tree as a pivot tree and
use pivot trees to reason about the properties of quicksort such as its work and span.

Example 36.1 (Pivot Tree). An example run of quicksort along with its pivot tree. In this
run, the first call choses 3 as the pivot.

Pivot Tree, Work, and Span. Given a pivot tree for a run of quicksort, we can bound
the work and the span of that run by inspecting the pivot tree. Note that for an sequence
of length n, the work at each call to quicksort is Θ(n) excluding the calls to the recursive

244 CHAPTER 36. THE QUICK SORT ALGORITHM

calls, because the filter calls each take Θ(n) work. Similarly, the span is Θ(lg n), because
filter requires Θ(lg n) span. Thus we can bound work by adding up the instance size of
each node in the pivot tree; the instance size is exactly the number of nodes in that subtree.
Likewise for span, we can compute the sum of the logarithm of the instance sizes along
each path and take their maximum. Or more simply we can bound the span by multiplying
the length of the longest path by Θ(lg n).

Impact of Pivot Selection on Work and Span. Because the chosen pivots determine ex-
actly how balanced the pivot tree is, they can have a significant impact on the work and
span of the quicksort algorithm. Let us consider several alternatives and their impact on
work and span.

• Always pick the first element as pivot: In this case, inputs that are sorted or nearly
sorted can lead to high work and span. For example, if the input sequence is sorted
in increasing order, then the smallest element in the input is chosen as the pivot.
This leads to an unbalanced, lopsided pivot tree of depth n. The total work is Θ(n2),
because n−i keys will remain at level i and the total work is

∑n−1
i=0 (n−i−1). Similarly,

if the sequence is sorted in decreasing order, we will end up with a pivot tree that is
lopsided in the other direction. In practice, it is not uncommon for inputs to quicksort ,
or any sort, to be sorted or nearly sorted.

• Pick the median of three elements as the pivot: Another strategy is to take the first,
middle, and the last elements and pick the median of them. For sorted inputs, this
strategy leads to an even partition of the input, and the depth of the tree is Θ(lg n). In
the worst case, however, this strategy is no better than the first strategy. Nevertheless,
this is the strategy used quite broadly in practice.

• Pick a random element as the pivot: In this strategy, the algorithm selects one of
the elements, uniformly randomly from its input as the pivot. It is not immediately
clear what the work and span of this strategy is, but intuitively, when we choose a
random pivot, the size of each side is not far from n/2 in expectation. This doesn’t
give us a proof but it gives us some reason to expect that this strategy could result in
a tree of depth Θ(lg n) in expectation or with high probability. Indeed, in the analysis
section , we prove that selecting a random pivot gives us expected Θ(n lg n) work and
a recursion tree of depth Θ(lg n) leading to Θ(lg2 n) span since each recursive call has
Θ(lg n) span.

Exercise 36.1. Describe the worst-case input for the version of quicksort that uses the sec-
ond strategy above.

2 Analysis of Quicksort

This section presents an analysis of the randomized quicksort algorithm which selects its
pivots randomly. Specificially, we consdired two different approaches, based on the Dart

2. ANALYSIS OF QUICKSORT 245

Game and an direct approach. We also outline the analysis that Tony Hoare used in his
original work.

Worst Case Work and Span. In the worst case, quicksort picks as pivot the smallest or the
largest element as pivot. In this case, the recursion tree has depth n. Because each level of
the tree performs Θ(n) total work and Θ(lg n) span, total work is Θ(n2) and total span is
Θ(n lg n).

2.1 Analysis with the Dart Game

We present an analysis of the select algorithm by applying the dart game method .

Darts and Probabilities. Recall the rank of an element in a sequence is the position of the
element in the corresponding sorted sequence. Consider the rank of the pivot selected at
a call to quicksort . If the selected pivot has rank greater than n/4 and less than 3n/4, then
the size of the input passed to any of the next recursive calls is at most 3n/4. Because all
elements are equally likely to be selected as a pivot the probability that the selected pivot
has rank greater than n/4 and less than 3n/4 is 3n/4−n/4

n = 1/2. The figure below illustrates
this.

Thus, the instance size decreases by 3/4 with probability 1/2 at every recursive call. We
can thus model each recursive call to the algorithm as throwing a dart in the dart game,
where r = 3/4 and p = 1/2. Recall that we defined R = 1/r and thus we have R = 4/3.

Bounding the Number of Dart Throws. In the dart game, we concluded that the prob-
ability of failure, i.e., that we have non-trivial input with more than a single element after
k
p logR n throws with k ≥ 2 is 1

nc , where c = k
8 lnR . Setting p = 0.5, R = 4/3, we can get

different values for k for different values of c that we desire. For the following calculations,
note that lnR ≈ 0.3 For example,

• for c = 1, we have k = 8c lnR ≤ 3,

• for c = 2, we have k = 8c lnR ≤ 5,

• for c = 3, we have k = 8c lnR ≤ 7, and

• for c = 4, we have k = 8c lnR ≤ 10.

246 CHAPTER 36. THE QUICK SORT ALGORITHM

We can thus reduce the probability of failure simply by taking more throws by varying the
constant k.

Number of Throws. But how many throws should we take? Because quicksort requires
Θ(n2) work in the worst case, our penalty is Θ(n2) and thus we could set c = 2.

But, this is not quite correct, because in quicksort we are not playing just one dart game
but one for each root-to-leaf path, of which we have n. We therefore want to minimize the
total probability of failure along all of the paths, which (by union bounh) is at most the
probability of failure along one path multiplied by n. Concretely, if we have a probability
of failure of 1

n3 in one dart dame, the probability of failure over all games is 1
n2 . Thus, we

can set any k ≥ 7. Let us choose k = 10.

With k = 10, all of the n dart games complete after O(lg n) throws with probability at least
1− 1/n3 and some games fail with probability 1/n3. Translating this to our recursion tree,
we have a recursion tree of depth O(lg n) with probability 1− 1/n3 and of depth O(n) with
probability 1/n3.

Expected Work. We know that total work at each level of the recursion tree is O(n). The
expected work is therefore

E [W (n)] = (1− 1/n3)O(n lg n) + 1
n3O(n2)

= O(n lg n)

Expected Span. We know that span at each level of the recursion tree is O(lg n). The
expected span is therefore

E [S(n)] = (1− 1/n3)O(lg n lg n) + 1
n3O(n lg n)

= O(lg2 n)

2.2 A Direct Analysis

The analysis by using the dart game is, in some sense, quite abstract. In this section, we
present a more direct analysis that takes advantage of specific properties of quicksort. This
analysis is a bit more involved, but is also insightful. For example, it allows to identify a
reasonably precise bound on the probability of comparing any given two keys in the input.

Assumptions. We assume that the algorithm is as shown previously and that the pivot
is chosen as a uniformly random element of the input sequence.

2. ANALYSIS OF QUICKSORT 247

To streamline the analysis, we make the following two assumptions.

• We “simulate” randomness with priorities: before the start of the algorithm, we as-
sign each key a priority uniformly at random from the real interval [0, 1] such that
each key has a unique priority. The algorithm then picks in Line 5 the key with the
highest priority.

• We assume a version of quicksort that compares the pivot p to each key in the input
sequence once (instead of 3 times).

Notice that once the priorities are decided at the beginning, the algorithm is completely
deterministic.

Exercise 36.2. Rewrite the quicksort algorithm to use the comparison once when compar-
ing the pivot with each key at a recursive call.

Example 36.2 (Randomness and Priorities). An execution of quicksort with priorities and
its pivot tree, which is a binary-search-tree, illustrated.

Exercise 36.3. Convince yourself that the two presentations of randomized quicksort are
fully equivalent (modulo the technical details about how we might store the priority val-
ues).

Observations. Let us start by observing some properties of quicksort . For these observa-
tions, it might be helpful to consider the example shown above.

• In quicksort , a comparison always involves a pivot and another key.

• Because the pivot is not part of the instance solved recursively, a key can become a
pivot at most once.

248 CHAPTER 36. THE QUICK SORT ALGORITHM

• Each key eventually becomes a pivot, or is a singleton base case.

Based on the first two observations, we conclude that each pair of keys is compared at most
once.

2.2.1 Expected Work for Quicksort

Work and Number of Comparisons. We are now ready to analyze the expected work
of randomized quicksort . Instead of bounding the work directly, we will use a surrogate
metric—the number of comparisons—because it is easier to reason about it mathemati-
cally. Observe that the total work of quicksort is bounded by the number of comparisons
because the work required to partition the input at each recursive calls is asymptotically
bounded by the number of comparisons between the keys and the pivot. To bound the
work, asymptotically, it therefore suffices to bound the total number of comparisons.

Random Variables. We define the random variable Y (n) as the number of comparisons quicksort makes
on input of size n. For the analysis, we will find an upper bound on E [Y (n)]. In particular
we will show a bound of O(n lg n) irrespective of the the order keys in the input sequence.

In addition to Y (n), we define another random variable Xij that indicates whether keys
with rank i and j are compared. More precisely, consider the final sort of the keys t =
sort(a) and for any element element ti. Consider two positions i, j ∈ {0, . . . , n − 1} in the
sequence t and define following random variable

Xij =

{
1 if ti and tj are compared by quicksort
0 otherwise.

Total Number of Comparisons. By the observations stated above , we know that in any
run of quicksort , each pair of keys is compared at most once. Thus Y (n) is equal to the sum
of all Xij ’s, i.e.,

Y (n) ≤
n−1∑
i=0

n−1∑
j=i+1

Xij

In the sum above, we only consider the case of i < j, because we only want to count each
comparison once.

By linearity of expectation, we have

E [Y (n)] ≤
n−1∑
i=0

n−1∑
j=i+1

E [Xij]

Since each Xij is an indicator random variable, E [Xij] = P [Xij = 1].

2. ANALYSIS OF QUICKSORT 249

Calculating P [Xij]. To compute the probability that ti and tj are compared (i.e., P [Xij = 1]),
let’s take a closer look at the quicksort algorithm and consider the first pivot p selected by
the algorithm. The drawing below illustrates the possible relationships between the pivot
p and the elements ti and tj .

Notice first first that the pivot p is the element with highest priority. For Xij , where i < j,
we distinguish between three possible scenarios as illustrated in the drawing above:

• p = ti or p = tj ; in this case ti and tj are compared and Xij = 1.

• ti < p < tj ; in this case ti is in a1 and tj is in a3 and ti and tj will never be compared
and Xij = 0.

• p < ti or p > tj ; in this case ti and tj are either both in a1 or both in a3, respectively.
Whether ti and tj are compared will be determined in some later recursive call to
quicksort .

Note now that the argument above applies to any recursive call of quicksort .

Lemma 36.1 (Comparisons and Priorities). For i < j, let ti and tj be the keys with rank i
and j, and pi or pj be their priorities. The keys ti and tj are compared if and only if either
pi or pj has the highest priority among the priorities of keys with ranks i . . . j.

Proof. For the proof, let pi be the priority of the key ti with rank i.

Assume first that ti (tj) has the highest priority. In this case, all the elements in the subse-
quence ti . . . tj will move together in the pivot tree until ti (tj) is selected as pivot. When it
is selected as pivot, ti and tj will be compared. This proves the first half of the claim.

For the second half, assume that ti and tj are compared. For the purposes of contradiction,
assume that there is a key tk, i < k < j with a higher priority between them. In any
collection of keys that include ti and tj , tk will become a pivot before either of them. Since
ti ≤ tk ≤ tj it will separate ti and tj into different buckets, so they are never compared.
This is a contradiction; thus we conclude there is no such tk.

250 CHAPTER 36. THE QUICK SORT ALGORITHM

Bounding E [Y (n)]. Therefore, for ti and tj to be compared, pi or pj has to be bigger than
all the priorities in between. Since there are j − i + 1 possible keys in between (including
both i and j) and each has equal probability of being the highest, the probability that either
i or j is the highest is 2/(j − i+ 1). Therefore,

E [Xij] = P [Xij = 1]

= P [pi or pj is the maximum among {pi, . . . , pj}]

=
2

j − i+ 1
.

We can write the expected number of comparisons made in randomized quicksort is

E [Y (n)] ≤
n−1∑
i=0

n−1∑
j=i+1

E [Xij]

=

n−1∑
i=0

n−1∑
j=i+1

2

j − i+ 1

=

n−1∑
i=0

n−i∑
k=2

2

k

≤ 2

n−1∑
i=0

Hn

= 2nHn ∈ O(n lg n).

Note that in the derivation of the asymptotic bound, we used the fact thatHn = lnn+O(1).
Recall that Hn =

∑n
k=1

1
k is the “harmonic number” for n.

Note. Indirectly by Comparisons-and-Priorities Lemma , we have also shown that the
average work for the ”basic” deterministic quicksort , which always pick the first element as
pivot, is also Θ(n lg n). Just shuffle the input sequence randomly and then apply the basic
quicksort algorithm. Since shuffling the input randomly results in the same input as picking
random priorities and then reordering the data so that the priorities are in decreasing order,
the basic quicksort on that shuffled input does the same operations as randomized quicksort
on the input in the original order. Thus, if we averaged over all permutations of the input
the work for the basic quicksort is O(n lg n) on average.

Remark (Ranks and Comparisons). The bound

E [Xij] =
2

j − i+ 1

indicates that the closer two keys are in the sorted order (t) the more likely it is that they
are compared. It is instructive to interpret this in the context of pivot tree.

For example, the keys ti is compared to ti+1 with probability 1. Indeed, one of ti and ti+1

must be an ancestor of the other in the pivot tree, because there is no other element that
could be the root of a subtree that has ti in its left subtree and ti+1 in its right subtree.
Regardless, ti and ti+1 will be compared.

2. ANALYSIS OF QUICKSORT 251

If we consider ti and ti+2 there could be such an element, namely ti+1, which could have
ti in its left subtree and ti+2 in its right subtree. That is, with probability 1/3, ti+1 has the
highest probability of the three and ti is not compared to ti+2, and with probability 2/3 one
of ti and ti+2 has the highest probability and, the two are compared.

In general, the probability of two elements being compared is inversely proportional to the
number of elements between them when sorted. The further apart the less likely they will
be compared. Analogously, the further apart the less likely one will be the ancestor of the
other in the related pivot tree.

2.2.2 Expected Analysis of Quicksort: Span

We now analyze the span of quicksort . All we really need to calculate is the depth of the
pivot tree, since each level of the tree has span O(lg n)—needed for the filter. We argue that
the depth of the pivot tree is O(lg n) by relating it to the number of contraction steps of the
randomized order statistics algorithm select that we considered earlier. For the discussion,
we define the ith node of the pivot tree as the node corresponding to the ith smallest key.
This is also the ith node in an in-order traversal.

Lemma 36.2 (Quicksort and Order Statistics). The path from the root to the ith node of the
pivot tree is the same as the steps of select on k = i. That is to the say that the distribution
of pivots selected along the path and the sizes of each problem is identical.

Proof. Note that that select is the same as quicksort except that it only goes down one of the
two recursive branches—the branch that contains the kth key.

Recall that for select , we showed that the length of the path is more than 10 lg n with prob-
ability at most 1/n3.15. This means that the length of any path being longer that 10 lg n is
tiny.

This does not suffice to conclude, however, that there are no paths longer than 10 lg n,
because there are many paths in the pivot tree, and because we only need one to be long
to impact the span. Luckily, we don’t have too many paths to begin with. We can take
advantage of this property by using the union bound , which says that the probability of
the union of a collection of events is at most the sum of the probabilities of the events.

To apply the union bound, consider the event that the depth of a node along a path is larger
10 lg n, which is 1/n3.5. The total probability that any of the n leaves have depth larger than
10 lg n is

P [depth of quicksort pivot tree > 10 lg n] ≤ n

n3.15
=

1

n2.15
.

We thus have our high probability bound on the depth of the pivot tree.

The overall span of randomized quicksort is therefore O(lg2 n) with high probability. As in
select , we can establish an expected bound by using Total Expectations Theorem .

252 CHAPTER 36. THE QUICK SORT ALGORITHM

Exercise 36.4. Complete the span analysis of proof by showing how to apply the Total
Expectation Theorem.

2.3 Alternative Analysis of Quicksort

Another way to analyze the work of quicksort is to write a recurrence for the expected work
(number of comparisons) directly. This is the approach taken by Tony Hoare in his original
paper. For simplicity we assume there are no equal keys (equal keys just reduce the cost).
The recurrence for the number of comparisons Y (n) done by quicksort is then:

Y (n) = Y (X(n)) + Y (n−X(n)− 1) + n− 1

where the random variable X(n) is the size of the set a1 (we use X(n) instead of Xn to
avoid double subscripts). We can now write an equation for the expectation of Y (n).

E [Y (n)] = E [Y (X(n)) + Y (n−X(n)− 1) + n− 1]

= E [Y (X(n))] + E [Y (n−X(n)− 1)] + n− 1

=
1

n

n−1∑
i=0

(E [Y (i)] + E [Y (n− i− 1)]) + n− 1

where the last equality arises since all positions of the pivot are equally likely, so we can
just take the average over them. This can be by guessing the answer and using substitution.
It gives the same result as our previous method.

Exercise 36.5. Show that E [(]Y (n) in the work analysis above is O(n lg n).

Span Analysis. We can use a similar strategy to analyze span. Recall that in randomized
quicksort , at each recursive call, we partition the input sequence a of length n into three
subsequences a1, a2, and a3, such that elements in the subsequences are less than, equal,
and greater than the pivot, respectfully. Let the random variable X(n) = max{|a1|, |a3|},
which is the size of larger subsequence.

The span of quicksort is determined by the sizes of these larger subsequences. For ease of
analysis, we will assume that |a2| = 0, as more equal elements will only decrease the span.
As this partitioning uses filter we have the following recurrence for span for input size n

S(n) = S(X(n)) +O(lg n).

For the analysis, we shall condition the span on the random variable denoting the size of
the maximum half and apply Total Expectations Theorem .

E [S(n)] =

n∑
m=n/2

P [X(n) = m] ·E [S(n) | (X(n) = m)].

3. CONCLUDING REMARKS 253

The rest is algebra

E [S(n)] =

n∑
x=n/2

P [X(n) = x] ·E [S(n) | (X(n) = x)]

≤ P

[
X(n) ≤ 3n

4

]
·E
[
S(

3n

4
)

]
+ P

[
X(n) >

3n

4

]
·E [S(n)] + c · lg n

≤ 1

2
E

[
S(

3n

4
)

]
+

1

2
E [S(n)] + c · lg n

=⇒ E [S(n)] ≤ E

[
S(

3n

4
)

]
+ 2c lg n.

This is a recursion in E [S(·)] and solves easily to E [S(n)] = O(lg2 n).

3 Concluding Remarks

History of quick sort. Quick sort is one of the earliest and most famous algorithms. It was
invented and analyzed by Tony Hoare around 1960. This was before the big-O notation was
used to analyze algorithms. Hoare invented the algorithm while an exchange student at
Moscow State University while studying probability under Kolmogorov—one of founders
of the field of probability theory.

Our presentation of the quick sort algorithm differs from Hoare’s original, which parti-
tions the input sequentially by using two fingers that move from each end and by swap-
ping two keys whenever a key was found on the left greater than the pivot and on the right
less than the pivot. The analysis covered in this chapter is different from Hoare’s original
analysis.

It is interesting that while Quick sort is a quintessential example of a recursive algorithm, at
the time of its invention, no programming language supported recursion and Hoare went
into some depth explaining how recursion can be simulated with a stack.

Remark. In Treaps Chapter , we will see that the analysis of quick sort presented here is is
effectively identical to the analysis of a certain type of balanced tree called Treaps. It is also
the same as the analysis of “unbalanced” binary search trees under random insertion.

Part IX

Binary Search Trees

254

Chapter 37

Introduction

This chapter presents the motivation behind Binary Search Trees (BSTs) and an Abstract
Data Type (ADT) for them. It also briefly discusses the well-known implementation tech-
niques for BSTs.

1 Motivation

Searching Dynamic Collections. Searching efficiently is one of the most important goals
in the design of data structures. Of the many search data structures that have been de-
signed and are used in practice, search trees, more specifically balanced binary search trees
(BSTs), occupy a coveted place because of their broad applicability to many different prob-
lems. For example, in this book, we rely on binary search trees to implement set and table
(dictionary) abstract data types. Sets and tables are instrumental in many algorithms, in-
cluding for example graph algorithms, many of which we cover later in the book.

A Total Order. BSTs require that the keys being stored come from a total order so we can
store the keys in “sorted order”. This makes BSTs particularly useful when our searches
are based on the order, such as finding all keys between two values (a range search), or
given a key, finding the next larger key. They are also useful if the only access we have
to keys is the ability to compare them. In these cases other search structures such as hash
tables (discussed in a later chapter) are of little utility. Even when we do not need ordering,
BSTs have some other benefits over hash tables. An important one is that it is easy to make
them “persistent” so that an update leaves the old tree unmodified while creating a new
tree.

255

256 CHAPTER 37. INTRODUCTION

Dynamic versus Static. If we are interested in searching a static or unchanging collec-
tion of elements, then BSTs are not necessary and we can use sequences instead. More
specifically, we can represent a collection as a sorted sequence and use binary search to im-
plement searches. Using array sequences such a binary search requires logarithmic work.
If we wish to support dynamic collections, which allow, for example, inserting and deleting
keys, then a sequence based implementation would require linear work for these updates
since all, or many, keys might need to be moved. BSTs support various updates, including
insertions and deletions, in logarithmic work.

Sequential versus Parallel Aggregate Operations. In the traditional treatment of algo-
rithms, which focuses on sequential algorithms, binary search trees revolve around three
operations: insertion, deletion, and search. While these operations are important, they are
not sufficient for parallelism, since they perform a single “update” at a time. We therefore
consider aggregate operations, such as union, intersection, set-difference, filter, map, and
reduce. All of these can be implemented in parallel. Then instead of inserting one element
at a time, for example, we can use a union to insert a whole set of values.

Roadmap. We first define binary search trees. We then present an ADT for binary
search trees , and describe a parametric implementation of the ADT. The parametric im-
plementation uses only one non-trivial operation, joinMid , which joins together two trees
with a key in the middle. As a result, we are able to reduce the problem of implementing
the BST ADT to the problem of implementing just the function joinMid . We then present a
specific instance of the parametric implementation using Treaps .

2 Preliminaries

We start with some basic definitions and terminology involving rooted and binary search
trees. Recall first that a rooted tree is a tree with a distinguished root node.

Definition 37.1 (Full Binary Tree). A full binary tree is an ordered rooted tree where each
node is either a leaf , which has no children, or an internal node, which has a left child, a
value, and a right child. This can be defined as the recursive type:

type α tree = Leaf
| Node of (tree × α× tree)

where α is the type of the value stored at each internal node, and for an internal node
Node(L, v ,R), L is the left child, v is the value, and R is the right child.

For a given node in a binary tree, we define the left subtree of the node as the subtree
rooted at the left child, and the right subtree of the node as the subtree rooted at the right
child.

2. PRELIMINARIES 257

Here we only consider storing values on the internal nodes and assume leaves have no
values associated with them.

It is useful to define different traversal orders on binary trees. A traversal starts at the
root and inductively (recursively) traverses each subtree. The traversal order that is most
important to us is the in-order traversal. It can be defined as follows:

Definition 37.2. The in-order traversal of a full binary tree is given by the order of elements
in the sequence returned by:

inOrder T =
case T of

Leaf ⇒ 〈 〉
| Node(L, k,R) ⇒ inOrder(L) ++ 〈 k 〉 ++ inOrder(R)

i.e., it recursively puts the values from the left subtree first, then the key k at the node, and
then the values from the right subtree. We assume leaves have no values.

Another common order is the pre-order, which visits keys in the order given by:

preOrder T =
case T of

Leaf ⇒ 〈 〉
| Node(L, k,R) ⇒ 〈 k 〉 ++ preOrder(L) ++ preOrder(R)

i.e., first the key, then the left subtree, and finally the right subtree.

When the values (keys) we store at each node have a total ordering defined by a compar-
ison <, we will use the following notation: For complete binary trees T, T1 and T2, and a
value k, we use:

T < k ≡ for all k′ ∈ T, k′ < k
k < T ≡ for all k′ ∈ T, k < k′

T1 < T2 ≡ for all k1 ∈ T1, k2 ∈ T2, k1 < k2

We are now ready to define binary search trees.

Definition 37.3 (Binary Search Tree (BST)). Consider a set S taken from a total order de-
fined by the comparison <. A binary search tree (BST) over S is a full binary tree T (with
no leaf values) that satisfies the following conditions.

1. There is a one-to-one mapping k(v) from internal tree nodes of T to elements in S,
and

2. inOrder(T) is sorted by <.

258 CHAPTER 37. INTRODUCTION

In the definition, the second condition is referred to as the BST property. It can be equiva-
lently stated as: for all internal nodes (L, k,R) ∈ T, L < k < R (using our notation above).

We often refer to the elements of S in a BST as keys, and use dom(T) to indicate the domain
(keys) in a BST T .

We define the size of a BST S as the number of keys in the tree, and also write it as |S|. We
define the depth of either a leaf or node in a BST, as the length of the path from the root
to that leaf or node. The root always has depth 0. We define the height of a BST, denoted
as h(T), as the maximum depth of any leaf. An empty tree has height 0, and a tree with a
single node has height 1.

Example 37.1. An example binary search tree over the set of natural numbers {4, 1, 7, 9, 83, 6, 5},
and defined by the standard total ordering over the natural numbers, is given by the fol-
lowing tree T :

On the left the L and R indicate the left (first) and right (second) child, respectively. All
internal nodes (white) have a key associated with them while the leaves (black) are empty.
The keys satisfy the BST property— the in-order ordering, given by inOrder(T) is 〈 1, 3, 4, 5, 6, 7, 8, 9 〉,
is sorted. Or, equivalently, for every node, the keys in the left subtree are less, than the key
at the root, and the ones in the right subtree are greater.

The size of the tree is 8, because there are 8 keys in the tree. The height of the tree is 4, e.g.,
the path from root 7 to a child of node 4.

In the illustration of the tree, the edges are oriented away from the root, to indicate the
direction we can search from starting at the root. When illustrating binary search trees,
we usually replace the directed arcs with undirected edges, leaving the orientation to be
implicit. We also drop the leaves since they contain no information, and implicitly assume
the left branch (L) is on the left and the right branch (R) is on the right. Given these
conventions, we get the following simpler illustration of a BST, which we will be using in
the rest of the book.

3. SEARCHING A BST 259

Here we are assuming that we just store keys at the nodes of the trees, and that the keys
represent an ordered set. In practice we often store a value associated with each key at
each node, and perhaps other information. These do not change the fundamental ideas we
discuss here, so we will ignore them at first and then come back to them.

3 Searching a BST

The primary goal of a BST is to do fast searches for a particular key. Fortunately, it is
relatively easy to search for a key in a BST, and even to find the next larger or smaller key
in the tree. To find a particular key we can start at the root r and if k equals the key at the
root, call it k′, then we have found our key, otherwise if k < k′, then we know that k cannot
appear in the right subtree, so we only need to search the left subtree, and if k > k′, then
we only have to search the right subtree. Continuing the search, we will either find the key
or reach a leaf and conclude that the key is not in the tree. Based on this idea the following
algorithm will return whether a key k is in a BST T .

Algorithm 37.4 (Searching a BST).

find T k =
case T of

Leaf ⇒ false
| Node(L, k′, R) ⇒

if (k = k′) then true
else if (k < k′) then find L k
else find R k

Example 37.2. A successful search (find) for 7. The search path is highlighted.

260 CHAPTER 37. INTRODUCTION

An unsuccessful search (find) for 4.

It is important to note that the search only visits a path from the root to some node (either
a leaf or internal node). Therefore the search will visit at most as many nodes as the height
of the tree, h(T). Assuming the comparison < takes constant work, this means the work
for find is O(h(T)).

4 Balancing BSTs

Given that the work to find a key (and also for other operations) is proportional to the
height of a BST, our goal should therefore be to keep the height low. In the worst case the
height could be equal to the size. This would be true if every node had one child that is a
leaf. Such a tree is clearly very unbalanced. Our goal therefore implies we should keep the
tree “balanced” such that all leaves of the tree are at approximately at the same depth. We
formalize this notion as follows.

Definition 37.5 (Perfectly Balanced BSTs). A binary tree is perfectly balanced if it has the
minimum possible height. For a binary search tree with n keys, a perfectly balanced tree
has height exactly dlg(n+ 1)e.

Ideally we would like to use only perfectly balanced trees. If we never make changes to
the tree, we could balance it once and for all. If, however, we want to update the tree by,
for example, inserting new keys, then maintaining such perfect balance is costly. In fact, it
turns out to be impossible to maintain a perfectly balanced tree while allowing insertions

5. AN INTERFACE FOR SETS 261

in O(lg n) work. BST data structures therefore aim to keep approximate balance instead of
a perfect one. There are various schemes that keep trees nearly balanced for any sized tree.
These schemes maintain invariants at each node that ensure this near balance.

Definition 37.6 (Nearly Balanced BSTs). We refer to a balancing scheme as maintaining near
balance, or simply balance, if all trees with n elements that satisfy the scheme’s invariants
have height O(lg n). In some cases this is satisfied in expectation or with high probability.

Balanced BST Data Structures. There are many balancing schemes for BSTs. Most either
try to maintain height balance (the children of a node are about the same height) or weight
balance (the children of a node are about the same size). Here we list a few such balancing
schemes:

1. AVL trees are the earliest nearly balanced BST data structure (1962). AVL trees main-
tain the invariant that the two children of each node differ in height by at most one,
which implies near balance.

2. Red-Black trees maintain the invariant that all leaves have a depth that is within a
factor of 2 of each other. The depth invariant is ensured by a scheme of coloring the
nodes red and black.

3. Weight balanced (BB[α]) trees maintain the invariant that the left and right subtrees
of a node of size n each have size at least αn for 0 < α ≤ 1 − 1√

2
. The BB stands for

bounded balance, and adjusting α gives a tradeoff between search and update costs.

4. Treaps associate a random priority with every key and maintain the invariant that
the keys are stored in heap order with respect to their priorities (the term “Treap” is
short for “tree heap”). Treaps guarantee near balance with high-probability.

5. Splay trees are an amortized data structure that does not guarantee near balance, but
instead guarantees that for any sequence of m insert, find and delete operations each
does O(lg n) amortized work.

There are several other balancing schemes for BST data structures (e.g. scapegoat trees and
AA trees), as well as many that allow larger degrees, including 2–3 trees, brother trees, and
B trees.
Remark. Many of the existing BST data structures were developed for sequential comput-
ing. Some of these data structures such as Treaps, which we describe here, generalize
naturally to parallel computing. But some others, such as data structures that rely on amor-
tization techniques can be challenging to support in the parallel setting.

5 An Interface for Sets

As discussed, BSTs are useful for representing sets of keys that have a total ordering, and
require dynamic changes. Let us consider what functions could be useful for such “dy-

262 CHAPTER 37. INTRODUCTION

namic” sets. Certainly we will require some basic operations such as creating an empty
set, creating a singleton set, or returning the size of the set. Also, we would like to find an
element in a set, insert an element into a set, and delete an element from a set. You might
have studied how to do this with BSTs with particular balancing schemes (e.g. AVL trees,
or red-black trees) in previous courses.

However, at a higher level we would like to supply bulk operations on sets, such as taking
the union of two sets, filtering a set so that only elements that satisfy a predicate remain,
or summing the elements of a set with respect to some associative operation. For tables
(i.e., when we associate a value with each key), we might also want to map some function
over the values to generate a new table, or filter based on the values. Such bulk operations
are very useful in programming with sets and tables. They are also important for taking
advantage of parallelism since individual inserts and deletes are inherently sequential, but
bulk operations can often be parallelized.

To implement these bulk operations it is useful to build them on top of some primitives.
Building them on top of insertion, deletion will not be effective since they are inherently
sequential. Instead, as we will see, it is useful to build them on top of three other opera-
tions split, joinM, and joinPair. These are described below. As described in the next
chapter, split and joinPair can be implemented in terms of joinM so all we will really
need is joinM (actually a slight variant, called joinMid).

Here we present an abstract data type that supplies a collection of useful functions over
ordered sets. We will extend this list with further functions in the following chapters. An
important aspect of this interface is that it is designed to support parallelism.

Data Type 37.7 (BST). For a universe of totally ordered keys K, the BST ADT consists of a
type T representing a power set of keys and the functions whose types are specified as:

empty : T
singleton : K→ T
size : T→ N
find : T→ K→ B
delete : (T×K)→ T
insert : (T×K)→ T
union : (T× T)→ T
intersection : (T× T)→ T
difference : (T× T)→ T
split : (T×K)→ (T× B× T)
joinPair : (T× T)→ T
joinM : (T×K× T)→ T
filter : (K→ bool)→ T→ T
reduce : (K×K→ K)→ K→ T→ K

and functionality is defined below.

The ADT supports two constructors: empty and singleton . As their names imply, the func-

5. AN INTERFACE FOR SETS 263

tion empty creates an empty BST and the function singleton creates a BST with a single
key.

The function find searches for a given key and returns a boolean indicating success.

The functions insert and delete insert and delete a given key into or from the BST.

Example 37.3. Consider the following tree.

• Searching for 5 in the tree above returns true.

• Searching for 6 in the tree above returns false.

Example 37.4 (Insertion). Consider the following tree.

Inserting the key 6 into this tree returns the following tree.

Example 37.5 (Deletion). Consider the following tree.

264 CHAPTER 37. INTRODUCTION

Deleting the key 6 from this tree returns the following tree.

Union, Intersection, and Difference. The function union takes two BSTs and returns a
BST that contains the union of the keys in the two BSTs. The function intersection takes two
BSTs and returns a BST that contains the keys that appear in both (i.e., the intersection of
the sets). The function difference takes two BSTs T1 and T2 and returns a BST that contains
the keys in T1 that are not in T2.

Note that union can be thought of as a “parallel” insert since it can add multiple keys at
once. Similarly difference can be thought of as a “parallel” delete, since it will remove
multiple keys at once.

Split. The function split takes a tree T and a key k and splits T into two trees: one consist-
ing of all the keys of T less than k, and another consisting of all the keys of T greater than k.
It also returns a Boolean value indicating whether k appears in T . The exact structure of
the trees returned by split can differ from one implementation to another: the specification
only requires that the resulting trees to be valid BSTs and that they contain the keys less
than k and greater than k, leaving their structure otherwise unspecified.

Example 37.6. Consider the following input tree.

5. AN INTERFACE FOR SETS 265

• Splitting the input tree at 6 yields two following trees, consisting of the keys less
that 6 and those greater that 6, and returns false to indicate that 6 is not in the input
tree.

• Splitting the input tree at 5 yields the following two trees, consisting of the keys less
than 5 and those greater than 5, and also returns true to indicate that 5 is found in
the input tree.

JoinPair. The function joinPair takes two trees T1 and T2 such that all the keys in T1 are
less than the keys in T2. The function returns a tree that contains all the keys in T1 and T2.
The exact structure of the tree returned by joinPair can differ from one implementation
to another: the specification only requires that the resulting tree is a valid BST and that it
contains all the keys in the trees being joined.

Example 37.7. Joining the two trees below using the function joinPair

yields the following three.

JoinM. The function joinM takes a tree T1, a key k, and another tree T2 such that T1 <
k < T2. A returns a tree containing all of the three. It is similar to joinPair except it includes
the middle value (hence the M instead of Pair). As with joinPair the exact structure of the
tree returned can differ from one implementation to another.

Chapter 38

Parametric BSTs

In this chapter we build all the functionality of trees based on a very simple interface in
which the only interesting function is joinMid . This one function captures all that is needed
to rebalance trees to maintain the balance criteria.

1 The Parametric Data Type

We will describe parallel algorithms that support the full functionality of a BST based on
the following simple interface, which has only one interesting function, joinMid . The inter-
face abstracts away from the particular balancing scheme, and captures everything about
balancing in joinMid . For most balancing schemes it is powerful enough to efficiently im-
plement all the functionality we want for BSTs. For example it will allow us to design
algorithms for find , insert and delete that take O(log n) work on a tree of size n. It will also
allow us to design simple parallel algorithms for various functions.

In the next chapter we will discuss how to implement this interface with a particular
balancing scheme called Treaps. The interface also works with other balancing schemes
such as red-black trees, AVL trees, and weight-balanced trees.

Data Type 38.1 (Parametric BST).

type K (* The key type. Must support < *)
type T (* The abstracted tree type *)
type E = Leaf (* An exposed tree *)

| Node of (T×K× T)
size : T→ N
expose : T→ E
joinMid : E→ T (* Join and rebalance *)

266

2. ALGORITHMS BASED ON JOINMID 267

The type K is the key type (from a total order), and the type T is the type of the tree itself.
The expose function exposes the root of the tree returning whether the tree is a Leaf (i.e.,
empty) or an internal Node . If it is an internal node, the returned type includes a triple of
the left subtree, the key at the root, and the right subtree. The actual implementation of the
balanced tree is likely to include other information in each node, but this is hidden by the
interface.

The function joinMid is the inverse of expose . It takes either a Leaf or a Node(L, k,R)
consisting of a left tree L, a key k, and a right tree R, where L < k < R. If the argument
is a leaf, it just creates a leaf (i.e., empty tree). Otherwise, conceptually, JoinMid creates a
new node with a left branch L, a key k, and a right branch R. However, it might have to
rebalance the tree to maintain the invariants of the balancing scheme. This might require
some rotations, and the particular rotations required will depend on the balancing scheme.
It might also have to update other information in the root node.

The function size(T) returns the number of keys in T . Its functionality should be clear, but
to implement it efficiently, i.e., in O(1) work, we need to store in each node of the tree the
size of its subtree. This is an example of information in the node that is not returned by
expose , and must be updated by JoinMid .

The interface we give does not associate values with each key, but it would be easy to add
values. In particular we could define:

type α E = Leaf
| Node of (T×K× α× T)

where α is the type of the value. This would allow us to implement tables (dictionaries),
and all the implementations given in the rest of this chapter still work. We stick with simple
sets (no values), because it is simpler.

2 Algorithms based on joinMid

We now discuss algorithms for all the functions in the BST interface given in Section 5
based on just using joinMid .

Algorithm 38.2 (Empty, Singleton and JoinM). We start with the following very simple
definitions.

empty = joinMid(Leaf)

singleton k = joinMid(Node(empty, k, empty))

joinM (L, k,R) = joinMid(Node(L, k,R))

268 CHAPTER 38. PARAMETRIC BSTS

Note that joinM is just a version of JoinMid that always takes three arguments (it cannot
create a leaf).

Algorithm 38.3 (Split).

split(T, k) =
case expose(T) of

Leaf ⇒ (empty , false, empty)
| Node(L, k′, R)⇒

case compare(k, k′) of
Equal ⇒ (L, true, R)
| Less ⇒

let (Ll, x, Lr) = split(L, k)
in (Ll, x, joinM (Lr, k

′, R)) end
| Greater ⇒

let (Rl, x,Rr) = split(R, k)
in (joinM (L, k′, Rl), x,Rr) end

The split(T, k) algorithm works by first exposing the root of T . If it is a leaf, we are done
and can just return empty for the trees less and greater than k, and false in the middle since
the key is not in T . If T is a node, then we need to compare k to the key k′ at that node,
which can have three outcomes:

1. If k = k′ we have found the key k so we return true in the middle and L and R as the
lesser and greater trees.

2. If k < k′ we know k can only appear in the left subtree L, and that all keys in the
right subtree R are greater than k. We can therefore recurse into L using split(L, k).
This returns (Ll, x, Lr). The x tells us whether k appears in L so we can return it as
the middle value. Similarly Ll contains all the keys less than k, so we can return it
on the left. This leaves us with Lr, k′ and R, which are all greater than k. We can join
these with joinM (Lr, k

′, R), giving us the tree of greater keys for the right result.

3. If k > k′, it is symmetric to the above.

As we will see, the split function is very useful for other algorithms.

Example 38.1. The split algorithm on a BST and key c, which is not in the BST. The split
traverses the path 〈 a, e, b, d 〉 turning right at a and b (since c is larger) and turning left at e
and d (since c is smaller). The pieces are put back together into the two resulting trees on
the way back up the recursion.

2. ALGORITHMS BASED ON JOINMID 269

Algorithm 38.4 (joinPair).

minKey (T, k) =
case expose T of

Leaf ⇒ k
| Node(L, k′,)⇒ minKey(L, k′)

joinPair(T1, T2) =
case expose(T2) of

Leaf ⇒ T1

| Node(L, k,R)⇒
let km = minKey(L, k)

(, , T ′2) = split(T2, km)
in joinM (T1, km, T

′
2) end

This algorithm works by first finding the minimum key km ∈ T2, then using split to remove
it from T2, returning T ′2, and finally using a joinM (T1, km, T

′
2) to put the parts together.

Algorithm 38.5 (Insert and Delete). An Insert(T, k) can be implemented as:

insert(T, k) =
let (L, ,R) = split T k
in joinM (L, k,R) end

It splits the tree T at the key to be inserted, and then joins back together with the key in the
middle. Note that whether the key appeared in the original tree is irrelevant and ignored.

A Delete(T, k) can be similarly implemented as:

delete(T, k) =
let (L, ,R) = split T k
in joinPair(L,R) end

270 CHAPTER 38. PARAMETRIC BSTS

Again, it splits the tree T at the key to be inserted, and then joins the tree back together,
but now without the key in the middle. Note, again, that whether the key appeared in the
original tree is irrelevant and ignored.

3 Parallel Functions

So far all our algorithms have been sequential, and, as we will show, all take O(log n)
work. We now look at some functions and corresponding algorithms that take advantage
of parallelism.

Algorithm 38.6 (Union). The union algorithm uses divide and conquer.

union(T1, T2) =
case (expose T1, expose T2) of

(Leaf ,)⇒ T2

(,Leaf)⇒ T1

| (Node(L1, k1, R1),)⇒
let (L2, , R2) = split(T2, k1)

(L,R) = (union(L1, L2) || union(R1, R2))
in joinM (L, k1, R) end

The idea is to split both trees at some key k, recursively union the two parts with keys
less than k, and the two parts with keys greater than k and then join them. Note that the
key k might exists in both trees but will only be placed in the result once, because the split
operation will not include k in any of the two trees returned.

Note that we chose the key at the root of the first tree, T1, to split the second, T2. We could
equally well have done it the other way, choosing the root of T2 to split T1.

Example 38.2. The union of tree t1 and t2 illustrated.

3. PARALLEL FUNCTIONS 271

Algorithm 38.7 (Intersect). The intersection algorithm is similar to union .

intersect(T1, T2) =
case (expose T1, expose T2) of

(Leaf ,)⇒ empty
(,Leaf)⇒ empty
| (Node(L1, k1, R1),)⇒
let (L2, a, R2) = split(T2, k1)

(L,R) = (intersect(L1, L2) || intersect(R1, R2))
in if a then joinM (L, k1, R)

else joinPair(L,R)
end

As with union , the implementation splits both trees by using the key k1 at the root of the
first tree, and computes intersections recursively. It then computes the result by joining the
results from the recursive calls and including the key k1 if it is found in both trees. Note
that since the trees are BSTs, checking for the intersections of the left and right subtrees
recursively suffices to find all shared keys because the split function places all keys less
than and greater than the given key to two separate trees.

Algorithm 38.8 (Difference). And there is little difference with the difference algorithm.

272 CHAPTER 38. PARAMETRIC BSTS

difference(T1, T2) =
case (expose T1, expose T2) of

(Leaf ,)⇒ empty
(,Leaf)⇒ T1

| (Node(L1, k1, R1),)⇒
let (L2, a, R2) = split(T2, k1)

(L,R) = (difference(L1, L2) || difference(R1, R2))
in if a then joinPair(L,R)

else joinM (L, k1, R)
end

Exercise 38.1. Prove correct the functions intersection , difference, and union .

Algorithm 38.9 (Filter).

filter f T =
case expose T of

Leaf ⇒ empty
| Node(L, k,R)⇒
let (L′, R′) = (filter f L) || (filter f R)
in if f(k) then joinM (L′, k, R′)

else joinPair(L′, R′)
end

Algorithm 38.10 (Reduce).

reduce f I T =
case expose T of

Leaf ⇒ I
| Node(L, k,R)⇒
let (L′, R′) = (reduce f I L) || (reduce f I R)
in f(L′, f(k,R′)) end

4 Cost Specification

There are many ways to implement an efficient data structure that matches our BST ADT.
Many of these implementations more or less match the same cost specification, with the
main difference being whether the bounds are worst-case, expected case (probabilistic), or
amortized. These implementations all use balancing techniques to ensure that the depth
of the BST remains O(lg n), where n is the number of keys in the tree. For the purposes
specifying the costs, we don’t distinguish between worst-case, amortized, and probabilistic
bounds, because we can always rely on the existence of an implementation that matches
the desired cost specification. When using specific data structures that match the specified
bounds in an amortized or randomized sense, we will try to be careful when specifying the
bounds.

4. COST SPECIFICATION 273

Cost Specification 38.11 (BSTs). The BST cost specification is defined as follows. The vari-
ables n and m are defined as n = max (|t1|, |t2|) and m = min (|t1|, |t2|) when applicable.
Here, |t| denotes the size of the tree t, defined as the number of keys in t.

Work Span
empty O (1) O (1)
singleton k O (1) O (1)
split t k O (lg |t|) O (lg |t|)
join t1 t2 O (lg (|t1|+ |t2|)) O (lg (|t1|+ |t2|))
find t k O (lg |t|) O (lg |t|)
insert t k O (lg |t|) O (lg |t|)
delete t k O (lg |t|) O (lg |t|)
intersect t1 t2 O

(
m · lg n

m

)
O (lg n)

difference t1 t2 O
(
m · lg n

m

)
O (lg n)

union t1 t2 O
(
m · lg n

m

)
O (lg n)

The Cost Specification for BSTs can be realized by several balanced BST data structures
such as Treaps (in expectation), red-black trees (in the worst case), and splay trees (amor-
tized).

In the rest of this section, we justify the cost bounds by assuming the existence of logarith-
mic time split and join functions, and by using our parametric implementation described
above.

Note that the cost of empty and singleton are constant. The work and span costs of find , insert ,
and delete are determined by the split and join functions and are thus logarithmic in the
size of the tree. The cost bounds for union , intersection , and difference are similar; they are
also more difficult to see.

4.1 Cost of Union, Intersection, and Difference

We analyze the cost for union as implemented by the parametric data structure. Essen-
tially the same analysis applies to the functions intersection and difference, whose struc-
tures are the same as union .

For the analysis, we consider an execution of union on two trees t1 and t2 and define m =
||t1|| and n = ||t2|| as the number of keys in the trees.

We first present an analysis under some relatively strong assumptions. We then show that
these assumptions can be eliminated.

Balancing Assumptions. Consider now a call to union with parameters t1 and t2. To
simplify the analysis, we make several assumptions.

274 CHAPTER 38. PARAMETRIC BSTS

1. Perfect balance: t1 is perfectly balanced (i.e., the left and right subtrees of the root
have size at most ||t1||/2).

2. Perfect splits: each time we split t2 with a key from t1, the resulting trees have exactly
half the size of t2.

3. Split the larger tree: ||t1|| < ||t2||.

4.1.1 Analysis with Balancing Assumptions

The Recurrence. Under the balancing assumptions, we can write the following recur-
rence for the work of union :

Wunion(m,n) = 2Wunion(m/2, n/2) +Wsplit(n) +Wjoin(
m+ n

2
,
m+ n

2
) +O(1)

By assumption, we know that

• Wsplit(n) = O(lg n), and

• Wjoin(m+n
2 , m+n

2) = O(lg n), because m ≤ n.

We can therefore write the recurrence as

Wunion(m,n) =

{
2Wunion(m/2, n/2) + lg n if m > 0
1 otherwise

Recurrence Tree. We can draw the recurrence tree showing the work of union as shown
below. In the illustration, we omit the leaves of the recurrence, which correspond to the
case when the first argument t1 is empty (Leaf). The leaves of the recurrence tree thus
correspond to calls to union where t1 consists of a single key.

4. COST SPECIFICATION 275

Solving the Recurrence: Brick Method. To solve the recurrence, we start by analyzing
the structure of the recursion tree shown above.

Let’s find the number of leaves in the tree. Notice that the tree bottoms out when m = 1
and before that, m is always split in half (by assumption t1 is perfectly balanced). The
tree t2 does not affect the shape of the recursion tree or the stopping condition. Thus, there
are exactly m leaves in the tree. Notice also that the leaves are at depth lgm.

Let’s now determine the size of the argument t2 at the leaves. We have m keys in t1 to start
with, and by assumption they split t2 evenly at each recursive call. Thus, the leaves have
all the same size of n

m . The cost of the leaves is thus O(lg n
m). Since there are m leaves, the

whole bottom level costs

O(m lg
n

m
).

We now show that the cost of the leaves dominates the total cost. First observe that the total
work at any internal level i in the tree is 2i lg n/2i. Thus the ratio of the work at adjacent

276 CHAPTER 38. PARAMETRIC BSTS

levels is

2i−1 lg n/2i−1

2i lg n/2i
=

1

2

lg n− i+ 1

lg n− i
,

where i < lgm ≤ lg n. Observe that for all i < lg n− 1, this ratio is less than 1. This means
that for all levels except for the last, the total work at each level decreases by a constant
fraction less that 1.

Observe now that at the final level in the tree, we have i = lgm − 1 ≤ lg n − 1. For this
level, we can bound the fraction from above by taking i = lg n− 1:

1

2

lg n− i+ 1

lg n− i
≤ 1

2

lg n− lg n+ 1 + 1

lg n− lg n+ 1
= 1.

Thus the total work is asymptotically dominated by the total work of the leaves, which
is O

(
m lg n

m

)
.

Solving the Recurrence: Direct Derivation. We can establish the same fact more pre-
cisely. We start by writing the total cost by summing over all levels, omitting for simplicity
the constant factors, and assuming that n = 2a and m = 2b,

W (n,m) =

b∑
i=0

2i lg
n

2i
.

We can rewrite this sum as

b∑
i=0

2i lg
n

2i
= lg n

b∑
i=0

2i −
b∑
i=0

i 2i. = a

b∑
i=0

2i −
b∑
i=0

i 2i.

Focus now on the second term. Note that

b∑
i=0

i 2i =

b∑
i=0

b∑
j=i

2j =

b∑
i=0

 b∑
j=0

2j −
i−1∑
k=0

2k

 .

Substituting the closed form for each inner summation and simplifying leads to

=
∑b
i=0

(
(2b+1 − 1)− (2i − 1)

)
.

= (b+ 1)(2b+1 − 1)−
∑b
i=0 (2i − 1)

= (b+ 1)(2b+1 − 1)−
(
2b+1 − 1− (b+ 1)

)
= b 2b+1 + 1.

4. COST SPECIFICATION 277

Now go back and plug this into the original work bound and simplify

W (n,m) =
∑b
i=0 2i lg n

2i

= a
∑b
i=0 2i −

∑b
i=0 i 2i

= a (2b+1 − 1)− (b 2b+1 + 1)

= a 2b+1 − a− b 2b+1 − 1 = 2m(a− b)− a− 1

= 2m(lg n− lgm)− a− 1 = 2m lg n
m − a− 1

= O
(
m lg n

m

)
.

While the direct method may seem complicated, it is more robust than the brick method,
because it can be applied to analyze essentially any algorithm, whereas the Brick method
requires establishing a geometric relationship between the cost terms at the levels of the
tree.

Span Analysis. For the span bound note that the tree has exactly O(lgm) levels and the
cost for each level is O(lg n) The total span is therefore O(lgm lg n). It turns out, though
we will not describe here, it is possible to change the algorithm slightly to reduce the span
to O(lg n). We will therefore specify the span of union as O(lg n).

4.1.2 Removing the Balancing Assumptions

The assumptions that we made for the analysis may seem unrealistic. In this section, we
describe how to remove these assumptions.

First Assumption. Let’s consider the first assumption, which require t1 to be perfectly
balanced (4.1). This assumption is perhaps the easiest to remove. The balance of the tree t1
does not impact the work bound, because the work cost is leaf-dominated. But, we do need
the tree to have logarithmic depth for the span bound. This means that the tree only needs
to approximately balanced.

Removing the Second Assumption. Let’s now remove the second assumption (4.1). This
assumption requires the keys in t1 to split subtrees of t2 in half every time. This is obvi-
ously not realistic but any unevenness in the splitting only helps reduce the work—i.e.,
the perfect split is the worst case. The fundamental reason for this is that logarithm is a
concave function.

To see this consider the cost at some level i. There are k = 2i nodes in the recursion tree and
let us say the sizes of second tree at these nodes are n1, . . . , nk, where

∑
j nj = n. Then, the

278 CHAPTER 38. PARAMETRIC BSTS

total cost for the level is

c ·
k∑
j=1

lg(nj).

Because logarithm is a concave function, we know that

c ·
∑k
j=1 lg(nj). ≤ c ·

∑k
j=1 lg(n/k)

= c · 2i · lg(n/2i).

This means that our assumption results in the highest cost and therefore represents the
worst case.

Note (Jensen’s Inequality). The inequality that we used in the argument above is an in-
stance of Jensen’s inequality, named after Johan Jensen, a Danish mathematician.

Removing the Third Assumption. Our final assumption requires t1 to be smaller than t2
(4.1).

This is relatively easy to enforce: if t1 is larger, then we can reverse the order of arguments.
If they are the same size, we need to be a bit more precise in our handling of the base case
in our summation but that is all.

Chapter 39

Treaps

The parametric data structure presented in the previous Chapter established an interesting
observation: to implement the BST ADT, we only need to provide an implementation of
joinMid .

In this chapter, we implement the 38.1 interface based on a data structure called Treaps
(tree heaps). We show that joinMid , and split based on it, take O(log n) work (and span).

Treaps achieve their efficiency by maintaining BSTs that are probabilistically balanced. Of
the many balanced BST data structures, Treaps are likely the simplest, but, since they are
randomized, they only guarantee approximate balance, though with high probability.

1 Treap Properties

The idea behind Treaps is to associate each key with a randomly selected priority. Then and
in addition to maintaining the BST property on the keys, treaps maintain a “heap ordering”
on these priorities. The heap ordering is the same as you might have seen when studying
binary heaps, leading to the name“Tree Heap” or shortened to “Treap.”

Definition 39.1 (Treap). A Treap is a binary search tree over a set K along with a priority
for each key given by

p : K→ Z

that in addition to satisfying the BST property on the keys K, satisfies the heap property
on the priorities p(k), k ∈ K. In particular for every internal node u of the tree that has a
parent node v:

p(k(v)) ≥ p(k(u))

279

280 CHAPTER 39. TREAPS

where k(v) denotes the key of a node. This simply states that the priority of the parent is
greater than the priorities of its children.

Example 39.1. The following key-priority pairs (k, p(k)),

(a, 3), (b, 9), (c, 2), (e, 6), (f, 5) ,

where the keys are ordered alphabetically, form the following Treap:

since 9 is larger than 3 and 6, and 6 is larger than 2 and 5.

Assigning Priorities. So how do we assign priorities? As we briefly suggested in the
informal discussion above, it turns out that if the priorities are selected randomly then the
tree is guaranteed to be near balanced, i.e. O(lg |S|) height, with high probability. We will
show this shortly. Since we are using a function p(·) to generate the priorities, we assume
it is a random function (i.e., it always returns the same integer for a given key, but which
value it returns is random).

We will assume the priorities are unique—i.e., every distinct key maps to a unique priority.
This is not necessary for the algorithms and bounds given in this chapter, but it simplifies
the description and analysis.

The Treap Type. In our discussion we will use the following recursive type for the defi-
nition of a BST type based on treaps.

type T = TLeaf
| TNode of (T×K× Z× T)

where the TNode type consists of a 4 tuple (L, k, p,R), with L as the left child, k as the key,
p as the priority, and R as the right child. We use TLeaf and TNode to distinguish them
from Leaf and Node in the parametric tree interface.

Exercise 39.1. Prove that if the priorities are unique, then there is exactly one tree structure
that satisfies the Treap properties.

2. HEIGHT ANALYSIS OF TREAPS 281

2 Height Analysis of Treaps

We can analyze the height of Treaps by relating their structure to the recursion tree of
quicksort, which we have already studied.

Algorithm 39.2 (Treap Generating Quicksort). The following variant of quicksort generates
a treap. This algorithm is almost identical to our previous quicksort except that it uses
Node instead of append , and because it is generating a treap consisting of unique keys, the
algorithm retains only one key equaling the pivot.

1 qsTree a =
2 if |a| = 0 then TLeaf
3 else let
4 k = the key k ∈ a for which p(k) is the largest
5 L = 〈x ∈ a | x < k 〉
6 R = 〈x ∈ a | x > k 〉
7 (L′, R′) = (qsTree L) || (qsTree R)
8 in
9 TNode (L′, k, p(k), R′)
10 end

The tree generated by qsTree(a) is the Treap for the sequence a. This can be seen by induc-
tion. It is true for the base case. Now assume by induction it is true for the trees returned
by the two recursive calls. The tree returned by the main call is then also a Treap since the
pivot x has the highest priority, and therefore is correctly placed at the root, the subtrees
and in heap order by induction, and because the keys in l are less than the pivot, and the
keys in r are greater than the pivot, the tree has the BST property.

Based on this isomorphism, we can bound the height of a Treap by the recursion depth of
quicksort. Recall that when studying the order statistics problem we proved that if we pick
the priorities at random, the recursion depth is O(lg n) with high probability. Based on this
fact, and by using union bound , we then proved that the depth of the quicksort recursion
(pivot) tree is logarithmic—O(lg n)—with high probability. We therefore conclude that
that the height of a Treap is O(lg n) with high probability.

3 The Treap Data Structure

We are now ready to implement the 38.1 ADT with Treaps. In particular we need an al-
gorithm for the joinMid function. It must maintain the Treap invariants. We hold off on
implementing a size function until the next chapter when we discuss augmenting trees.
Our Treap implementation of the parametric BST ADT is defined as follows.

282 CHAPTER 39. TREAPS

Data Structure 39.3 (Treaps). An implementation of the 38.1 ADT.

type K
type T = TLeaf | TNode of (T×K× Z× T)
type E = Leaf | Node of (T×K× T)

priority T =
case T of

TLeaf ⇒ −∞
| TNode(L, k, p,R)⇒ p

join(T1, (k, p), T2) : T× (K× Z)× T→ T =
if (p > priority(T1)) ∧ (p > priority(T2)) then

TNode(T1, k, p, T2)
else if (priority(T1) > priority(T2)) then
case T1 of TNode(L1, k1, p1, R1)
⇒ TNode(L1, k1, p1, join(R1, (k, p), T2))

else
case T2 of TNode(L2, k2, p2, R2)
⇒ TNode(join(T1, (k, p), L2), k2, p2, R2)

expose T : T→ E =
case T of

TLeaf ⇒ Leaf
| TNode(L, k, , R)⇒ Node(L, k,R)

joinMid T : E→ T =
case T of

Leaf ⇒ TLeaf
| Node(L, k,R)⇒ join(L, (k, p(k)), R)

Join Algorithm. We now consider the algorithm for join(T1, (k, p), T2). Here p is the pri-
ority of the key k. Due to the requirements of joinMid we are ensured that T1 < k < T2,
and we assume that T1 and T2 each satisfy the treap invariants (i.e., BSTs and heap ordered
priorities). To maintain the treap invariants on the results, we not only need to maintain
the ordering for a BST, but also need to maintain the heap property. In the following dis-
cussion, we refer to the priority of a tree as the priority of its root if it is a node, or −∞ if it
is a leaf. The helper function priority(T) returns this priority using O(1) work.

To maintain the heap property, the algorithm first checks if it is “lucky” and priority p is al-
ready greater than the priority of T1 and T2. In this case it can just make a node directly and
is done. If not, it then needs to check which of T1 and T2 has a higher priority since the root
of that one needs to become the overall root. In the first case priority(T1) > priority(T2).
In this case since the priority is not negative infinity, we know T1 is a node (not a leaf) and
let (L1, k1, p1, R1) be its contents (we need not match on TLeaf . The key k1 needs to be at
the root since it has the highest priority, and L1 needs to be its left child since all other keys

3. THE TREAP DATA STRUCTURE 283

are greater than k1. This leaves us with R1, k, and T2. These can just be joined recursively
with join(R1, k, p, T2). We know that R1 < k < T2, so the arguments are valid. There is a
symmetric case when priority(T1) < priority(T2).

Cost of Join. Calculating the cost of join is straightforward. In particular on each step it
either finishes, goes down one level in T1, or goes down one level in T2. In each case the
work before the recursive call is constant. Therefore the overall work for join is bounded
by h(T1) + h(T2). As stated the height of a treap T is bounded by O(log |T |) with high
probability. This means the cost of join is O(log |T1| + log |T2|) = O(log(|T1| + |T2|) with
high probability.

Cost of Split. We now analyze the cost of the split algorithm based on our implementa-
tion of joinMid .

We note that the split algorithm traverses the tree visiting each level once. Now at each
level it does constant work plus the work of the joinM . Notice, however, that the key k′

used in the joinM (Lr, k,
′R) (or joinM (L, k′, Rl)) has a higher priority than either of the

two trees Lr and R. This is because in the input tree, it was above both subtrees, and by
the treap invariant must have had a higher priority. Therefore the join as described above
will take constant work—it just needs to check that the priority of the key is greater than
the priority of both trees, and can then on success will make the treap node immediately.
Therefore the overall cost of each recursive call in split is constant, and the overall cost of
split(T) is O(h(|T |)), which is O(log |T |) with high probability.

Chapter 40

Augmenting Binary Search Trees

In our discussions of BSTs thus far, we only stored the left and right children, the key,
and some balance information (the priority for treaps) within each node. In many cases,
we wish to augment tree nodes with more information. In this chapter, we describe how
we might augment BST nodes with such additional information, e.g., additional values,
subtree sizes, and other aggregate values of the subtree, such as the sum of the keys.

1 Augmenting with Values

Perhaps the simplest form of augmentation involves storing a value along with each key in
the BST. This allows us to represent a mapping from each key to an associated value. Such
mappings are sometimes called dictionaries, tables, or key-value stores.

Implementing BSTs augmented with values is straightforward. Firstly we store the value
in each node along with its key. We often refer to these as a key-value pair. Many of our
functions will then use the key-value pair as an argument. In some cases, we might need
to change the types of functions. For example, find and split will now likely return an
optional value instead of a boolean.

A complete interface for tables is given in Tables Chapter .

2 Augmenting with Size

As a more complex augmentation, we might want to associate with each node in the tree a
size field that tells us how many keys there are in the subtree rooted at that node is.

284

2. AUGMENTING WITH SIZE 285

Example 40.1. An example BST, where keys are ordered lexicographically and the nodes
are augmented with the sizes of subtrees.

Size in O(1) Work. To implement a size-augmented tree, we can keep a size field at each
node and compute the size of the nodes as they are created. To support this field in our
tree data structure, such as treaps, we can make sure each tree node has a size field. For
example, for treaps a node could be defined as

type T = TLeaf
| TNode of (T×K× Z× Z× T)

where the TNode type consists of a 5 tuple (L, k, p, n,R), with L as the left child, k as the
key, p as the priority, n as the size, and R as the right child. We could then read the size in
O(1) work, as in:

size T =
case T of

TLeaf ⇒ 0
| TNode(, , , n,) ⇒ n

Whenever we create a new node we can calculate its size by summing the sizes of the two
subtree and adding one more for the node itself. For treaps we could define

makeNode (L, k, p,R) =
TNode(L, k, p, size(L) + size(R) + 1, R)

286 CHAPTER 40. AUGMENTING BINARY SEARCH TREES

Then in the join algorithm for Treaps , we could replace the three occurrences TNode(·, ·, ·, ·)
with makeNode . That is the only change that needs to be made.

2.1 Example: Rank and Select in BSTs

Suppose that we wish to extend the BST ADT with the following additional functions.

• Function rank T k returns the rank of the key k in the tree, i.e., the number of keys
in t that are less than or equal to k.

• Function select T i returns the key with the rank i in t.

Such functions arise in many applications.

Algorithm 40.1 (Rank and Select). If we have a way to count the number of nodes in a
subtree, then we can easily implement the rank and select functions. The algorithms below
give implementations by using a size operation for computing the size of a tree, written |T |
for tree T .

1 rank T k =
2 case expose T of
3 Leaf ⇒ 0
4 | Node (L, k′, R)⇒
5 case compare (k, k′) of
6 Less ⇒ rank L k
7 | Equal ⇒ |L|+ 1
8 | Greater ⇒ |L|+ 1 + (rank R k)

1 select T i =
2 case expose T of
3 Leaf ⇒ raise exception OutOfRange
4 | Node (L, k,R)⇒
5 case compare (i, |L|+ 1) of
6 Less ⇒ select L i
7 | Equal ⇒ k
8 | Greater ⇒ select R (i− |L| − 1)

Cost of rank and select . With balanced trees such as Treaps, the rank and select functions
require logarithmic span but linear work, because computing the size of a subtree takes
linear time in the size of the subtree. If, however, we augment the tree so that at each
node, we store the size of the subtree rooted at that node, then work becomes logarithmic,
because we can find the size of a subtree in constant work.

3. AUGMENTING WITH REDUCED VALUES 287

Example 40.2. An example BST, where keys are ordered lexicographically and the nodes
are augmented with the sizes of subtrees. The path explored by rank (T, n) and select (T, 4)
is highlighted.

Exercise 40.1. Consider the function splitRank(t, i), which splits the tree t into two and
returns the trees t1 and t2 such that t1 contains all keys with rank less than i and t2 contains
all keys with rank is greater or equal to i. Such a function can be used for example to write
divide-and-conquer algorithms on imperfectly balanced trees. Describe how to implement
the algorithm splitRank by writing its pseudo-code and analyze its work and span.

3 Augmenting with Reduced Values

To compute rank-based properties of keys in a BST, we augmented the BST so that each
node stores the size of its subtree. More generally, we might want to associate with each
node a reduced value that is computed by reducing over the subtree rooted at the node
by a user specified associative function f . In general, there is no restriction on how the
reduced values may be computed, they can be based on keys or additional values that the
tree is augmented with. To compute reduced values, we simply store with every node u of
a binary search tree, the reduced value of its subtree (i.e. the sum of all the reduced values
that are descendants of u, possibly also the value at u itself).

Example 40.3. The following drawing shows a tree with key-value pairs on the left, and
the augmented tree on the right, where each node additionally maintains the sum of its
subtree.

288 CHAPTER 40. AUGMENTING BINARY SEARCH TREES

The sum at the root (13) is the sum of all values in the tree (3 + 1 + 2 + 2 + 5). It is also the
sum of the reduced values of its two children (6 and 5) and its own value 2.

The value of each reduced value in a tree can be calculated as the sum of its two children
plus the value stored at the node. This means that we can maintain these reduced values
by simply taking the “sum” of these three values whenever a node is created. We can thus
change a data structure to support reduced values by changing the way a node is created.
In such a data structure, if the function that we use for reduction performs constant work,
then the work and the span bound for the data structure remains unaffected.

The changes to the Treap structure (or any other balanced tree structure) would be very
similar to what we did to augment with sizes. In particular we would change the type
of a TNode to include the reduced value. We would then add a function for extracting it.
This would return the identity I for f if the tree is empty. Finally we would modify our
makeNode function to apply f . Note that for reduced values to make sense we need to
store both a value at each node, and the reduced value of all such values in the subtree.
Assuming values have type val , we could change the tree nodes to:

type T = TLeaf
| TNode of (T×K× Z× Z× val × val × T)

where the TNode type now consists of a 7 tuple (L, k, p, n, v, r, R), with L as the left child,
k as the key, p as the priority, n as the size, v as the value, r as the reduced value, and R as
the right child. The changes to the code are then simply:

reducedVal T =
case T of

TLeaf ⇒ I
| TNode(, , , , , r,) ⇒ r

makeNode (L, k, v, p, R) =
let r = f(reducedVal(L), f(v, reducedVal(R))

s = size(L) + 1 + size(R)
in TNode(L, k, p, s, v, r, R) end

3. AUGMENTING WITH REDUCED VALUES 289

Note. This idea can be used with any binary search tree, not just Treaps. We only need to
replace the function for creating a node so that as it creates the node, it also computes a
reduced value for the node by summing the reduced values of the children and the value
of the node itself.

Remark. In an imperative implementation of binary search trees, when a child node is (de-
structively) updated, the reduced values for the nodes on the path from the modified node
to the root must be recomputed.

Part X

Sets and Tables

290

Chapter 41

Sets

Sets are both a mathematical structure and an abstract datatype supported by many pro-
gramming languages. This chapter presents an ADT for finite sets of elements taken from
a fixed domain and several cost models, including one based on balanced binary search
trees .

1 Motivation

“A set is a gathering together into a whole of definite, distinct objects of our
perception or of our thought—which are called elements of the set.”

Georg Cantor, from “Contributions to the founding of the theory of transfinite
numbers.”

Set theory, founded by Georg Cantor in the second half of the nineteenth century, is one
of the most important advances in mathematics. From it came the notions of countably
vs. uncountably infinite sets, and ultimately the theory of computational undecidability,
i.e. that computational mechanisms such as the λ-calculus or Turing Machine cannot com-
pute all functions. Set theory has also formed the foundations on which other branches of
mathematics can be formalized. Early set theory, sometimes referred to as naı̈ve set the-
ory, allowed anything to be in a set. This led to several paradoxes such Russell’s famous
paradox:

let R = {x | x 6∈ x} , then R ∈ R ⇐⇒ R 6∈ R .

Such paradoxes were resolved by the development of axiomatic set theory. Typically in
such a theory, the universe of possible elements of a set needs to be built up from primitive
notions, such as the integers or reals, by using various composition rules, such as Cartesian
products.

291

292 CHAPTER 41. SETS

Our goals in this book are much more modest than trying to understand set theory and its
many interesting implications. Here we simply recognize that in algorithm design sets are
a very useful data type in their own right, but also in building up more complicated data
types, such as graphs. Furthermore particular classes of sets, such as mappings (or tables),
are themselves very useful, and hence deserve their own interface. We discuss tables in
the next chapter.

Other chapters cover data structures on binary search trees and hashing that can be used
for implementing the sets and tables interfaces. Applications of sets and tables include
graphs . We note that sequences are a particular type of table—one where the domain of
the tables are the integers from 0 to n− 1.

2 Sets ADT

Data Type 41.1 (Sets). For a universe of elements U that support equality (e.g. the integers
or strings), the SET abstract data type is a type S representing the power set of U (i.e., all
subsets of U) limited to sets of finite size, along with the functions below.

size : S→ N
toSeq A : S→ Seq

empty : S
singleton : U→ S
fromSeq : Seq → S

filter : ((U→ B)→ S)→ S
intersection : S→ S→ S
difference : S→ S→ S
union : S→ S→ S

find : S→ U→ B
delete : S→ U→ S
insert : S→ U→ S

Where N is the natural numbers (non-negative integers) and B = {true,false}.

Syntax 41.2 (Sets). In SPARC we use the standard set notation {eo, e1, · · · , en} to indicate a
set. The notation ∅ or {} refers to an empty set. We also use the conventional mathematical
syntax for set functions such as |S| (size), ∪ (union), ∩ (intersection), and \ (difference). In
addition, we use set comprehensions for filter and for constructing sets from other sets.

The objects that are contained in a set are called members or the elements of the set. Recall
that a set is a collection of distinct objects. This requires that the universe U they come from
support equality. It might seem that all universes support equality, but consider functions.
When are two functions equal? It is not even decidable whether two functions are equal.
From a practical matter, there is no way to implement sets without an equality function

2. SETS ADT 293

over potential elements. In fact efficient implementations additionally require either a hash
function over the elements of U and/or a total ordering.

The Set ADT consists of basic functions on sets. The function size takes a set and returns
the number of elements in the set. The function toSeq converts a set to a sequence by
ordering the elements of the set in an unspecified way. Since elements of a set do not
necessarily have a total ordering, the resulting order is arbitrary. This means that toSeq
is could return different orderings in different implementations. We, however, assume it
always returns the same ordering for the same set when using the same implementation—
i.e., it is a function.. We specify toSeq as follows

toSeq ({x0, x1, . . . , xn} : S) : seq = 〈x0, x1, . . . , xn 〉

where the xi are an arbitrary ordering.

Several functions enable constructing sets. The function empty returns an empty set:

empty : S = ∅

The function singleton constructs a singleton set from a given element.

singleton(x : U) : S = {x}

The function fromSeq takes a sequence and returns a set consisting of the distinct elements
of the sequence, eliminating duplicate elements. We can specify fromSeq as returning the
range of the sequence A (recall that a sequence is a partial function mapping from natural
numbers to elements of the sequence).

fromSeq (a : seq) : S = range a

Several functions operate on sets to produce new sets. The function filter selects the ele-
ments of a sequence that satisfy a given Boolean function, i.e.,

filter (f : U→ B) (a : S) : S = {x ∈ a | f(x)}.

The functions intersection , difference, and union perform the corresponding set operation
on their arguments:

intersection (a : S) (b : S) : S = a ∩ b
difference (a : S) (b : S) : S = a \ b
union (a : S) (b : S) : S = a ∪ b

We refer to the functions intersection , difference, and union as bulk updates, because they
allow updating with a large set of elements “in bulk.”

The functions find , insert , and delete are singular versions of the bulk functions intersection ,
union , and difference respectively. The find function checks whether an element is in a set—
it is the basic membership test for sets.

find (a : S) (x : U) : B =

{
true if x ∈ A
false otherwise

294 CHAPTER 41. SETS

We can also specify the find function is in terms of set intersection:

find (a : S) (x : U) : B = |a ∩ {x}| = 1.

The functions delete and insert delete an existing element from a set, and insert a new
element into a set, respectively:

delete (a : S) (x : U) : S = a \ {x} .
insert (a : S) (x : U) : S = a ∪ {x}

Iteration and reduction over sets can be easily defined by converting them to sequences, as
in

iterate f x a = Sequence.iterate f (toSeq a)
reduce f x a = Sequence.reduce f (toSeq a)

Notice that in the Set ADT although the universe U is potentially infinite (e.g. the integers),
S only consists of finite sized subsets. Unfortunately this restriction means that the interface
is not as powerful as general set theory, but it makes computation on sets feasible. A
consequence of this requirement is that the interface does not include a function that takes
the complement of a set—such a function would generate an infinite sized set from a finite
sized set (assuming the size of U is infinite).

Exercise 41.1. Convince yourself that there is no way to create an infinite sized set using
the interface and with finite work.

Example 41.1. Some functions on sets:

| {a, b, c} | = 3
{x ∈ {4, 11, 2, 6} | x < 7} = {4, 2, 6}
find {6, 2, 9, 11, 8} 4 = false
{2, 7, 8, 11} ∪ {7, 9, 11, 14, 17} = {2, 7, 8, 9, 11, 14, 17}
toSeq {2, 7, 8, 11} = 〈 8, 11, 2, 7 〉
fromSeq 〈 2, 7, 2, 8, 11, 2 〉 = {8, 2, 11, 7}

Remark. You may notice that the interface does not contain a map function. If we interpret
map, as in sequences, to take in a collection, apply some function to each element and
return a collection of the same size, then it does not make sense for sets. Consider a function
that always returns 0. Mapping this over a set would return all zeros, which would then
be collapsed into a singleton set, containing exactly 0. Therefore, such a map would allow
reducing the set of arbitrary size to a singleton.
Remark. Most programming languages either support sets directly (e.g., Python and Ruby)
or have libraries that support them (e.g., in the C++ STL library and Java collections frame-
work). They sometimes have more than one implementation of sets. For example, Java has
sets based on hash tables and balanced trees. Unsurprisingly, the set interface in different
libraries and languages differ in subtle ways. So, when using one of these interfaces you
should always read the documentation carefully.

3. COST OF SETS 295

3 Cost of Sets

Sets can be implemented in several ways. If the elements of a set are drawn from natu-
ral numbers, it is sometimes possible and effective to represent the set as an array-based
sequence. If the elements accept a hash function, then hash-tables can be used to store
the elements in a sequence. This approach is commonly used in practice and is quite effi-
cient in terms of work and space. Finally, if the elements don’t accept a hash function but
accept a comparison operator that can totally order all elements, then sets can be repre-
sented by using binary search trees. All of these approaches assume an equality function
on the elements (with natural numbers, the equality coincides with the equality on natural
numbers).

Cost Specification 41.3 (Arrays for Enumerable Sets). Let the universe U be defined as the
set {0, 1, . . . , u − 1} for some u ∈ N. We can represent enumerable sets of the form S ⊆ U
by using a boolean sequence of length |U | that indicates for each i ∈ U whether i ∈ S or
not. Using array sequences, operations on enumerable sets can be implemented according
to the following cost specification.

Operation Work Span
size a u 1
singleton x u 1
toSeq a u 1

filter f a u+
∑
x∈a

W (f(x)) 1 + max
x∈a

S(f(x))

intersection a1 a2 u 1
union a1 a2 u 1
difference a1 a2 u 1

find a e 1 1
insert a x u 1
delete a x u 1

Example 41.2. Consider a graph whose vertices are labeled by natural numbers up to 8. We
can represent a graph whose vertices are {0, 2, 4, 6}with the sequence: 〈 1, 0, 1, 0, 1, 0, 1, 0 〉 .

With some simple optimization these bounds can be improved. For example we could
include the size or the set along with the sequence boolean sequence, which would reduce
the cost of size to O(1). Also, since words of memory can contain multiple bits, we could
also pack multiple bits into each word. If words have b bits, this would covert each O(u)
bound to O(u/b).

Tree Representation for Sets. If the elements in the universe U accept a comparison func-
tion that defines a total order over U, then we can use a balanced binary search tree to rep-
resent sets. This representation allows us to implement the Sets ADT reasonably efficiently.

296 CHAPTER 41. SETS

For the specification specified below , we assume that the comparison function requires
constant work and span.

Cost Specification 41.4 (Tree Sets). The cost specification for tree-based implementation of
sets follow.

Operation Work Span
size a 1 1
singleton x 1 1
toSeq a |a| lg |a|
filter f a

∑
x∈a

W (f(x)) lg |a|+ max
x∈a

S(f(x))

intersection a b m · lg(1 + n
m) lg(n)

union a b ′′ ′′

difference a b ′′ ′′

find a e lg |a| lg |a|
insert a x ′′ ′′

delete a x ′′ ′′

where n = max(|a|, |b|) and m = min(|a|, |b|), and assuming comparison of elements takes
constant work.

Let’s consider these cost specifications in some more detail. The cost for filter is effectively
the same as for sequences, and therefore should not be surprising. It assumes the function
f is applied to the elements of the set in parallel. The cost for the functions find , insert , and
delete are what one might expect from a balanced binary tree implementation. Basically
the tree will have O(lg n) depth and each function will require searching the tree from the
root to some node. We cover such an implementation in this chapter .

The work bounds for the bulk functions (intersection , difference, and union) may seem
confusing, especially because of the expression inside the logarithm. To shed some light
on the cost, it is helpful to consider two cases, the first is when one of the sets is a single
element and the other when both sets are equal length. In the first case the bulk functions
are doing the same thing as the single element functions find , insert , and delete . Indeed if
we implement the single element functions on a set A using the bulk ones, then we would
like it to be the case that we get the same asymptotic performance. This is indeed the case
since we have that m = 1 and n = |A|, giving:

W (n) ∈ O
(

lg
(

1 +
n

1

))
= O(lg n) .

Now let’s consider the second case when both sets have equal length, say n. In this case
we have m = n giving

W (n) ∈ O
(
n · lg

(
1 +

n

n

))
= O(n).

3. COST OF SETS 297

We can implement find , delete , and insert in terms of the functions intersection , difference,
and union (respectively) by making a singleton set out of the element that we are interested
in. Such an implementation would be asymptotically efficient, giving us the work and span
as the direct implementations.

Conversely, we can also implement the bulk functions in terms of the singleton ones by
iteration. Because it uses iteration the resulting algorithms are sequential and also work
inefficient. For example, if we implement union by inserting n elements into a second
set of n elements, the cost would be O(n lg n). We would obtain a similar bound when
implementing difference with delete , and intersection with find and insert . For this reason,
we prefer to use the bulk functions intersection , difference, and union instead of find , delete ,
and insert when possible.

Example 41.3. We can convert a sequence to a set by inserting the elements one by one as
follows

fromseq a = Seq .iterate Set .insert ∅ a.

This implementation is work efficient but sequential. We can write a work efficient and
parallel function as follows

fromSeq a = Seq .reduce Set .union ∅ 〈 {x} : x ∈ a 〉 .

Chapter 42

Tables

In this chapter we describe an interface and cost model for tables (also called maps or
dictionaries). In addition to traditional functions such as insertion, deletion and search, we
consider bulk functions that are better suited for parallelism.

1 Interface

The ability to map keys to associated values is crucial as a component of many algorithms
and applications. Mathematically this corresponds to a map or function. In programming
languages, data types to support such functionality are variously called maps, dictionar-
ies, tables, key-value stores, and associative arrays. In this book we use the term table.
Traditionally the focus has been on supporting insertion, deletion and search. In this book
we are interested in parallelism so, as with sets, it is useful to have bulk functions, such as
intersection and map.

Data Type 42.1 (Tables). For a universe of keys K supporting equality, and a universe of
values V, the TABLE abstract data type is a type T representing the power set of K × V

298

1. INTERFACE 299

restricted so that each key appears at most once. The data type supports the following:

size : T→ N
empty : T
singleton : K× V→ T
domain : T→ S
tabulate : (K→ V)→ S→ T
map : (V→ V)→ T→ T
filter : (K× V→ B)→ T→ T
intersection : (V× V→ V)→ T→ T→ T
union : (V× V→ V)→ T→ T→ T
difference : T→ T→ T
find : T→ K→ (V ∪ ⊥)
delete : T→ K→ T
insert : (V× V→ V)→ T→ (K× V)→ T
restrict : T→ S→ T
subtract : T→ S→ T

Throughout the set S denotes the powerset of the keys K, N are the natural numbers (non-
negative integers), and B = {true,false}.

Syntax 42.2 (Table Notation). In the book we will write

{k1 7→ v1, k2 7→ v2, . . .}

for a table that maps ki to vi.

The function size returns the size of the table, defined as the number of key-value pairs,
i.e.,

size (a : T) : N = |a|.

The function empty generates an empty table, i.e.,

empty : T = ∅.

The function singleton generates a table consisting of a single key-value pair, i.e.,

singleton (k : K, v : V) : T = {k 7→ v} .

The function domain(a) returns the set of all keys in the table a.

Larger tables can be created by using the tabulate function, which takes a function and a
set of key and creates a table by applying the function to each element of the set, i.e.,

tabulate (f : K→ V) (a : S) : T = {k 7→ f(k) : k ∈ a} .

The function map creates a table from another by mapping each key-value pair in a table to
another by applying the specified function to the value while keeping the keys the same:

map (f : V→ V) (a : T) : T = {k 7→ f(v) : (k 7→ v) ∈ a} .

300 CHAPTER 42. TABLES

The function filter selects the key-value pairs in a table that satisfy a given function:

filter (f : K× V→ B) (a : T) : T = {(k 7→ v) ∈ a | f(k, v)} .

The function intersection takes the intersection of two tables to generate another table.
To handle the case for when the key is already present in the table, the function takes
a combining function f of type V × V → V as an argument. The combining function
f is applied to the two values with the same key to generate a new value. We specify
intersection as

intersection (f : V× V→ V) (a : T) (b : T) : T
= {k 7→ f(find a k,find b k) : k ∈ (domain(a) ∩ domain(b))} .

The function difference subtracts one table from another by throwing away all entries in
the first table whose key appears in the second.

difference (a : T) (b : T) : T
= {(k 7→ v) ∈ a | k 6∈ domain(b)} .

The function union unions the key value pairs in two tables into a single table. As with
intersection , the function takes a combining function to determine the ultimate value of a
key that appears is both tables. We specify union in terms of the intersection and difference
functions.

union (f : V× V→ V) (a : T) (b : T) : T
= (intersection f a b) ∪ (difference a b) ∪ (difference b a)

The function find returns the value associated with the key k. As it may not find the key in
the table, its result may be bottom (⊥).

find (a : T) (k : K) : B =

{
v if (k 7→ v) ∈ a
⊥ otherwise

Given a table, the function delete deletes a key-value pair for a specified key from the table:

delete (a : T) (k : K) = {(k′ 7→ v′) ∈ a | k 6= k′} .

The function insert inserts a key-value pair into a given table. It can be thought as a single-
ton version of union and specified as such:

insert (f : V ∗ V→ V) (a : T) (k : K, v : V) : T
= union f a (singleton (k, v)).

1. INTERFACE 301

The function restrict restricts the domain of the table to a given set:

restrict (a : T) (b : set) : T = {k 7→ v ∈ a | k ∈ b} .

It is similar to intersection , and in fact we have the equivalence:

intersection first a b = restrict a (domain b)

where first(x, y) = x. It can also be viewed as a bulk version of find since it finds all the
keys of b that appear in a.

The function subtract deletes from a table the entries that belong a specified set:

subtract (a : T) (b : set) : T
= {(k 7→ v) ∈ a | k 6∈ b} .

It is similar to difference, and in fact we can define

difference a b = subtract a (domain b)

It can also be viewed as a bulk version of delete since it deletes all the keys of b from a.

In addition to these functions, we can also provide a collect function that takes a sequence a
of key-value pairs and produces a table that maps every key in a to all the values associated
with it in a, gathering all the values with the same key together in a sequence. Such a
function can be implemented in several ways. For example, we can use the collect function
and then use tabulate to make a table out of this sequence. We can also implement it more
directly using reduce as follows.

Algorithm 42.3 (collect on Tables).

collect a = Sequence.reduce
(Table.union Sequence.append)
{}
〈 {k 7→ 〈 v 〉} : (k, v) ∈ a 〉

Syntax 42.4 (Tables (continued)). We will also use the following shorthands:

a[k] ≡ find A k
{k 7→ f(x) : (k 7→ x) ∈ a} ≡ map f a
{k 7→ f(x) : k ∈ a} ≡ tabulate f a
{(k 7→ v) ∈ a | p(k, v)} ≡ filter p a
a \m ≡ subtract a m
a ∪ b ≡ union second a b

where second(a, b) = b.

Example 42.1. Define tables a and b and set S as follows.

a = {’a ’ 7→ 4, ’b ’ 7→ 11, ’c ’ 7→ 2}
b = {’b ’ 7→ 3, ’d ’ 7→ 5}
c = {3, 5, 7} .

302 CHAPTER 42. TABLES

The examples below show some functions, also using our syntax.

find : a[’b ’] = 11
filter : {k 7→ x ∈ a | x < 7} = {’a ’ 7→ 4, ’c ’ 7→ 2}
map : {k 7→ 3× v : k 7→ v ∈ b} = {’b ’ 7→ 9, ’d ’ 7→ 15}
tabulate :

{
k 7→ k2 : k ∈ c

}
= {3 7→ 9, 5 7→ 25, 9 7→ 81}

union : a ∪ b = {’a ’ 7→ 4, ’b ’ 7→ 3, ’c ’ 7→ 2, ’d ’ 7→ 5}
union : union + (a, b) = {’a ’ 7→ 4, ’b ’ 7→ 14, ’c ’ 7→ 2, ’d ’ 7→ 5}
subtract : a \ {’b ’, ’d ’, ’e ’} = {’a ’ 7→ 4, ’c ’ 7→ 2}

2 Cost Specification for Tables

The costs of the table functions are very similar to those for sets. As with sets there is a
symmetry between the three functions restrict , union , and subtract , and the three functions
find , insert , and delete , respectively, where the prior three are effectively “parallel” versions
of the earlier three.

Cost Specification 42.5 (Tables).

Operation Work Span
size a 1 1
singleton (k, v) 1 1
domain a |a| lg |a|
filter p a

∑
(k 7→v)∈a

W (p(k, v)) lg |a|+ max
(k 7→v)∈a

S(f(k, v))

map f a
∑

(k 7→v)∈a

W (f(v)) lg |a|+ max
(k 7→v)∈a

S(f(v))

find a k lg |a| lg |a|
delete a k ′′ ′′

insert f a (k, v) ′′ ′′

intersection f a b m lg(1 + n
m
) lg(n+m)

difference a b ′′ ′′

union f a b ′′ ′′

restrict a c ′′ ′′

subtract a c ′′ ′′

where n = max(|a|, |b|) and m = min(|a|, |b|) or n = max(|a|, |c|) and m = min(|a|, |c|) as applicable.
For insert , union and intersection , we assume that W (f(·, ·)) = S(f(·, ·)) = O(1).

Remark. Abstract data types that support mappings of some form are referred to by various
names including mappings, maps, tables, dictionaries, and associative arrays. They are
perhaps the most studied of any data type. Most programming languages have some form
of mappings either built in (e.g. dictionaries in Python, Perl, and Ruby), or have libraries
to support them (e.g. map in the C++ STL library and the Java collections framework).

Remark. Tables are similar to sets: they extend sets so that each key now carries a value.
Their cost specification and implementations are also similar.

Chapter 43

Ordering and Augmentation

Ordered sets and tables assume the keys belong to a total ordering and support operations
based on this ordering. This chapter also describes augmented tables.

The set and table interfaces described so far do not include any operations that use the
ordering of the elements or keys. This allows the interfaces to be defined on types that don’t
have a natural ordering, which makes the interfaces well-suited for an implementation
based on hash tables. In many applications, however, it is useful to order the keys and
use various ordering operations. For example in a database one might want to find all the
customers who spent between 50 and 100 dollars, all emails in the week of August 22, or
the last stock transaction before noon on October 11th.

For these purposes we can extend the operations on sets and tables with some additional
operations that take advantage of ordering. ADT 43.1 defines the operations supported by
ordered sets, which simply extend the operations on sets. The operations on ordered tables
are completely analogous: they extend the operations on tables in a similar way. Note that
split and join are essentially the same as the operations we defined for binary search trees
.

1 Ordered Sets Interface

Data Type 43.1 (Ordered Sets). For a totally ordered universe of elements (U, <) (e.g. the
integers or strings), the Ordered Set abstract data type is a type S representing the powerset
of U (i.e., all subsets of U). It supports the following functions.

All functions from the set ADT (ADT 41.1) plus the following.

303

304 CHAPTER 43. ORDERING AND AUGMENTATION

first : S→ (U ∪ {⊥})
first(A) = min [|A|]

last : S→ (U ∪ {⊥})
last(A) = max [|A|]

previous : (S× U)→ (U ∪ {⊥})
previous (A, k) = max {k′ ∈ [|A|] | k′ < k}

next : (S× U)→ (U ∪ {⊥})
next (A, k) = min {k′ ∈ [|A|] | k′ > k}

split : (S× U)→ S× B× S

split (A, k) =

(
{k′ ∈ [|A|] | k′ < k} , k

?
∈ S, {k′ ∈ [|A|] | k′ > k}

)
join : (S× S)→ S
join (A1, A2) = [|A1|] ∪ [|A2|] assuming (max [|A1|]) < (min [|A2|])

getRange : S→ U× U→ S
getRange A (k1, k2) = {k ∈ [|A|] | k1 ≤ k ≤ k2}

rank : (S× U)→ N
rank (A, k) = | {k′ ∈ [|A|] | k′ < k} |

select : (S× N)→ (U ∪ {⊥})
select (A, i) = k ∈ [|A|] such that rank(A, k) = i

or ⊥ if there is no such k

splitRank : (S× N)→ S× S
splitRank (A, i) = ({k ∈ [|A|] | k < select(S, i)} ,

{k ∈ [|A|] | k ≥ select(S, i)})

where N is the natural numbers (non-negative integers) and B = {true,false}. For A of
type S, [|A|] denotes the mathematical set of keys from A. We assume max or min of the
empty set returns the special element ⊥.

Example 43.1. Consider the following sequence ordered lexicographically:

A = {’artie ’, ’burt ’, ’finn ’, ’mike ’, ’rachel ’, ’sam ’, ’tina ’}

• first A→ ’artie ’.

• next (A, ’quinn ’)→ ’rachel ’.

• next (A, ’mike ’)→ ’rachel ’.

• getRange A (’burt ’, ’mike ’)→ {’burt ’, ’finn ’, ’mike ’}.

• rank (A, ’rachel ’)→ 4.

• rank (A, ’quinn ’)→ 4.

• select (A, 5)→ ’sam ’.

• splitRank (A, 3)→ ({’artie ’, ’burt ’, ’finn ’} ,
{’mike ’, ’rachel ’, ’sam ’, ’tina ’}

)

2. COST SPECIFICATION: ORDERED SETS 305

2 Cost specification: Ordered Sets

We can implement ordered sets and tables using binary search trees. Implementing first is
straightforward since it only requires traversing the tree down the left branches until a left
branch is empty. Similarly last need only to traverse right branches.

Exercise 43.1. Describe how to implement previous and next using the other ordered set
functions.

To implement split and join , we can use the same operations as supplied by binary search
trees. The getRange operation can easily be implemented with two calls to split . To imple-
ment efficiently rank , select and splitRank , we can augment the underlying binary search
tree implementation with sizes as described in another Chapter .

Cost Specification 43.2 (Tree-based ordered sets and tables). The cost for the ordered set
and ordered table functions is the same as for tree-based sets (Cost Specification 41.4) and
tables (Cost Specification 42.5) for the operations supported by sets and tables. The work
and span for all the operations in ADT 43.1 is O(lg n), where n is the size of the input set
or table, or in the case of join it is the sum of the sizes of the two inputs.

3 Interface: Augmented Ordered Tables

An interesting extension to ordered tables (and perhaps tables more generally) is to aug-
ment the table with a reducer function. We shall see some applications of such augmented
tables but let’s first describe the interface and its cost specification.

Definition 43.3 (Reducer-Augmented Ordered Table ADT). For a specified reducer, i.e., an
associative function on values f : V×V→ V and identity element If , a reducer-augmented
ordered table supports all operations on ordered tables and the following operation

reduceVal : T→ V
reduceVal A = Table.reduce f If A

The reduceVal A function just returns the sum of all values in A using the associative oper-
ator f that is part of the data type. It might seem redundant to support this function since
it can be implemented by the existing reduce function. But, by augmenting the table with
a reducer, we can do reductions much more efficiently. In particular, by using augmented
binary search trees, we can implement reduceVal in O(1) work and span.

Example 43.2 (Analyzing Profits at TRAMLAW). Let’s say that based on your expertise in
algorithms you are hired as a consultant by the giant retailer TRAMLAW. Tramlaw sells
over 10 billion items per year across its 8000+ stores. As with all major retailers, it keeps
track of every sale it makes and analyzes these sales regularly to make business and mar-
keting decisions. The sale record consists of a timestamp when the sale was made, the
amount of the sale and various other information associated with the sale.

306 CHAPTER 43. ORDERING AND AUGMENTATION

Tramlaw wants to be able to quickly determine the total amount of sales within any range
of time, e.g. between 5pm and 10pm last Friday, or during the whole month of September,
or during the halftime break of the last Steeler’s football game. It uses this sort of informa-
tion, for example, to decide on staffing levels or marketing strategy. It needs to maintain
the database so that it can be updated quickly, including not just adding new sales to the
end, but merging in information from all its stores, and possibly modifying old data (e.g.
if some item is returned or a record is found to be in error).

How would you do this? Well after thinking a few minutes you remember ordered tables
with reduced values from 210. You realize that if you keep the sales information keyed
based on timestamps, and maintain the sum of sales amounts as the reduced values then
all the operations required are cheap. In particular the function f is simply addition. Now
the following will restrict the sum in any range:

reduceVal (getRange (T, t1, t2))

This will take O(lg n) work, which is much cheaper than O(n). Now let’s say Tramlaw
wanted to do a somewhat more complicated query where they want to know the total sales
between 5 and 7 pm on every day over the past year. You could do this by applying the
query above once for each day. These can all be done in parallel and summed in parallel.
The total work will be 365 × O(lg n), which is still much cheaper than looking at all data
over the past year.

Example 43.3 (A Jig with QADSAN). Now in your next consulting job QADSAN hires you
to more efficiently support queries on their stock exchange data. For each stock they keep
track of the time and amount of every trade. This data is updated as new trades are made.
As with Tramlaw, tables might also need to be unioned since they might come from dif-
ferent sources : e.g. the Tokyo stock exchange and the New York stock exchange. Qasdan
wants to efficiently support queries that return the maximum price of a trade during any
time range (t1, t2) .

You tell them that they can use an ordered table with reduced values using max as the
combining function f . The query will be exactly the same as with your consulting jig with
Tramlaw, getRange followed by reduceVal , and it will similarly run in O(lg n) work.

Chapter 44

Example: Indexing and Searching

As an application of the sets and tables ADTs, we consider the problem of indexing a set of
documents to provide fast and efficient search functions on documents.

Suppose that you are given a collection of documents where each document has a unique
identifier assumed to be a string and a contents, which is again a string and you want to
support a range of functions including

• word search: find the documents that contain a given word,

• logical-and search: find the documents that contain a given word and another,

• logical-or search: find the documents that contain a given word or another,

• logical-and-not search: find the documents that contain a given word but not an-
other.

This interface roughly corresponds to that offered by search engines on the web, e.g., those
from Google and Microsoft. When searching the web, we can think of the url of a page on
the web as its identifier and its contents, as the text (source) of the page. When your search
term is two words such as ”parallel algorithms”, the term is treated as a logical-and search.
This is the common search from but search-engines allow you to specify other kinds of
queries described above (typically in a separate interface).

Example 44.1. As a simple document collection, consider the following posts made by
your friends yesterday.

307

308 CHAPTER 44. EXAMPLE: INDEXING AND SEARCHING

T = 〈 (’jack ’, ’chess is fun ’),
(’mary ’, ’I had fun in dance club today ’),
(’nick ’, ’food at the cafeteria sucks ’),
(’josefa ’, ’rock climbing was a blast ’),
(’peter ’, ’I had fun at the party, food was great ’)〉

where the identifiers are the names, and the contents is the tweet.

On this set of documents, searching for ’fun ’ would return

{’jack ’, ’mary ’, ’peter ’} .

Searching for ’club ’ would return {’mary ’}.

We can solve the search problem by employing a brute-force algorithm that traverses the
document collection to answer a search query. Such an algorithm would require at least
linear work in the number of the documents, which is unacceptable for large collections,
especially when interactive searches are desirable. Since in this problem, we are only inter-
ested in querying a static or unchanging collection of documents, we can stage the algo-
rithm: first, we organize the documents into an index and then we use the index to answer
search queries. Since, we build the index only once, we can afford to perform significant
work to do so. Based on this observation, we can adopt the following ADT for indexing
and searching our document collection.

Data Type 44.1 (Document Index).

type word = string
type id = string
type contents = string
type docs
type index
makeIndex : (id × contents sequence)→ index
find : index → word → docs
queryAnd : (docs × docs)→ docs
queryOr : (docs × docs)→ docs
queryAndNot : (docs × docs)→ docs
size : docs → N
toSeq : docs → id sequence

Example 44.2. For our collection of tweets in the previous example, we can use makeIndex
to make an index of these tweets and define a function to find a word in this index as
follows.

fw : word → docs = find (makeIndex T)

We build the index and then partially apply find on the index. This way, we have staged
the computation so that the index is built only once; the subsequent searches will use the
index.

309

For example, the code,

toSeq (queryAnd ((fw ’fun ’), queryOr ((fw ’food ’), (fw ’chess ’)))

returns all the documents (tweets) that contain ’fun ’ and either ’food ’ or ’chess ’, which
are 〈 ’jack ’, ’peter ’ 〉. The code,

size (queryAndNot ((fw ’fun ’), (fw ’chess ’)))

returns the number of documents that contain ’fun ’ and not ’chess ’, which is 2.

We can implement this interface using sets and tables. The makeIndex function can be
implemented as follows.

Algorithm 44.2 (Make Index).

makeIndex docs =
let

tagWords(i, d) = 〈 (w, i) : w ∈ tokens(d) 〉
pairs = flatten 〈 tagWords(i, d) | (i, d) ∈ docs 〉
words = Table.collect pairs

in
〈w 7→ Set .fromSeq d | (w 7→ d) ∈ words 〉

end

The function tokens(d) : string → string sequence takes a string and splits it up into a
sequence of words.

The tagWords function takes a document as a pair consisting of the document identifier and
contents, breaks the document into tokens (words) and tags each token with the identifier
returning a sequence of these pairs. Using this function, we construct a sequence of word-
identifier pairs. We then use Table.collect to construct a table that maps each word to a
sequence of identifiers. Finally, for each table entry, we convert the sequence to a set so
that we can perform set functions on them.

Example 44.3. Here is an example of how makeIndex works. We start by tagging the words
with their document identifier, using tagWords .

tagWords (’jack ’, ’chess is fun ’)

returns

〈 (’chess ’, ’jack ’), (’is ’, ’jack ’), (’fun ’, ’jack ’) 〉

To build the index, we apply tagWords to all documents, and flatten the result to a single
sequence. Using Table.collect , we then collect the entries by word creating a sequence of

310 CHAPTER 44. EXAMPLE: INDEXING AND SEARCHING

matching documents. In our example, the resulting table has the form:

words = {(’a ’ 7→ 〈 ’melissa ’ 〉),
(’at ’ 7→ 〈 ’nick ’, ’peter ’),
. . .
(’fun ’ 7→ 〈 ’jack ’, ’mary ’, ’peter ’ 〉),
. . .}

Finally, for each word the sequences of document identifiers is converted to a set.

The rest of the interface can be implemented as follows:

Algorithm 44.3 (Index Functions).

find T v = Table.find T v
queryAnd A B = Set .intersection A B
queryOr A B = Set .union A B
queryAndNot A B = Set .difference A B
size A = Set .size A
toSeq A = Set .toSeq A

Costs. Assuming that all tokens have a length upper bounded by a constant, the cost of
makeIndex is dominated by the collect, which is basically a sort. The work is therefore
O(n log n) and the span is O(log2 n).

For an index I with n words, the cost of find I w is O(log n) work and span since it just
involves a find in the table. The cost of queryAnd , queryOr and queryAndNot are the
same as for intersection, union and difference on tables—i.e., O

(
m log

(
1 + n

m

))
work and

O(log n+ logm) span for inputs of size n and m, m < n.

Part XI

Priority Queues

311

Chapter 45

Priority Queues

A priority queue maintains a set of elements from a total ordering, allowing at least inser-
tion of a new element and deleting and returning the minimum element. We used priority
queues in priority-first graph search , in Dijkstra’s algorithm , and in Prim’s algorithm
for minimum spanning trees.

In this chapter we focus on meldable priority queues which support a meld function that
can meld (or merge) two priority queues into one.

Data Type 45.1 (Meldable Priority Queue). Given a totally ordered set S, a Meldable Pri-
ority Queue (MPQ) is a type T representing subsets of S, along with the following values
and functions:

empty : T
singleton : S→ T
findMin : T→ (S ∪ {⊥})
insert : T× S→ T
deleteMin : T→ T× (S ∪ {⊥})
meld : T× T→ T
fromSeq : S seq → T

The function singleton(e) creates a priority queue with just the element e. The function
findMin(Q) returns the minimum element, or ⊥ (or None) if the queue is empty. The func-
tion deleteMin(Q) removes the minimum value and returs the new queue along with the
value. If the queue is empty it returns ⊥ (or None). The meld(Q1, Q2) creates a priority
queue with the union of the elements in Q1 and Q2.

Algorithm 45.2 (Heapsort). A priority queue can also be used to implement a version of
selection sort, often referred to as heapsort. The sort can be implemented by inserting all
keys into a priority queue, and then removing them one by one, as follows.

312

1. IMPLEMENTING PRIORITY QUEUES 313

sort S =
let q0 = Sequence.iter PQ .insert PQ .empty S

hsort q =
case PQ .deleteMin q of

(,None)⇒ 〈 〉
| (q′,Some (v))⇒ Seq .append 〈 v 〉 (hsort q′)

in hsort q0 end

The heapsort algorithm is completely sequential, but given O(log n) work implemations
of insert and deleteMin , and using lists or tree sequences (so the append is cheap) does
optimal O(n log n) work.

Priority queues have many applications beyond heapsort and priority first search in graphs,
including:

• Huffman codes,

• clustering algorithms,

• event simulation, and

• kinetic algorithms for motion simulation.

Another function that is sometimes useful is decreaseKey that decreases the value of a key.

1 Implementing Priority Queues

Priority queues can be implemented by using a variety of data structures.

Linked lists or Arrays. Perhaps the simplest implementation would be to use a sorted or
unsorted linked list or an array. In such implementations, one of deleteMin and insert is
fast and the other is slow, perhaps unacceptably so as it can take as much as Ω(n) work and
span, where n is the size of the priority queue.

Balanced Trees. Another implementation is to use balanced binary search trees (e.g.,
treaps, or red-black trees). With balanced binary trees a deleteMin has to find the leftmost
key and delete it. This can easily be implemented with O(log n) work and span. An insert
is just a tree insert, and again takes O(lg n) work and span. However doing a meld on two
heaps requires running a union on two trees, which can require O(n) work if both heaps
have size n.

314 CHAPTER 45. PRIORITY QUEUES

Heaps. Many implementations of priority queues are based on the idea of a heap. As
min-heap is a rooted tree such that the key stored at every node is less than or equal to the
keys of all its descendants. Similarly a max-heap is one in which the key at a node is greater
or equal to all its descendants. Compared to binary search trees, which need to maintain
a total order over the search keys, heaps need only maintain a partial ordering over the
keys. There are several kinds of heaps including complete binary heaps (briefly described
below), leftist heaps (described in the next section), binomial heaps, pairing heaps, and
Fibonacci heaps.

Example 45.1. An example min-heap illustrated.

Binary Heaps. A (complete) binary heap is a particular implementation of a heap that
maintains two invariants:

• Shape property: A complete binary tree (all the levels of the tree are completely filled
except the bottom level, which is filled from the left).

• Heap property.

Because of the shape property, a binary heap can be maintained in a sequence with the root
in position 0 and the following simple functions for determining the left child, right child
and parent of the node at location i:

left i = 2× i+ 1
right i = 2× i+ 2
parent i = di/2e − 1

If the resulting index is out of range, then there is no left child, right child, or parent,
respectively.

Insertion can be implemented by adding the new key to the end of the sequence, and
then traversing from that leaf to the root swapping with the parent if less than the parent.
Deletion can be implemented by removing the root and replacing with the last key in the
sequence, and then moving down the tree if either child of the node is less than the key at
the node. Binary heaps have the same asymptotic bounds as balanced binary search trees,
but are likely faster in practice if the maximum size of the priority queue is known ahead
of time. If the maximum size is not known, then some form of dynamically sized array is
needed.

2. MELDABLE PRIORITY QUEUES 315

Cost Summary. The table below summarizes the costs of different implementations of
priority queues, including leftist heaps covered later in this chapter, and their costs on
the four key functions. Note that, a big win for leftist heaps is in the super fast meld
operation—logarithmic as opposed to roughly linear in other data structures.

insert deleteMin meld fromSeq
Unsorted List O(1) O(n) O(m+ n) O(n)
Sorted List O(n) O(1) O(m+ n) O(n log n)
Balanced Trees O(log n) O(log n) O(m log(1 + n

m)) O(n log n)
Binary Heaps O(log n) O(log n) O(m+ n) O(n)
Leftist Heap O(log n) O(log n) O(logm+ log n) O(n)

2 Meldable Priority Queues

This section presents an implementation of a meldable priority queue that has the same
work and span costs as binary search trees or binary heaps for insertion and deleting the
minimum, but also has an efficient meld . In particular the meld function takes O(log n +
logm) work and span, where n andm are the sizes of the two priority queues to be merged.

The structure we consider is called a “leftist heap”, which is a binary tree that maintains
the heap property, but unlike binary heaps, it does not maintain the complete binary tree
property.

There are two important properties of a min-heap:

1. The minimum is always at the root.

2. The heap only maintains a partial order on the keys (unlike a BST that maintains the
keys in a total order).

The first property allows us to access the minimum quickly, and it is the second that gives
us more flexibility than available in a BST.

Let us consider how to implement the three operations deleteMin , insert , and fromSeq on
a heap. Like join for binary search trees, the meld operation, makes the other operations
easy to implement.

To implement deleteMin we can simply remove the root and meld the two subtrees rooted
at the children of the root.

To implement insert(Q, v), we can just create a singleton node with the value v and then
meld it with the heap for Q.

316 CHAPTER 45. PRIORITY QUEUES

With meld , implementing fromSeq in parallel is easy using reduce:

fromSeq S =
Seq .reduce Q .meld Q .empty (Seq .map Q .singleton S)

This is parallel, and assuming meld takes logarithmic work in the input sizes, this requires
only O(n) work and O(log2 n) span.

Implementing Meld. The only operation we need to care about, therefore, is the meld
operation. Suppose that we are given twe heaps to meld. By inspecting the the roots of
the heaps, we can determine that the smaller one will be the root of the new melded heap.
Thus, all we have to do now is construct the left and the right subtrees of the root. At
this point, we have three trees to consider—the left-subtree and the right-subtree of the
chosen root, and the other tree. Let us keep the left subtree in its place—as the left-subtree
of the new root—and construct the right subtree by melding the two remaining trees. We
can then construct the right subtree by a recursive application of the algorithm, until we
encounter trivial trees such as an empty tree. In summary, to meld two heaps, we choose
the heap with the smaller root and meld the other heap with its right subtree.

This idea leads to the following algorithm.

Data Structure 45.3 (Naı̈ve Meldable Binary Heap).

datatype PQ = Leaf
| Node of (key × PQ× PQ)

meld(A,B) =
case(A,B)

(,Leaf)⇒ A
| (Leaf ,)⇒ B
| (Node(ka, La, Ra),Node(kb, Lb, Rb))⇒

if ka < kb
then Node(ka, La, meld(Ra, B))
else Node(kb, Lb, meld(A, Rb))

empty = Leaf

singleton(k) = Node(k,Leaf ,Leaf)

insert(k,Q) = meld(singleton k,Q)

deleteMin(Q) =
case Q of

Leaf ⇒ (Q,None)
| Node(k, L,R) ⇒ (meld(L,R),Some k)

fromSeq S =
Seq .reduce meld empty (Seq .map singleton S)

2. MELDABLE PRIORITY QUEUES 317

Cost of Naı̈ve Meld. The meld algorithm traverses the right spine of each tree (recall that
the right spine of a binary tree is the path from the root to the rightmost node). The problem
is that the tree could be very imbalanced, and in general, we can not put any useful bound
on the length of these spines—in the worst case all nodes could be on the right spine. In
this case the meld function could take Θ(|A|+ |B|) work.

Example 45.2. An example meld operations on two heaps illustrated.

318 CHAPTER 45. PRIORITY QUEUES

2.1 Leftist Heaps

Fixing the Imbalance Problem. It turns out there is a relatively easy fix to the imbalance
problem . The idea is to keep the trees so that the trees are always deeper on the left than

2. MELDABLE PRIORITY QUEUES 319

the right. To implement this idea, we associate a “rank” with each node in the binary tree
and ensure during a meld operation that the tree is deeper on the left.

Definition 45.4 (Rank). The rank of a node x is

rank(x) = # of nodes on the right spine of the subtree rooted at x,

and more formally:

rank(Leaf) = 0
rank(node(, , R) = 1 + rank(R)

Definition 45.5 (Leftist Property and Leftist Heaps). A leftist heap is a heap where the
leftist property holds: for any node x in the heap, rank(L(x)) ≥ rank(R(x)), where L(x)
and R(x) are the left and the right child of x respectively.

Example 45.3. An example leftist heap.

Note. At an intuitive level, the leftist property implies that most of entries (mass) will pile
up to the left, making the right spine of such a heap relatively short. Leftist heaps can
therefore be extremely unbalanced. This is fine, however, because the data structure will
always work on the shorter paths in the tree. We will make this idea precise in the following
lemma which will prove later; we will see how we can take advantage of this fact to support
fast meld operations.

320 CHAPTER 45. PRIORITY QUEUES

Data Structure 45.6 (Leftist Heap).

datatype PQ = Leaf
| Node of (int × key × PQ× PQ)

rank A = case A of
Leaf = 0
| Node(r, , ,) = r

makeLeftistNode (v, L,R) =
if (rank L < rank R)
then Node(1 + rank L, v,R, L)
else Node(1 + rank R, v, L,R)

meld (A,B) =
case (A,B) of

(,Leaf)⇒ A
| (Leaf ,)⇒ B
| (Node(, ka, La, Ra),Node(, kb, Lb, Rb))⇒

if ka < kb then
makeLeftistNode(ka, La,meld(Ra, B))

else
makeLeftistNode(kb, Lb,meld(A,Rb))

Leftist heap data structure extends the naive data structure in small but important ways
to ensure efficiency.

Leftist heaps maintain a rank field for every node and maintain the leftist property by
“piling” trees with larger ranks to the left via the makeLeftistNode function. The meld
algorithm takes advantage of this by recurring only into the right subtree of a node, which
is guaranteed to have smaller rank. Other operations can be implemented in terms of the
meld operation as with the naive data structure .

Note. The only real difference between the naive data structure and leftist heaps is that
the latter uses makeLeftistNode to create a node and ensure that the resulting heap satisfies
the leftist property (assuming the two input heaps L and R did). It makes sure that the
rank of the left child is at least as large as the rank of the right child by switching the
two children if necessary. To implement makeLeftistNode efficiently, the data structure also
maintains the rank value on each node.

To analyze the cost of leftist heaps, we start by establishing a key lemma that states that
leftist heaps have a short right spine, about log n in length. We then prove the main theo-
rem that shows that the meld operation requires logarithmic work in the size of two heaps
being melded.

Lemma 45.1 (Leftist Rank). In a leftist heap with n entries, the rank of the root node is at
most log2(n+ 1).

Proof. To prove the lemma, we first prove a claim that relates the number of nodes in a
leftist heap to the rank of the heap.

2. MELDABLE PRIORITY QUEUES 321

Claim: If a heap has rank r, it contains at least 2r − 1 entries.

To prove this claim, let n(r) denote the number of nodes in the smallest leftist heap with
rank r. It is not hard to convince ourselves that n(r) is a monotone function; that is, if
r′ ≥ r, then n(r′) ≥ n(r). With that, we will establish a recurrence for n(r). By definition,
a rank-0 heap has 0 nodes. We can establish a recurrence for n(r) as follows. Consider
the heap with root note x that has rank r. It must be the case that the right child of x has
rank r − 1, by the definition of rank. Moreover, by the leftist property, the rank of the
left child of x must be at least the rank of the right child of x, which in turn means that
rank(L(x)) ≥ rank(R(x)) = r− 1. As the size of the tree rooted x is 1 + |L(x)|+ |R(x)|, the
smallest size this tree can be is

n(r) = 1 + n(rank(L(x))) + n(rank(R(x)))
≥ 1 + n(r − 1) + n(r − 1) = 1 + 2 · n(r − 1).

Solving the recurrence (a full binary tree of depth r), we get n(r) ≥ 2r − 1, which proves
the claim.

To prove our lemma, i.e., the rank of the leftist heap with n nodes is at most log(n+ 1), we
simply apply the claim. Consider a leftist heap with n nodes and suppose it has rank r. By
the claim it must be the case that n ≥ n(r), because n(r) is the fewest possible number of
nodes in a heap with rank r. But then, by the claim above, we know that n(r) ≥ 2r − 1, so

n ≥ n(r) ≥ 2r − 1 =⇒ 2r ≤ n+ 1 =⇒ r ≤ log2(n+ 1).

This concludes the proof that the rank of a leftist heap is r ≤ log2(n+ 1).

Theorem 45.2 (Leftist Heap Work). If A and B are leftists heaps then the meld(A,B) algo-
rithm runs in O(log(|A|) + log(|B|)) work and returns a leftist heap containing all elements
from A and from B.

Proof. The code for meld only traverses the right spines ofA andB, advancing by one node
in one of the heaps. Therefore, the process takes at most rank(A) + rank(B) steps, and each
step does constant work. Since both trees are leftist, by the main lemma , the work is
bounded by O(log(|A|) + log(|B|)). To prove that the result is leftist we note that the only
way to create a node in the code is with makeLeftistNode. This function guarantees that the
rank of the left branch is at least as great as the rank of the right branch.

Part XII

Hashing

322

Chapter 46

Foundations

Hash functions and hash tables are widely used techniques in computer science. Even
though their developments have historically been intertwined, hash functions today are
used for many purposes beyond implementing hash tables. In this chapter, we describe
hash functions as computational structures on their own right, and then discuss their use
in hash tables .

1 Introduction

In computer science, the term “hashing” refers to general idea of “mixing up” information
content of an object to produce a “hash value” that has certain desirable properties such
as compactness and some degree of randomness, so that different objects are unlikely to
hash to the same value. Hash functions have found numerous applications in computer
science.

Example 46.1 (A Culinary Analogy). To help develop some intuition about hashing, we can
use a culinary analogy. Let’s imagine sitting at a big table on which rests several dozens
of plates full of delicious pieces of fruits, apples, pears, oranges, pineapples, etc. Floating
our gaze over the table and we are amazed by the plentifulness but also develop a sense of
familiarity: we know each and every fruit on the table, even if we have never seen so many
different kinds on the same table. We start entertaining the thoughts of savoring some but
given that there are so many, we possibly can’t do that without wasting much. So we close
our eyes and start dreaming about the more practical scenario of the same table but this
time each kind of fruit is replaced by a small slice of it. Excited, we start savoring the fruits.
After each bite, we are able to identify the fruit that we just tasted, excepting the golden
delicious and the red delicious apples, which taste quite similar, and which we could have
identified had they not been peeled.

Note. The point of the example is that we don’t need to eat a whole watermelon to identify
it.

323

324 CHAPTER 46. FOUNDATIONS

Exercise 46.1. Play the same game as in the culinary analogy but this time with more
complex dishes imagine, for example, some yakitori, luohan zhai, pad sew ew, sundubu
jjigae, fesenjan, pelmeni, meze, lasagna, coq au vin, hamburger, etc.

Solution. It is not possible to “slice” these dishes and still be able to identify them, because
of their fairly non-uniform structure. Instead we can “sample” by taking small pieces of the
dish in many different places and then mixing them to construct a representative sample
that represents the taste of the dish. This is similar to how hash functions work.

Applications of Hashing. Some applications of hashing include:

1. In our discussion of Treaps, we describe how hashing can be used to generate the
“random” priorities. Our analysis assumed the priorities were truly random with
respect to the keys, but it can be shown that a limited form of randomness that arise
out of relatively simple hash functions is sufficient.

2. In cryptography so-called one-way hash functions can be used to hide information.
These functions are easy to compute in the forward direction but hard to determine
given the hash value, what object created it—and hence the name“one way”. One
application is in digital signatures where a secure hash function is used to describe a
large document with a small number of bits. These signatures can be used to authen-
ticate the source of the document, ensure the integrity of the document as any change
to the document invalidates the signature, and prevent repudiation where the sender
denies signing the document.

3. Another application of one-way hash functions is for password protection. Instead
of storing passwords in plain text, only the hash of the password is stored. To verify
whether a password entered is correct, the hash of the password is compared to the
stored value.

4. String commitment protocols use hash functions to hide to what string a sender has
committed so that the receiver gets no information. Later, the sender sends a key that
allows the receiver to reveal the string. In this way, the sender cannot change the
string once it is committed, and the receiver can verify that the revealed string is the
committed string. Such protocols might be used to flip a coin across the Internet: The
sender flips a coin and commits the result. In the mean time the receiver calls heads
or tails, and the sender then sends the key so the receiver can reveal the coin flip.

5. Hashing can be used to approximately match documents, or even parts of docu-
ments. Fuzzy matching hashes overlapping parts of a document and if enough of the
hashes match, then it concludes that two documents are approximately the same. Big
search engines look for similar documents so that on search result pages they don’t
show the many slight variations of the same document (e.g., in different formats). It
is also used in spam detection, as spammers make slight changes to email to bypass
spam filters or to push up a document’s content rank on a search results page. When
looking for malware, fuzzy hashing can quickly check if code is similar to known
malware. Geneticists use it to compare sequences of genes fragments with a known

1. INTRODUCTION 325

sequence of a related organism as a way to assemble the fragments into a reasonably
accurate genome.

6. Hashing is used to implement hash tables. In hash tables one is given a set of keys
K ⊂ α and needs to map them to a range of integers so they can stored at those
locations in an array. The goal is to spread the keys out across the integers as well
as possible to minimize the number of keys that collide in the array. You should not
confuse the terms hash function and hash table. They are two separate ideas, and the
latter uses the former.

Secure Hash Algorithm (SHA). Due to important role that hash functions play in se-
curity, their development has received much attention from the government. NSA (Na-
tional Security Agency) in particular has developed the SHA family of hash function; SHA
stands for “Secure Hash Algorithm.” The current generation SHA-2 includes a set of cryp-
tographic hash functions that are 224, 256, 384, and 512 bits, which are named respectively
as SHA-224, SHA-256, SHA-384, and SHA-512.

SHA functions have the characteristic that a small change to the contents leads to a large
change in the hash code, a.k.a., the avalanche effect.

Example 46.2. The text below illustrates the output of the deployment process of the
Diderot project on Google Cloud. Deployment involves creating a virtual machine on the
cloud, installing all the needed software, and then copying the Diderot source code from
the local computer (a laptop in this case) onto the virtual machine on the cloud. The in-
tegrity of this copy operation is checked by using the “SHA256” hash function. The hash
code, a.k.a., the digest, is computed before the transmission, transmitted along with the
copied contents, and compared against a freshly computed digest for the transmitted con-
tents. This check ensures that the transmission operation did not corrupt the contents being
copied onto the cloud.

$ gcloud app deploy app_test.yaml --project diderot-cmu
Beginning deployment of service [default]
Building and pushing image for service [default]
Started cloud build [1e27052a-be74-4a38-be05-807042ca1146].
--------------- REMOTE BUILD OUTPUT ---------------
starting build "1e27052a-be74-4a38-be05-807042ca1146"
Successfully built 2abdfcbff888
Successfully tagged [...] appengine/default.20180414t103220:latest
PUSH
Pushing us.gcr.io/diderot-cmu/appengine/default.20180414t103220:latest
Repository: [us.gcr.io/diderot-cmu/appengine/default.20180414t103220]
21df82f90a72: Preparing
21df82f90a72: Waiting
67b0784928b9: Pushed
724aba9dc62d: Layer already exists
77c1da6d3730: Pushed

326 CHAPTER 46. FOUNDATIONS

latest: digest: sha256:39df2d79576d3c204b8772150052610e65308706f169b72b0351c164a69c2de1
size: 3889

DONE

Updating service [default]...done.
Stopping version [diderot-cmu/default/20180403t134333].
Updating service [default]...done.
Updating service [default]...done.
Deployed service [default] to [https://diderot-cmu.appspot.com]

2 Hash Functions

Definition 46.1 (Hash Function). A hash function h is a function from a domain U , typi-
cally called the universe to a range N< m = {0, 1, . . . ,m− 1}, where m is a positive natural
number, i.e.,

h : U → N< m.

The size of the range m is usually significantly smaller than the size of the universe.

An element of the universe is called a key. An element of the range is called a hash
value, hash code, or sometimes digest.

Definition 46.2 (Collisions). For distinct x, y ∈ U , if h(x) = h(y), then we say that h(x) and
h(y) collide. We also say sometimes that x and y collide when the hash function is clear
from the context.

Exercise 46.2. Consider any hash function h from a domain U to a range N< m = {0, 1, . . . ,m−
1}, where m is a positive natural number. Prove that if |U| > (n−1)m, then for any n, there
exists a set of n keys K ⊆ U such that all keys in K hash to the same hash code.

Hint. Consider applying the pigeon-hole principle.

Properties of Good Hash Functions. A good hash function, h : U → N< m should have
at least the following qualities (informally):

• Cost: it should not be too difficult to compute, e.g., it should ideally require linear
work in the size of the key.

• Compactness: it should require a small amount of memory to store and to compute.

• Coverage: its image should match its range, i.e., for any 0 ≤ i < m, there exists x ∈ U
such that h(x) = i. In other words, the hash function should be surjective.

2. HASH FUNCTIONS 327

• Collision Avoidance: It should be unlikely that an arbitrary two keys map to the
same hash value.

• Mixing: Given a small set of keys

{x1, . . . , xk−1} ⊂ U

and their hash codes

h(x1) · · ·h(xk−1),

it should be difficult to predict the hash code h(xk) of any other key xk 6∈ {x0, x1, . . . , xk−1}.
In a formal form, this is referred to as k-wise independence.

Example 46.3. Let U be the set of all natural numbers and consider the following hash
function

h(x) = x mod 4.

This is not a good has function because, it only considers the least significant two bits of the
key, and thus does not mix well. Just a few different applications of the hash could reveal
the behavior of h, making it easy to predict the hash of any key in the universe.

More generally any hash function of the form

h(x) = x mod ab,

where a, b ∈ N, is not a good hash function for a similar reason: the function treats the
input key as a number base a and takes the least significant b digits.

Example 46.4. Let U be set of all natural numbers and let p be a prime number. Consider
the hash function

h(x) = x mod p.

This is not a good hash function because it is relatively easy to predict by for example
trying out some arguments of the form x, x + 1, x + 2, x + 22, Thus by observing the
behavior of function on logarithmically many values, we can make a good guess for any
value y ∈ U . More generally, h(x) = h(x+ cp) for any c. In other words, the function does
not mix well.

Example 46.5 (Random Hash Function). Consider a universe U and a range N< m. We can
construct a hash function for the universe by picking, for each key, a uniformly random
natural number less than m. Such a random hash function has several important qualities.

• The function thus mixes its input keys well. Because the function is random, it is
difficult to predict the value of any key from a small number of observations.

• The function evenly spreads collision over its range: for any x, y ∈ U , if x 6= y then
the probability that h(x) and h(y) collide is 1/m.

328 CHAPTER 46. FOUNDATIONS

The problem with this hash function is that it is not compact: for each key in the universe,
we have to remember the hash value that it maps to, which can require an extremely large
amounts of space (memory).

Remark. Even though uniformly random hash functions are not compact, they are com-
monly assumed in the design of algorithms, because they offer a clean theoretical model.
This is sometimes referred to as the simple uniform hashing assumption.

Definition 46.3 (Simple Uniform Hashing). The simple uniform hashing postulates that
for any universe and any range there is a hash function that ensures that each key has
equal probability of being mapped to any valid hash code independent of what the other
elements are mapped to.

Collision Avoidance. One key challenge is designing hash functions is avoiding colli-
sions. We can show, however, that collisions are impossible to avoid completely even for
hash functions that have a relatively large range.

To see this, let’s recall a fun fact: the birthday paradox. The “paradox” states that we only
need 23 people in a room to have a 50% chance that at least two people have the same
birthday. If we have 60 people, then we have a 99% chance that two people have the same
birthday.

We can generalize the birthday paradox to show that when hashing to a range size m, we

expect a collision to occur with only
√

1
2π m keys.

A related question is how many keys do we need until every hash-code in the range is
taken (mapped to). One can show that if the hash function has the range N< m for some m,
and for Θ(m logm) distinct keys, then with constant probability (or even high-probability)
every hash-code will be used. This property is related to the coupon-collector’s problem.

Note. There is nothing paradoxical about the “birthday paradox”, which is simply a con-
sequence of counting.

Exercise 46.3. Given a universe U and a range N< m. Let h be a random hash function that
is constructed by selecting for each key in the universe a random hash-code in the range.
Prove that the hash function h satisfies

• for all x ∈ U , and for all i, 0 ≤ i < m,

P [h(x) = i] = 1/m.

• for all x, y ∈ U such that x 6= y

P [h(x) = h(y)] = 1/m.

Exercise 46.4. Given a universe U and a range N< m, consider the set of all functionsH and
let h ∈ H be a function that is uniformly randomly chosen from H. Prove the following
two statements

3. UNIVERSAL HASHING 329

• For all x ∈ U , and for all i, 0 ≤ i < m,

Ph∈H [h(x) = i] = 1/m.

• For all x, y ∈ U such that x 6= y

Ph∈H [h(x) = h(y)] = 1/m.

As we will see, we refer to classes (sets) of hash functions for which the second property
hold as “universal.”

Exercise 46.5. Given the universe U and the range N< m, construct a set of hash functions
H such that for all x ∈ U , and for all i, 0 ≤ i < m,

Ph∈H [h(x) = i] = 1/m

but the following does not hold: for all x, y ∈ U such that x 6= y

Ph∈H [h(x) = h(y)] = 1/m.

Solution. Let H be the set of all distinct constant functions, each of which maps all the
elements in the universe to a single hash code in the range. The first property holds because
for a uniformly randomly hash function, each hash code is equally likely to be selected. The
second property does not hold, because each hash function is a constant function and thus
the relevant probability is 1.0.

3 Universal Hashing

As illustrated by the random hashing example , we can construct a hash function by se-
lecting for each key a uniformly random hash code. Such a hash function minimizes the
number of collision, the probability that any two keys collide is 1/m for the range N< m,
but it does not accept a compact representation. Compactness fails, because we have to
remember the mapping of keys to hash values explicitly. A natural question is whether it
is possible to construct a hash function that is compact and cheap to compute but has the
same guarantee over collisions. In this section, we shall see that this is indeed possible.

Definition 46.4 (Universal Class of Hash Functions). LetH be a class (set) of hash function
from a universe U to the range N< m for some m. We say that H is universal if the prob-
ability that two distinct keys of the universe collide under a uniformly randomly chosen
hash function is a most 1/m, i.e.,

∀x, y ∈ U , such that x 6= y : Ph∈H [h(x) = h(y)] ≤ 1/m.

There are many different techniques for obtaining classes of universal hash functions. We
will state here, without proof, a couple classes of universal hash functions that are com-
monly used.

330 CHAPTER 46. FOUNDATIONS

Theorem 46.1 (Multiplicative Hashing with Offset)). Consider a finite universe U ⊂ N and
any range N< m. Let p be a prime number that is greater or equal to any key in the universe.
For integers a and b, 0 < a < p and 0 ≤ b < p, let

ha,b(x) = (ax+ b mod p) mod m.

The class of hash functionsH defined as

H = {ha,b(x) | 0 < a < p, 0 ≤ b < p}

is universal.

The multiplicative-hashing theorem makes it relatively easy to construct a class of com-
pact and efficient hash functions that are universal. One somewhat concerning assumption
could be that we need a prime number larger than the keys in the universe. The next theo-
rem eliminates this assumption by allowing us to work with essentially any prime number
equal to the range of the hash value instead of the potentially much larger universe.

Theorem 46.2 (Dot-Product Hashing). Letm be a prime number and r be a positive integer.
Consider the universe U = N< mr and the range N< m. For any natural number a, 0 ≤ a <
mr, let

ha(x) =

(
r−1∑
i=0

ai · xi

)
mod m,

where ai and xi denote the ith digit of a and x in base m.

The class of hash functionsH defined as

H = {ha(x), | 0 ≤ a < mr}

is universal.

Intuition. The idea behind the theorem is to read the keys of the universe as numbers
in base m, which is a prime number. We select r to be big enough such that all keys are
natural numbers less than mr. Given some 0 ≤ a < mr, we then define the hash function
h(x) to the sum of the products of digits of a and the key x modulo p.

Remark. The theorem fixes the hash codes to be numbers congruent to a prime m, i.e., the
integers between 0 and m− 1. For the theorem to be effective, we would therefore need to
select m to be close to the number of distinct hash codes that we are interested in.

Example 46.6 (Universal Hashing for Strings). Dot-product hashing yields a natural hash
function for strings. Let r be the maximum length of the strings and interpret each charac-
ter of the string as a natural number. Select a prime p to bound the value of each character
and to be large enough to reduce the probability of collision to be small.

3. UNIVERSAL HASHING 331

For any length-r string a, define

ha(x) =

(
r−1∑
i=0

ai · xi

)
mod p,

where ai and xi denote the ith character of ai and xi.

The class of hash functionsH defined as

H = {ha(x) | a is a string of length r}

is universal.

Bounding the Number of Collisions. The quantity of interest in understanding the effec-
tiveness of hashing is the number of collisions that a key may be involved in. To understand
this quantity, let’s define Cx,y to be an indicator random variable such that

Cx,y =

{
1 if h(x) = h(y)
0 otherwise.

Because Cx,y is an indicator random variable its expectation is the same as the probability
that it is 1. Assuming universal hashing (or more strongly simple uniform hashing), we
know that for any x 6= y

E [Cx,y] = P [Cx,y = 1] =
1

m
.

Suppose now that we have n keys that we wish to hash and we wish to bound the number
of collisions that any key is involved in. Define the random variable Cx to be total number
of keys other than x that collide with x.

Cx =
∑
y,y 6=x Cx,y

E [Cx] =
∑
y,y 6=xE [Cx,y]

E [Cx] ≤ n−1
m [by the union bound]

≤ n
m .

We can similarly bound the total number of collisions across all keys. To this end let C be
the random variable denoting the total number of collisions. Because there are exactly

(
n
2

)
distinct pairs of keys that could collide, we can bound the expectation of C as

C =
∑
x,y,x6=y Cx,y

E [C] =
∑
x,y,x6=y E [Cx,y]

E [C] ≤
(
n
2

)
· 1
m [by the union bound]

E [C] ≤ n2

2m .

Let’s summarize these bounds.

332 CHAPTER 46. FOUNDATIONS

• If the range of the class of the universal hash functions m is large compared to the
number keys n, then we expect a relatively small number of collisions for any key.

• Summed over all keys, the expected number of collisions is a bit larger, but still pro-
portional to the square of the number of keys hashed.

In many cases, it will be sufficient to bound the expected number of collisions per key by a
constant, and thus it is sufficient to consider m = O(n), e.g., m = 2n.

In other cases, it is desirable to reduce the number of collisions further, so that for example,
we have only a few collisions across all keys. This can be achieved by choosing the range
of our functions to be larger, e.g., for m = n2, the expected number of collisions is 1/2.

Exercise 46.6. Consider a universal class of hash function H for some universe U and T ⊆
U be any subset of U . Prove that for any key x ∈ U , the number of keys in T whose hash
value collides with x under a uniformly randomly chosen hash function h ∈ H is constant.

Chapter 47

Hash Tables

This chapter presents a key data structure in computer science, hash tables, and several
different ways of implementing them by using hash functions .

Definition 47.1 (Hash Tables). A hash table is an abstract data type that supports the fol-
lowing operations on key-value pairs, where keys are drawn from a universe (e.g., integers,
strings, records) and accept an equality test (function).

• The createTable function takes as argument an equality function on keys, a hash func-
tion generator that returns a hash function given a natural number that specifies the
size of its range, and an initial size and creates an empty hash table of that given size.

• The insert function takes as argument a hash table and a key-value pair and inserts
the pair into the table.

• The lookup function takes a hash table and a key and returns the value for the key
stored in the hash table if any, or indicates that the key is not found.

• The loadAndSize function takes a hash table and returns the number of key-value
pairs stored in the table and the size of the table.

• The resize function takes a hash table and a new size, usually double or half the
current size, and returns a new hash table that contains the same key-value pairs as
in the original paper, nothing less and nothing more.

Hash tables enable us to maintain a dynamically changing mapping from keys to values.
In this sense, they are a special case of table data type that we have seen in the past. They
differ from tables in several ways.

• Hash tables don’t require the keys to be totally ordered and don’t demand a compar-
ison function on keys. Instead they require the keys to be hashable.

333

334 CHAPTER 47. HASH TABLES

• They support a narrower set of operations that revolve around insertions and dele-
tions.

Design of Hash Tables: Nested and Flat. The main challenge in designing hash tables is
resolving collisions, where two keys hash to the same hash code. There are several well-
studied collision resolution strategies.

• Nested tables: use an outer table to map each hash code to an inner table that con-
tains the key-value pairs that map to that hash code. The inner table can be repre-
sented in several different ways, including as a lists, or as another hash table. If the
inner table is a list, the technique is called “separate chaining.”

• Flat Tables or Open Addressing: Use a single, flat table mapping keys to entries.

Between the two possibilities, the nested tables are more flexible and more amenable to
analysis. The analysis of hash tables typically depends on how “crowded” the table is,
which is quantified by the “load factor.”

Definition 47.2 (Load Factor). For a hash table of size m with n key-value pairs stored in
the table, the load factor, written as α, is defined as

α =
n

m
.

1 Nested Tables

1.1 A Parametric Design

The basic structure of a nested table is naturally recursive: keep an outer table that maps
each key to an inner table, which can be structures as desired. Given a key, we use an outer
hash function to determine the inner table that the key maps to. We then use the inner
table to resolve the collisions. Because the outer hash function maps keys to a prefix of the
natural numbers, the domain of the outer table is natural numbers less than the current
size m. We can thus use an array to represent the outer table and locate the inner table
efficiently with constant work.

Example 47.1. Consider the following table mapping keys to values.

{’aa ’ 7→ ’a ’, ’bb ’ 7→ ’b ’, ’cc ’ 7→ ’b ’, ’dd ’ 7→ ’d ’, ’ee ’ 7→ ’e ’,
’ff ’ 7→ ’f ’, ’gg ’ 7→ ’g ’, ’hh ’ 7→ ’h ’, ’ii ’ 7→ ’i ’, ’jj ’ 7→ ’j ’}.

1. NESTED TABLES 335

Let

h(x) =
(∑

pos(x[i])
)

mod m

be a hash function that maps each string to a hash code by summing up the positions of its
characters in the alphabet (counting from zero) modulo the table size m = 5.

We can use the following nested hash table for our key-value pairs.

{0 7→ {’aa ’ 7→ ’a ’, ’ff ’ 7→ ’f ’},
1 7→ {’dd ’ 7→ ’d ’, ’ii ’ 7→ ’i ’},
2 7→ {’bb ’ 7→ ’b ’, ’gg ’ 7→ ’g ’},
3 7→ {’ee ’ 7→ ’e ’, ’jj ’ 7→ ’j ’},
4 7→ {’cc ’ 7→ ’c ’, ’hh ’ 7→ ’h ’},
}.

Bounding the Size Inner Tables. The key quantity of interest in understanding the effi-
ciency of nested tables is the size of an inner table. Since any inner table stores the key-value
pairs that collide with each other, we can bound the their size in terms of conflicts.

Conflicts can be very high in general but not so if we use universal hash functions. Recall
that we bounded the expected number of conflicts for any key x in terms of the

E [Cx] ≤ n

m
= α.

This means that the size of an inner table in O(1 + α) in expectation.

Thus, if we ensure that the load factor of the table remains a constant by making sure for
example that n ≤ cm, for some constant c, then we know that the size of each inner table is
constant in expectation.

Keeping the Load Factor Small. Because the size of the table m is fixed and n changes,
the load factor can increase as a result of insertions. To keep the load factor from growing,
we can resize the table, by for example doubling it every time the load factor exceeds the
desired bound. The cost of the resize operation can be amortized because doubling ensures
that the new keys pay for the old ones.

Exercise 47.1. Describe how you can implement the hash table interface specified above
by using nested tables. For the inner tables use the Table ADT that you have learned about
earlier but leave out the implementation and thus the costs unspecified.

Exercise 47.2. Does it make sense to reduce the size of the hash table? If so, then under
what conditions and how?

336 CHAPTER 47. HASH TABLES

1.2 Separate Chaining

Definition 47.3 (Separate Chaining). The parametric implementation uses an array to
represent the outer table but does not specify how to implement the inner table.

Perhaps the simplest way to implement the inner table is to use a list representation that
stores at each node one a key-value pairs. Such an implementations is called separate
chaining or simply as chaining.

In separate chaining, insertion proceeds by first locating the inner table, a list, and then
inserting the key-value pair at the head of the list; this requires constant work. Lookups
could proceed by first looking up the list using the hash code of the key being searched,
and then searching for the key from the head of the list using the key equality function;
this requires work linear in the length of the list. Deletions could proceed by first looking
up the key and then deleting it, again requiring work linear in the length of the list.

Example 47.2. Recall the example, where we are given the following table mapping keys
to values.

{’aa ’ 7→ ’a ’, ’bb ’ 7→ ’b ’, ’cc ’ 7→ ’b ’, ’dd ’ 7→ ’d ’, ’ee ’ 7→ ’e ’,
’ff ’ 7→ ’f ’, ’gg ’ 7→ ’g ’, ’hh ’ 7→ ’h ’, ’ii ’ 7→ ’i ’, ’jj ’ 7→ ’j ’}.

Let

h(x) =
(∑

pos(x[i])
)

mod m

be a hash function that maps each string to a hash code by summing up the positions of its
characters in the alphabet (counting from zero) modulo the table size m = 5.

Using chaining, we represent this table as

{0 7→ [(’aa ’, ’a ’), (’ff ’, ’f ’)],
1 7→ [(’dd ’, ’d ’), (’ii ’, ’i ’)],
2 7→ [(’bb ’, ’b ’), (’gg ’, ’g ’)],
3 7→ [(’ee ’, ’e ’), (’jj ’, ’j ’)],
4 7→ [(’cc ’, ’c ’), (’hh ’, ’h ’)]
}.

Cost Analysis of Separate Chaining. As described, insert , delete, and lookup operations
all spend O(1 + α) work traversing the chain. Because the hash function takes constant
work, total expected work for these operations is is O(1 + α). Thus assuming that α is a
constant, the total expected work for these operations is is O(1).

Exercise 47.3. Describe how to implement the resize operation and bound its cost.

1. NESTED TABLES 337

1.3 Perfect Hashing

Nested tables with separate chaining gives us expected constant time bounds on the key
hash table operations. Consider now the special case where we know exactly the set of
keys that we wish to store in the table. In other words, we only wish to perform lookup
operations on a static set of keys.

In this special case, we can achieve worst case work for lookup operations by using a nested
hash table, where the inner table itself is a hash table with chaining. To ensure constant-
work in the worst case, we will make sure that all chains (lists) in the inner table has length
at most one, i.e., they contain a single key-value pair or they are empty. In other words, for
the inner table, we guarantee the absence of collisions.

To this end, we are going to use a result from universal hashing. Recall that for a hash table
with range-size m, the expected number of collisions among n key is

E [C] ≤ n2

2m

and the probability that there is a collision is at most

n2

2m
.

Thus, if we choose m = n2, then we have

E [C] ≤ 1

2

and the probability that there is a collision is at most

1

2
.

This is a lot of space of course and can be unaffordable, but we can imagine applying this
approach to each inner table, because we expect them to be small.

Algorithm 47.4 (Perfect Hashing). We are given n key-value pairs that we wish to store in
a hash table. We can construct a perfect hash table for the set of key-value pairs as follows.

• Choose a uniformly random hash function h from a universal hash family with a
range of n, the total number of key-value pairs that we wish to store.

• Use h for the outer table and determine the key-value pairs for each inner table Ti,
0 ≤ i < n. Let ni be the number of key-value pairs in the inner table.

• For each inner table Ti with ni key-value pairs, select a hash function whose range is
n2
i from a universal hash family. Check that the hash function guarantees absence of

collisions for the keys in Ti. If there are collisions, choose another hash function. Step
when a hash function hi that guarantees the absence of collisions is found.

338 CHAPTER 47. HASH TABLES

• Represent each inner table Ti by using a hash table with chaining and the hash func-
tion hi that guarantees absence of collisions.

Example 47.3. Consider the following table mapping keys to values with n = 10 key-value
pairs.

{’aa ’ 7→ ’a ’, ’bb ’ 7→ ’b ’, ’cc ’ 7→ ’b ’, ’dd ’ 7→ ’d ’, ’ee ’ 7→ ’e ’,
’ff ’ 7→ ’f ’, ’gg ’ 7→ ’g ’, ’hh ’ 7→ ’h ’, ’ii ’ 7→ ’i ’, ’jj ’ 7→ ’j ’}.

Let

h(x) =
(∑

pos(x[i])
)

mod m

be a hash function that maps each string to a hash code by summing up the positions of its
characters in the alphabet (counting from zero) modulo the table size m.

In perfect hashing we select m = n, thus m = 10. First, we build the outer table, determin-
ing for each hash-code the key-value pairs that map to that hash code. This gives us the
following hash table.

{0 7→ {’aa ’ 7→ ’a ’, ’ff ’ 7→ ’f ’},
1 7→ {},
2 7→ {’bb ’ 7→ ’b ’, ’gg ’ 7→ ’g ’},
3 7→ {},
4 7→ {’cc ’ 7→ ’c ’, ’hh ’ 7→ ’h ’},
5 7→ {},
6 7→ {’dd ’ 7→ ’d ’, ’ii ’ 7→ ’i ’},
7 7→ {},
8 7→ {’ee ’ 7→ ’e ’, ’jj ’ 7→ ’j ’},
9 7→ {}
}.

Next, we select for each inner table a new hash function uniformly at random from our
class of universal functions. In our case, we can select hash functions of the form Let

hi(x) =
(∑

pos(a · x[i])
)

mod mi,

where mi is the size of the ith inner hash table and 0 ≤ a < mi. Recall that mi’s are square
of the number of key-value pairs in that table. In our case, we havem0 = m2 = m4 = m6 =
m8 = 4 and m1 = m3 = m5 = m7 = m8 = 0.

1. NESTED TABLES 339

For simplicity, we shall choose the following hash function for all inner tables.

hi(x) =
(∑

pos(x[i])
)

mod 4

This gives us the perfect hashing for each inner table.

{0 7→ {0 7→ [’aa ’ 7→ ’a ’], 2 7→ [’ff ’ 7→ ’f ’]},
1 7→ {},
2 7→ {0 7→ [’gg ’ 7→ ’g ’], 2 7→ [’bb ’ 7→ ’b ’]},
3 7→ {}
4 7→ {0 7→ [’cc ’ 7→ ’c ’], 2 7→ [’hh ’ 7→ ’h ’]},
5 7→ {},
6 7→ {0 7→ [’ii ’ 7→ ’i ’], 2 7→ [’dd ’ 7→ ’d ’]},
7 7→ {},
8 7→ {0 7→ [’ee ’ 7→ ’e ’], 2 7→ [’jj ’ 7→ ’j ’]},
9 7→ {},
}.

Analysis of Perfect Hashing. By construction, perfect hashing guarantees the absence of
collisions in the inner table, it therefore supports O(1) lookup time.

Perhaps the most interesting quantity that we are interested in is the size of the hash table,
including of course the outer and the inner tables. We prove that this is linear, i.e., O(n),
in expectation when storing n key-value pairs. To establish this bound we need to sum up
the sizes of all inner tables, each of which is quadratic in the number of key-value pairs
that it stores. To this end, imagine the complete directed graph with n vertices, where each
vertex represents a key-value pair stored and each distinct pair of vertices is connected by
two edges, one in each direction, and each vertex has one self-loop. Observe now that the
total space of the inner tables corresponds exactly to the number edges between vertices
that are within the same inner table. Next observe that the two endpoints of an edge are
within the same inner table if the outer hash code of the corresponding keys collide. In
other words, the number of such edges is two times the total number of collisions, plus
n to account for the self loops. Because we use universal hashing, we know that the total
expected number of collisions in the outer hash table is n2

2m , wherem is the size of the range
of the hash function. Since we know that m = n, the bound on the expected space usage is

2
n2

2n
+ n = 2n.

Exercise 47.4. What is the probability that a perfect hash table uses more than 2n, say 16n
space?

Exercise 47.5. Analyze the work required to construct a hash table for n key-value pairs.

340 CHAPTER 47. HASH TABLES

2 Flat Tables or Open Addressing

When using flat tables, we store all key-value pairs in a single table that maps keys to key-
value pairs. We minimize the impact of collisions by keeping the load factor of the table
low. Because the table is flat, however, keys that map to the same hash-code can interact
in interesting ways, e.g., when two keys collide and map to the same hash code, only one
could be mapped by the hash code. We therefore have to be careful about dealing with
collisions.

The basic idea behind flat hash tables is to perform a sequence of “probes” until a suitable
position in the hash table is found. More precisely, consider a hash table of sizem. To insert
a key-value pair into the table, we repeatedly probe the table in different position until we
find an available position and claim that position. We refer to the sequence of probes as
a probe sequence, and for correctness require it to try out all positions in the table. As we
shall see, probe sequences can be generated in several different ways.

Definition 47.5 (Probe Sequence). For a hash table of with m entries, a probe sequence is a
permutation of N< m = {0, 1, . . . ,m− 1}.

2.1 A Parametric Implementation of Flat Tables

Data Structure 47.6 (Parametric Flat Hash Tables). We present an implementation of open
addressing by assuming that for the current hash function of size m, we have m hash
function

ho(x), h1(x), . . . , hm−1(x)

that generate the probe sequence for any key x.

To specify the implementation, we assume that we are given the types for keys and values,
key and value respectively. We also assume the existence of a function eqKey for checking
that two keys are equal.

We define the type of a hash table as

type entry = Empty
| Dead
| Live of key × value

type hashTable = entry array

The first variant Empty of entry indicates an empty entry, the second Dead indicates that
the entry has been deleted, and the third indicates that the entry is live and has the given
key and value.

Keeping track of deleted entries enables the implementation to find a key when its probe
sequence interleaves with the probe sequence of another key, which may later be deleted.

2. FLAT TABLES OR OPEN ADDRESSING 341

1 lookup (T, k) =
2 let
3 lookup′ i =
4 case T [hi(k)] of
5 Empty ⇒ None
6 | Dead ⇒ lookup′ (i+ 1)
7 | Live(k′, v′)⇒
8 if keyEqual(k, k′) then Some v
9 else lookup′ (i+ 1)
10 in lookup′ 0 end

The insert function is very similar to lookup but it updates the table with the given key-
value pair. For simplicity, we assume that key is not in the table, which can be checked by
using a lookup first.

1 insert (T, k, v) =
2 let
3 insert ′ i =
4 case T [hi(k)] of
5 Empty ⇒ update(T, hi(k),Live(k, v))
6 | Dead ⇒ update(T, hi(k),Live(k, v))
7 | Live(k′, v′)⇒
8 if keyEqual(k, k′) then ()
9 else insert ′ (i+ 1)
10 in insert ′ 0 end

The delete function is similar. For simplicity, we assume that the key is indeed in the table;
this can be checked by performing a lookup first.

1 delete (T, k) =
2 let
3 delete ′ i =
4 case T [hi(k)] of
5 Empty ⇒ ()
6 | Dead ⇒ delete(i+ 1)
7 | Live(k′, v′)⇒
8 if keyEqual(k, k′) then update (T, k,Dead)
9 else delete ′ (i+ 1)
10 in delete ′ 0 end

Example 47.4. Let T be the following table

0 1 2 3 4 5 6 7
B D E A F

342 CHAPTER 47. HASH TABLES

if key E has the probe sequence

〈 7, 4, 2, · · · 〉 ,

lookup(T,E) would first visit position 7, which is full, and then position 4 where it finds E.

Example 47.5. Let T be the following table, where * indicates a deleted entry.

0 1 2 3 4 5 6 7
B D * A F

if key D has the probe sequence

〈 7, 4, 3, · · · 〉 ,

lookup(T,E) would first visit position 7, which is full, and then position 4, which is deleted,
and then position 3, where it finds D.

Example 47.6. Suppose the hash table has the following keys:

0 1 2 3 4 5 6 7
B E A F

Now if for a key D we had the probe sequence 〈 1, 5, 3, · · · 〉, then we would find position 1
and 5 full (with B and E) and place D in position 3 giving:

0 1 2 3 4 5 6 7
B D E A F

Cost Analysis of Flat Tables. The cost analysis of flat tables becomes tricky because of
the impact of deleted keys and the interaction between keys that collide. Here we present
an informal analysis for a table of size m with n stored key-value pairs, where n ≤ m, and
thus the load factor α ≤ 1. We make several assumptions.

• We assume that the probe sequence executed by an operation is a uniformly ran-
domly chosen permutation of 0, . . . ,m− 1.

• We assume simple uniform hashing, which postulates that each key is given a uni-
formly randomly chosen hash-code independently of all the others.

• We assume that there are no deletions, and thus the table entries are either empty or
occupied but not marked deleted or dead.

Under these assumptions, let’s first bound the number of probes needed until we find an
empty cell in the hash table. This is a Bernoulli trial with a success probability of 1 − α.
Therefore, the expected number of trials is 1

1−α .

2. FLAT TABLES OR OPEN ADDRESSING 343

This means that an insertion and an unsuccessful lookup will require 1
1−α work in expec-

tation.

For a successful lookup, consider some key x that is the ith key to be inserted into the
table. To insert the key, we first find an empty cell, which requires 1

1−i/m = m
m−i , because

the load factor for the table is i/m. Now, observe that the probe sequence for a key is
always deterministic. Thus a successful search will repeat the same probe sequence as the
insertion and find the key. Thus, we the successful search for the ith key requires m

m−i work
in expectation.

We can write the average expected cost over all keys as

1

n

n∑
i=0

m

m− i
.

This is bounded by

1

α

(
ln

1

1− α

)
because

1
n

∑n
i=0

m
m−i = m

n

(∑m
i=0

1
i −

∑m−n
i=0

1
i

)
= m

n (Hm −Hm−n)

≤ m
n

(
ln m

m−n

)
≤ 1

α

(
ln 1

1−α

)
.

(The bound on Hm −Hm−n can be obtained by using integration.)

Exercise 47.6. Show that the parametric implementation of the flat hash table above can
be implemented by using just a single higher-order function, which in turn can be used to
implement lookup, insert , and delete .

Exercise 47.7. Complete the implementation of the parametric flat hash table by describing
the algorithms and writing the pseudo-code for the remaining operations, e.g., resize.

2.2 Linear Probing

Definition 47.7 (Linear Probing). Linear probing is a flat table implementation, where the
probe sequence is defined by m hash function of the form

hi(k) = (h(k) + i) mod m.

Each position in the table determines a single probe sequence, so there are only m possible
probe sequences.

344 CHAPTER 47. HASH TABLES

Primary Clustering. The problem with linear probing is that keys tend to cluster. It suf-
fers from primary clustering: Any key that hashes to any position in a cluster (not just
collisions), must probe beyond the cluster and adds to the cluster size. Worse yet, primary
clustering not only makes the probe sequence longer, it also makes it more likely that it will
be lengthen further.

What is the impact of clustering for an unsuccessful search? Let’s consider two extreme
examples when the table is half full, α = 1/2 (or equivalently, m = 2n). Clustering is mini-
mized when every other location in the table is empty. In this case, the average number of
probes needed to insert a new key k is 3/2: One probe to check cell h(k), and with prob-
ability 1/2 that cell is full and it needs to look at the next location which, by construction,
must be empty. In the worst case, all the keys are clustered, let’s say at the end of the table.
If k hashes to any of the first n locations, only one probe is needed. But hashing to the
nth location would require probing all n full locations before finally wrapping around to
find an empty location. Similarly, hashing to the second full cell, requires probing (n − 1)
full cells plus the first empty cell, and so forth. Thus, under uniform hashing the average
number of probes needed to insert a key would be

1 + [n+ (n− 1) + (n− 2) ++ 1]/m = 1 + n(n+ 1)/2m ≈ n/4

Even though the average cluster length is 2, the cost for an unsuccessful search is n/4. In
general, each cluster j of length nj contributes nj(nj + 1)/2 towards the total number of
probes for all keys. Its contribution to the average is proportional the square of the length
of the cluster, making long cluster costly.

Remark. Although it can perform poorly in the worst case, linear probing is known to be
quite competitive, when the load factors are in the range 30-70% as clusters tend to stay
small. In addition, a few extra probes is mitigated when sequential access is much faster
than random access, as in the case of caching. Because of primary clustering, though, it is
sensitive to quality of the hash function or the particular mix of keys that result in many
collisions or clumping. Therefore, it may not be a good choice for general purpose hash
tables.

2.3 Quadratic Probing

Definition 47.8 (Quadratic Probing). Quadratic probing is a flat-table implementation,
where the probe sequence cause probes to move away from clusters, by making increasing
larger jumps. The probe sequence is defined by functions

hi(k) = (h(k) + i2) mod m.

Definition 47.9 (Secondary Clustering). Although, quadratic probing avoids primary clus-
tering, it still has secondary clustering: when two keys hash to the same location, they have
the same probe sequence. Since there are only m locations in the table, there are only m
possible probe sequences.

2. FLAT TABLES OR OPEN ADDRESSING 345

One problem with quadratic probing is that probe sequences do not probe all locations in
the table. But since there are (p+1)/2 quadratic residues when p is prime, we can guarantee
that an empty cell can be found unless the table is crowded.

Lemma 47.1. If m is prime and the table is at least half empty, then quadratic probing will
always find an empty location. Furthermore, no locations are checked twice.

Proof. Consider two probe locations h(k) + i2 and h(k) + j2, 0 ≤ i, j < dm/2e. Suppose the
locations are the same but i 6= j. Then

h(k) + i2 ≡ (h(k) + j2) mod m

i2 ≡ j2 mod m

i2 − j2 ≡ 0 mod m

(i− j)(i+ j) ≡ 0 mod m

Therefore, since m is prime either i− j or i+ j are divisible by m. But since both i− j and
i+ j are less than m, they cannot be divisible by m. This is a contradiction.

Thus the first dm/2e probes are distinct and guaranteed to find an empty location.

Linear versus Quadratic Probing. Compared to linear probing, computing the next probe
in quadratic probing is only slightly more expensive, because it can be computed without
using multiplication:

hi − hi−1 ≡ (i2 − (i− 1)2) mod m

hi ≡ (hi−1 + 2i− 1) mod m.

Unfortunately, requiring that the table remains less than half full makes quadratic probing
space inefficient.

2.4 Double Hashing

Definition 47.10. Double hashing is a flat-table implementation that uses two hash func-
tions h(·) and hh(·), one to find the initial location to place the key and a second to deter-
mine the size of the jumps in the probe sequence. The probe sequence is defined by hash
functions of the form

hi(k) = (h(k) + i · hh(k)) mod m.

Keys that hash to the same location, are likely to hash to a different jump size, and so
will have different probe sequences. Thus, double hashing avoids secondary clustering by
providing as many as m2 probe sequences.

How do we ensure every location is checked? Since each successive probe is offset by
hh(k), every cell is probed if hh(k) is relatively prime to m. Two possible ways to ensure

346 CHAPTER 47. HASH TABLES

hh(k) is relatively prime tom are, either makem = 2k and design hh(k) so it is always odd,
or make m prime and ensure hh(k) < m. Of course, hh(k) cannot equal zero.

The main advantage with double hashing is that it allows for smaller tables (higher load
factors) than linear or quadratic probing, but at the expense of higher costs to compute the
next probe. The higher cost of computing the next probe may be preferable to longer probe
sequences, especially when testing two keys equal is expensive.

3 Concluding Remarks

Hash functions are a very important technique in computer science that is used in a very
broad array of applications. Although their development was intertwined with that of
hash tables in the initial years of computer science, recent developments in hash functions
are primarily driven by security, privacy, and error detection and correction.

Hash tables are classic data structures that are broadly employed in many real-world sys-
tems. They are a classic example of a space-time tradeoff: increase the space so table oper-
ations are faster; decrease the space but table operations are slower.

Of the different methods for implementing hash table, nested tables and separate chaining
are perhaps the simplest and are less sensitive to the quality of the hash function or load
factors. They are therefore usually the choice when it is unknown how many and how
frequently keys may be inserted or deleted from the hash table.

Flat tables and open addressing can be more space efficient than nested tables, though the
space efficiency of nested tables can also improved by using blocking techniques. Linear
probing has the advantage that it has small constants and works well with modern ar-
chitectures due to better locality (the memory locations accessed are typically on the same
cache line). But it suffers from primary clustering , which means its performance is sensi-
tive to collisions and to high load factors.

Quadratic probing , on the other hand, avoids primary clustering, but still suffers from
secondary clustering , and requires rehashing as soon as the load factor reaches 50%.

Double hashing reduces clustering and thus makes high load factors feasible, but find-
ing suitable pairs of hash functions is somewhat more difficult and increases the cost of a
probe.

Part XIII

Dynamic Programming

347

Chapter 48

Introduction

Dynamic programming is an inductive algorithm-design technique. Similar to divide-and-
conquer, it solves larger instances of a problem in terms of smaller ones. The main dif-
ference is that many of the smaller instances are shared among recursive calls, making it
worthwhile to save the partial solutions so they can be reused. Dynamic programming
is usually inherently parallel, but taking advantage of the parallelism is a bit more tricky
because the sharing of solutions need to be properly coordinated.

Origins of “Dynamic Programming”. Unlike many of the other algorithmic techniques,
the name “dynamic programming” sheds little light on how the technique works. We could
blame the bad name on the person who invented the idea, Richard Bellman. However, as
the following quote from Bellman indicates, it has more to do with the US government dur-
ing the McCarthy years, 1950-1957, an era when many people where jailed for expressing
their constitutional rights of free speech.

“An interesting question is, ’Where did the name, dynamic programming, come
from?’ The 1950s were not good years for mathematical research. We had a very
interesting gentleman in Washington named Wilson. He was Secretary of De-
fense, and he actually had a pathological fear and hatred of the word, research.
I’m not using the term lightly; I’m using it precisely. His face would suffuse,
he would turn red, and he would get violent if people used the term, research,
in his presence. You can imagine how he felt, then, about the term, mathemati-
cal. The RAND Corporation was employed by the Air Force, and the Air Force
had Wilson as its boss, essentially. Hence, I felt I had to do something to shield
Wilson and the Air Force from the fact that I was really doing mathematics in-
side the RAND Corporation. What title, what name, could I choose? In the
first place I was interested in planning, in decision making, in thinking. But
planning, is not a good word for various reasons. I decided therefore to use the
word, ‘programming.’ I wanted to get across the idea that this was dynamic,

348

349

this was multistage, this was time-varying—I thought, let’s kill two birds with
one stone. Let’s take a word that has an absolutely precise meaning, namely dy-
namic, in the classical physical sense. It also has a very interesting property as
an adjective, and that is it’s impossible to use the word, dynamic, in a pejorative
sense. Try thinking of some combination that will possibly give it a pejorative
meaning. It’s impossible. This, I thought dynamic programming was a good
name. It was something not even a Congressman could object to. So I used it
as an umbrella for my activities”.

Richard Bellman (“Eye of the Hurricane: An autobiography”, World Scientific,
1984)

The Bellman-Ford shortest path algorithm covered in Bellman-Ford Chapter is named
after Richard Bellman and Lester Ford. That algorithm is a dynamic-programming algo-
rithm, when looked at the right way.

It is all about sharing. When using divide-and-conquer, we reduce the problem instance
that we want to solve into multiple smaller instances and assume that the smaller instances
are solved recursively and independently. When calculating total work, we therefore add
up the work from each recursive call. In some cases, the smaller instances are simply not
independent, because solving two instances may both involve solving a smaller shared
instance. For example, two instances of size k may both need the solution to the same
instance of size j < k. The idea behind dynamic programming is to take advantage of
such “sharing” and instead of solving the smaller instance twice, to solve it once and share
the result, effectively re-using the result as needed. In general such sharing can make
significant, as much as exponential, improvement in work.

Example 48.1. Two smaller instance of the problem (function call) foo being shared by two
larger instances.

Although sharing the results in this example makes at most a factor of two difference in
work, in general sharing the results can make an exponential difference in the work per-
formed.

Example 48.2. Consider the following algorithm for calculating the Fibonacci numbers.

fib(n) =
if (n ≤ 1) then 1
else fib(n− 1) + fib(n− 2)

350 CHAPTER 48. INTRODUCTION

This recursive algorithm takes exponential work in n as indicated by the recursion tree
below on the left for fib(5). If the results from the instances are shared, however, then the
algorithm only requires linear work, as illustrated below on the right.

Here many of the calls to fib are reused by two other calls. Note that the root of the tree or
DAG is the problem we are trying to solve, and the leaves of the tree or DAG are the base
cases.

Representing Sharing with DAGs. With divide-and-conquer the composition of a prob-
lem instance in terms of smaller instances is typically described as a tree, and in particular
the so called recursion tree. With dynamic programming, to account for sharing, the com-
position can instead be viewed as a Directed Acyclic Graph (DAG). Each vertex in the DAG
corresponds to a problem instance and each edge goes from an instance of size j to one of
size k > j—i.e. each directed edge (arc) is directed from a smaller instances to a larger
instance that uses it. The edges therefore represent dependencies between the source and
destination (i.e. the source has to be calculated before the destination can be). The leaves
of this DAG (i.e. vertices with no in-edges) are the base cases of our induction (instances
that can be solved directly), and the root of the DAG (the vertex with no out-edges) is the
instance we are trying to solve. More generally we might actually have multiple roots if
we want to solve multiple instances.

Work and Span. Abstractly dynamic programming can therefore be best viewed as eval-
uating a DAG by propagating values from the leaves (in degree zero) to the root (out de-
gree zero) and performing some calculation at each vertex based on the values of its in-
neighbors. Based on this view, calculating the work and span of a dynamic program is
relatively straightforward. We can associate with each vertex a work and span required for
that vertex. We then have

351

• The work of a dynamic program viewed as a DAG is the sum of the work of the
vertices of that DAG, and

• the span of a dynamic program viewed as a DAG is the heaviest vertex-weighted path
in the DAG—i.e., the weight of each path is the sum of the spans of the vertices along
it.

Whether a dynamic programming algorithm has much parallelism (work over span) will
depend on the particular DAG. As usual the parallelism is defined as the work divided
by the span. If this is large, and grows asymptotically, then the algorithm has significant
parallelism. Most dynamic programs have significant parallelism but some do not.

Example 48.3. Consider the following DAG:

where we have written the work and span on each vertex. This DAG does 5 + 11 + 3 + 2 +
4 + 1 = 26 units of work and has a span of 1 + 2 + 3 + 1 = 7.

The challenging part of developing a dynamic programming algorithm for a problem is in
determining what DAG to use. The best way to do this is to think inductively: how can we
solve an instance of a problem by composing the solutions to smaller instances? After we
formulate an inductive solution, we then think about whether the solutions can be shared
and how much savings can be achieved by sharing. As with all algorithmic techniques,
being able to come up with solutions takes practice.

Definition 48.1 (Optimization and Decision Problem). Most problems that can be tack-
led with dynamic programming are optimization or decision problems. An optimization
problem requires finding a solution that optimizes some criteria (e.g., finding a shortest
path, or finding the longest contiguous subsequence sum).

Sometimes we want to enumerate (list) all optimal solutions, or count the number of such
solutions. A decision problem is one in which we are trying to find if a solution to a
problem exists. Again we might want to count or enumerate the valid solutions.

352 CHAPTER 48. INTRODUCTION

When solving an optimization or an enumeration problem, we usually solve many smaller
instances of the same problem and therefore may improve total work by sharing common
solutions via dynamic programming.

Coding Dynamic Programs. Although dynamic programming can be viewed abstractly
as a DAG, in practice we need to implement (code) the dynamic program. There are two
common ways to do this, which are referred to as the top-down and bottom-up approaches.
The top-down approach starts at the root(s) of the DAG and uses recursion, as in divide-
and-conquer, but remembers solutions to subproblems so that when the algorithm needs
to solve the same instance many times, only the first call does the work and the remaining
calls just look up the solution. Storing solutions for reuse is called memoization. The bottom-
up approach starts at the leaves of the DAG and typically processes the DAG in some form
of level order traversal—for example, by processing all problems of size 1 and then 2 and
then 3, and so on.

Each approach has its advantages and disadvantages. Using the top-down approach (re-
cursion with memoization) can be quite elegant and can be more efficient in certain situa-
tions by evaluating only those instances actually needed. The bottom up approach (level
order traversal of the DAG) can be easier to parallelize and can be more space efficient,
but always requires evaluating all instances. There is also a third technique for solving
dynamic programs that works for certain problems, which is to find the shortest path in
the DAG where the weighs on edges are defined in some problem specific way.

Summary. In summary the approach to coming up with a dynamic programming solu-
tion to a problem is as follows.

1. Is it a decision or optimization problem?

2. Define a solution recursively (inductively) by composing the solution to smaller prob-
lems.

3. Identify any sharing in the recursive calls, i.e. calls that use the same arguments.

4. Model the sharing as a DAG, and calculate the work and span of the computation
based on the DAG.

5. Decide on an implementation strategy: either bottom up top down, or possibly short-
est paths.

It is important to remember to first formulate the problem abstractly in terms of the inductive struc-
ture, then think about it in terms of how substructure is shared in a DAG, and only then worry
about coding strategies.

Remark (Problems with Efficient Dynamic Programming Solutions). There are many prob-
lems with efficient dynamic programming solutions. Here we list just some of them.

353

1. Fibonacci numbers

2. Using only addition compute (n choose k) in O(nk) work

3. Edit distance between two strings

4. Edit distance between multiple strings

5. Longest common subsequence

6. Maximum weight common subsequence

7. Can two strings S1 and S2 be interleaved into S3

8. Longest palindrome

9. longest increasing subsequence

10. Sequence alignment for genome or protein sequences

11. Subset sum

12. Knapsack problem (with and without repetitions)

13. Weighted interval scheduling

14. Line breaking in paragraphs

15. Break text into words when all the spaces have been removed

16. Chain matrix product

17. Maximum value for parenthesizing x1/x2/x3.../xn for positive rational numbers

18. Cutting a string at given locations to minimize cost (costs n to make cut)

19. All shortest paths

20. Find maximum independent set in trees

21. Smallest vertex cover on a tree

22. Optimal BST

23. Probability of generating exactly k heads with n biased coin tosses

24. Triangulate a convex polygon while minimizing the length of the added edges

25. Cutting squares of given sizes out of a grid

26. Change making

27. Box stacking

28. Segmented least squares problem

29. Counting Boolean parenthesization – true, false, or, and, xor, count how many paren-
thesization return true

30. Balanced partition – given a set of integers up to k, determine most balanced two
way partition

31. Largest common subtree

Chapter 49

Two Problems

In this chapter we cover two problems that are well suited for dynamic programming so-
lutions: subsets sums, and minimum edit distance.

1 Subset Sums

The first problem we cover in this chapter is a decision problem, the subset sum problem.
It takes as input a multiset of numbers, i.e. a set that allows duplicate elements, and sees if
any subset sums to a target value. More formally:

Definition 49.1 (Subset Sum (SS) Problem). The subset sum (SS) problem is, given a multiset
of positive integers S and a positive integer value k, determine if there is any X ⊆ S such
that

∑
x∈X x = k.

Example 49.1. SS ({1, 4, 2, 9}, 8) returns false since there is no subset of 1, 4, 2, and 9 that
adds up to 8. However, SS ({1, 4, 2, 9}, 12) returns true since 1 + 2 + 9 = 12.

Hardness of the SS Problem. In the general case when k is unconstrained, then SS prob-
lem is a classic NP-hard problem. However, our goal here is more modest. We are going
to consider the case where we include the value of k in the work bounds as a variable.
We show that as long as k is polynomial in |S| then the work is also polynomial in |S|.
Solutions of this form are often called pseudo-polynomial work (or time) solutions.

The SS problem can be solved using brute force by simply considering all possible subsets.
This takes exponential work since there are an 2|S| subsets. For a more efficient solution,
one should consider an inductive solution to the problem. As greedy algorithms tend to
be efficient, you should first consider some form of greedy method that greedily takes
elements from S. Unfortunately the greedy method does not work. The problem is that

354

1. SUBSET SUMS 355

in general there is no way to know for a particular element whether to include it or not.
Greedily adding it could be a mistake, and recall that in greedy algorithms once you make
a choice you cannot go back and undo your choice.

Since we do not know whether to add an element or not, we could try both cases, i.e.
finding a sum with and without that element. This leads to a divide-and-conquer approach
for solving SS(S, k) in which we pick one element a out of the set S (any will do), and then
make two recursive calls, one with a included in X (the elements of S that sum to k) and
one without a. For the call in which we include a we need to subtract the value a from k
and in the other case we leave k as is. Here is an algorithm based on this idea. It assumes
the input is given as a list (the order of the elements of S in the list does not matter):

Algorithm 49.2 (Recursive Subset Sum).

SS (S, k) =
case (S, k) of
(, 0)⇒ true
| (Nil ,)⇒ false
| (Cons(a,R),)⇒
if (a > k) then SS (R, k)
else (SS (R, k − a) or SS (R, k))

The first two cases are the base cases. In particular if k = 0 then the result is true since the
empty set sums to zero, and the empty set is a subset of any set. If k 6= 0 and S is empty,
then the result is false since there is no way to get k from an empty set. If S is not empty but
its first element a is greater than k, then we clearly can not add a to X , and we need only
make one recursive call. The last line is the main inductive case where we either include a
or not. In both cases we remove a from S in the recursive call to SS , and therefore use R.
In the left case we are including a in the set so we have to subtract its value from k. In the
right case we are not, so k remains the same. The algorithm is correct by induction—the
base cases are correct, and inductively we assume the subproblems are correct and then
note that those are the only two possibilities.

The recursive algorithm for the SS problem leads to a binary recursion tree that might be
n = |S| deep. In this tree, there are 2n leaves and each path from root to the leaf represent a
subset. This implies that the work of the algorithm could be O(2n), which is large. We can
improve work by observing that there is a large amount of sharing of subproblems.

Example 49.2. Consider SS ({1, 1, 1} , 3). This clearly should return true because 1+1+1 =
3. The recursion tree is as follows.

356 CHAPTER 49. TWO PROBLEMS

There are many calls to SS in this tree with the same arguments. In the bottom row, for
example there are three calls each to SS (∅, 1) and SS (∅, 2). If we coalesce the common calls
we get the following DAG:

Improving Work by Sharing. The question is how do we calculate how much sharing
there is, or more specifically how many distinct subproblems are there in. For an initial
instance ss(S, k) there are only |S| distinct lists that are ever used (each suffix of S). Fur-
thermore, the value of the second argument in the recursive calls only decreases and never
goes below 0, so it can take on at most k + 1 values. Therefore the total number of possible
instances of SS (vertices in the DAG) is |S|(k + 1) = O(k|S|).

To calculate the overall work we need to sum the work over all the vertices of the DAG.
However, each vertex only needs to do some constant number of operations (a comparison,
a subtract, a logical or, and a few branches). Therefore each node does constant work and
we have that the overall work is:

W (SS (S, k)) = O(k|S|)

To calculate the span we need know the heaviest path in the DAG. Again the span of each
vertex is constant, so we only need to count the number of nodes in a path. The length
of the longest path is at most |S| since on each level we remove one element from the set.
Therefore we have:

S(SS (S, k)) = O(|S|)

and together this tells us that the parallelism is O(W/S) = O(k).

2. MINIMUM EDIT DISTANCE 357

At this point we have not fully specified the algorithm since we have not explained how to
take advantage of the sharing—certainly the recursive code we wrote would not. We will
get back to this after one more example. Again we want to emphasize that the first two
orders of business are to figure out the inductive structure and figure out what instances
can be shared.

To make it easier to determine an upper bound on the number of subproblems in a DP DAG
it can be convenient to replace any sequences (or lists) in the argument to the recursive
function with an integer indicating our current position in the input sequence(s). For the
subset sum problem this leads to the following variant of our previous algorithm:

Algorithm 49.3 (Recursive Subset Sum (Indexed)).

SS (S, k) =
let SS ′(i, j) =
case (i, j) of
(, 0)⇒ true
| (0,)⇒ false
| ⇒
if (S[i− 1] > j) then SS ′(i− 1, j)
else (SS ′(i− 1, j − S[i− 1]) or SS ′(i− 1, j))

in SS ′(|S|, k) end

In the algorithm the i − 1 represents the element we are currently considering. We start
with i = |S| and when i = 0 we are done (the algorithm reaches the base case). As we
will see later this has a second important advantage—it makes it easier for a program to
recognize when arguments are equal so they can be reused.

Remark. Why do we say the SS algorithm we described is pseudo-polynomial? The size of
the subset sum problem is defined to be the number of bits needed to represent the input.
Therefore, the input size of k is log k. But the work is O(2log k|S|), which is exponential
in the input size. That is, the complexity of the algorithm is measured with respect to the
length of the input (in terms of bits) and not on the numeric value of the input. If the value
of k, however, is constrained to be a polynomial in |S| (i.e., k ≤ |S|c for some constant c)
then the work is O(k|S|) = O(|S|c+1) on input of size c log |S| + |S|, and the algorithm is
polynomial in the length of the input.

2 Minimum Edit Distance

The second problem we consider is a optimization problem, the minimum edit distance
problem.

Definition 49.4 (Minimum Edit Distance (MED) Problem). The minimum edit distance
problem or MED problem for short is, given a character set Σ and two sequences of char-
acters S = Σ∗ and T = Σ∗, determine the minimum number of insertions and deletions of
single characters required to transform S to T .

358 CHAPTER 49. TWO PROBLEMS

Example 49.3. Consider the sequence

S = 〈A,B,C,A,D,A 〉

we could transform it to

T = 〈A,B,A,D,C 〉

with 3 edits (delete the C in the middle, delete the last A, and insert a C at the end). This is
the best that can be done so we have that MED(S, T) = 3.

Applications of MED. Finding the minimum edit distance is an important problem that
has many applications. For example in version control systems such as git or svn when
you update a file and commit it, the system does not store the new version but instead
only stores the “differences” from the previous version. (Alternatively it might store the
new version, but use the differences to encode the old version.) Storing the differences
can be quite space efficient since often the user is only making small changes and it would
be wasteful to store the whole file. Variants of the minimum edit distance problem are
use to find this difference. Edit distance can also be used to reduce communication costs
by only communicating the differences from a previous version. It turns out that edit-
distance is also closely related to approximate matching of genome sequences. In many of
these applications it useful to know in addition to the minimum number of edits, the actual
edits. It is easy to extend the approach in this section for this purpose, but we leave it as an
exercise.
Remark. The algorithm used in the Unix “diff” utility was invented and implemented by
Eugene Myers, who also was one of the key people involved in the decoding of the human
genome at Celera.

Greedy Algorithm. To solve the MED problem we might consider trying a greedy method
that scans the sequences finding the first difference, fixing it and then moving on. Unfor-
tunately no simple greedy method is known to work. The difficulty is that there are two
ways to fix the error—we can either delete the offending character, or insert a new one. If
we greedily pick the wrong edit, we might not end up with an optimal solution. Note that
this is similar to the subset sum problem where we did not know whether to include an
element or not.

Example 49.4. Consider the sequences

S = 〈A,B,C,A,D,A 〉

and

T = 〈A,B,A,D,C 〉 .

We can match the initial characters A − A and B − B but when we come to C − A in S
and T , we have two choices for editing C, delete C or insert A. However, we do not know
which leads to an optimal solution because we don’t know the rest of the sequences. In the
example, if we insert an A, then a suboptimal number of edits will be required.

2. MINIMUM EDIT DISTANCE 359

As with the subset sum problem, since we cannot decide which choice to make (in this
case deleting or inserting), why not try both. This again leads to a recursive solution. In
the solution we can start at either end of the string, and go along matching characters, and
whenever two characters do not match, we try both a deletion and an insertion, recurse on
the rest of the string, and pick the best of the two choices. This idea leads to the following
algorithm (S and T are given as lists, and we start from the front).

Algorithm 49.5 (Recursive MED).

MED(S, T) =
case (S, T) of

(, Nil)⇒ |S|
| (Nil,)⇒ |T |
| (Cons(s, S′), Cons(t, T ′))⇒

if (s = t) then MED(S′, T ′)
else 1 + min(MED(S, T ′),MED(S′, T))

In the first base case where T is empty we need to delete all of S to generate an empty
string requiring |S| deletions. In the second base case where S is empty we need to insert
all of T , requiring |T | insertions. If neither is empty we compare the first character of each
string, s and t. If these characters are equal we can just skip them and make a recursive
call on the rest of the sequences. If they are different then we need to consider the two
cases. The first case (MED(S, T ′)) corresponds to inserting the value t. We pay one edit
for the insertion and then need to match up S (which all remains) with the tail of T (we
have already matched up the head t with the character we inserted). The second case
(MED(S′, T)) corresponds to deleting the value s. We pay one edit for the deletion and
then need to match up the tail of S (the head has been deleted) with all of T .

The recursive algorithm for MED performs exponential work. In particular the recursion
tree is a full binary tree (each internal node has two children) and has a depth that is linear
in the size of S and T . Observe, however, that there are many calls to MED with the same
arguments. We thus view the computation as a DAG in which each vertex corresponds to
call to MED with distinct arguments. An edge is placed from u to v if the call v uses u.

Example 49.5. An example MED instance with sharing.

360 CHAPTER 49. TWO PROBLEMS

The call to MED(〈B,C 〉 , 〈D,B,C 〉), for example, makes recursive calls to MED(〈C 〉 , 〈D,B,C 〉)
(corresponding to the deletion of B from the first string) and MED(〈B,C 〉 , 〈B,C 〉) (cor-
responding to the insertion of D into the second string). One of the calls is shared with the
call to MED(〈A,B,C 〉 , 〈B,C 〉)

Work and Span. To determine the work we need to know how many vertices there are in
the DAG. We can place an upper bound on the number of vertices by bounding the number
of distinct arguments. There can be at most |S| + 1 possible values of the first argument
since in recursive calls we only use suffixes of the original S and there are only |S| + 1
such suffixes (including the empty and complete suffixes). Similarly there can be at most
|T | + 1 possible values for the second argument. Therefore the total number of possible
distinct arguments to MED on original strings S and T is (|T | + 1)(|S| + 1) = O(|S||T |).
Furthermore the depth of the DAG (heaviest path) is O(|S|+ |T |) since each recursive call
either removes an element from S or T so after |S| + |T | calls there cannot be any element
left. Finally we note that assuming we have constant work operations for removing the
head of a sequence (e.g. using a list) then each vertex of the DAG takes constant work and
span.

All together this gives us

W (MED(S, T)) = O(|S||T |)

and

S(MED(S, T)) = O(|S|+ |T |).

As in subset sum we can again replace the lists used in MED with integer indices pointing
to where in the sequence we are currently at. This gives the following variant of the MED
algorithm:

2. MINIMUM EDIT DISTANCE 361

Algorithm 49.6 (Recursive MED (Indexed)).

MED(S, T) =
let MED ′(i, j) =

case (i, j) of
(i, 0)⇒ i
| (0, j)⇒ j
| (i, j)⇒ if (S[i− 1] = T [i− 1]) then MED ′(i− 1, j − 1)

else 1 + min(MED ′(i, j − 1),MED ′(i− 1, j))
in MED ′(|S|, |T |) end

This variant starts at the end of the sequence instead of the start, but is otherwise equivalent
our previous version. This form makes it more clear that there are only |S| × |T | distinct
arguments, and will make it easier to implement efficiently, as we discuss next.

Chapter 50

Optimal Binary Search Trees

We consider the problem of finding the optimally balanced tree that minimizes the ex-
pected cost of searches for a given probability distribution on the search queries.

Background. As we saw in an earlier chapter Binary Search Trees can be used to store
a dynamically changing set of keys and perform search queries on them efficiently. The
cost of searching for a key is linear in the depth of the key in the tree, or equivalently in
the length of the path from the root to the key. In a balanced BST with n keys the average
depth of each key is approximately log n.

Optimizing for a Query Distribution. Balanced search trees minimize the worst-case
cost of an access by making sure that all keys are as close to the root as possible. This
“pessimistic” perspective is not always necessary, because we sometimes have more infor-
mation about the query pattern for the keys, and specifically the frequency of queries for
each key. In such an application, it would be better to place frequently queried keys closer
to the root even if this causes to other, less frequently queried keys, being further away
from the root. More precisely, suppose that for a query we have a probability density func-
tion that maps each key to its probability of being queried. We may then want to come up
with a binary search tree that minimizes the expected cost of a query under that probability
distribution.

Example 50.1. Suppose that we have a dictionary for the English language that we would
like to use to answer queries from students learning English as a foreign language. We
could use a binary search tree to store the entries in the dictionary. In such an applica-
tion, certain words will be more frequently queried than others, e.g., queries for the word
“lamp” will appear more than the word “epistemology”. We can take advantage of this by
placing such words closer to the root even if this causes less frequently accessed words to
be further away from the root.

362

363

Definition 50.1 (Optimal Binary Search Tree (OBST) Problem). The optimal binary search tree
(OBST) problem is given an ordered set of keys S and a probability function p : S → [0 : 1]:

min
T∈Trees(S)

(∑
s∈S

d(s, T) · p(s)

)

where Trees(S) is the set of all BSTs on S, and d(s, T) is the depth of the key s in the tree T
(the root has depth 1).

Example 50.2. For example we might have the following keys and associated probabilities

key k1 k2 k3 k4 k5 k6

p(key) 1/8 1/32 1/16 1/32 1/4 1/2

Then the tree below has cost 31/16, which is optimal. Creating a tree with these two solu-
tions as the left and right children of Si, respectively, leads to the optimal solution given Si
as a root.

Exercise 50.1. Find another tree with equal cost.

Brute Force. The brute force solution would be to generate every possible binary search
tree, compute their cost, and pick the one with the lowest costs. But the number of such
trees is O(4n) which is prohibitive.

Exercise 50.2. Write a recurrence for the total number of distinct binary search trees with n
keys.

Optimal Substructure Property. Consider an optimal binary search tree for a sequence of
unique keys S and probability law P and let r be the root of the tree. Observe now that each
subtree of the root is an optimal binary search tree, because otherwise, we could replace
them with a binary search tree that improves the expected cost of queries for the subtree,
which in turn would improve the grant total. This common property of optimization prob-
lems is sometimes called the optimal substructure property. This property is sometimes a
clue that either a greedy or dynamic programming algorithm might apply.

364 CHAPTER 50. OPTIMAL BINARY SEARCH TREES

Exercise 50.3. Can we solve the optimal binary search tree problem by using the greedy
technique?

Solution. A greedy approach might be to pick the key k with highest probability and make
it the root of the binary search tree. We may then construct the two subtrees recursively on
the two sets less and greater than k. This does not necessarily give us the optimal binary
search tree, because for example the key with the highest property might be largest key
and increase the path length of all other keys. (Try to construct such an example.)

A Recursive Solution. Let S be all the keys placed in sorted order. Observe that any
subtree of a BST on S contains the keys of a contiguous subsequence of S. We can therefore
define subproblems in terms of a contiguous subsequence of S. We will use Si,j to indicate
the subsequence starting at the key with rank i and going to key with rank j (inclusive of
both). We will then use the pair (i, j) to be the surrogate for Si,j .

For subproblem Si,j , suppose that we pick key Sr (i ≤ r ≤ j) as a the root. We can now
solve the OSBT problem on the prefix Si,r−1 and suffix Sr+1,i. Let T be the tree on the keys
Si,j with root Sr, and TL, TR be its left and right subtrees. We can write the expected cost
as follows.

Cost(T) =
∑
s∈T

d(s, T) · p(s)

= p(Sr) +
∑
s∈TL

(d(s, TL) + 1) · p(s) +
∑
s∈TR

(d(s, TR) + 1) · p(s)

=
∑
s∈T

p(s) +
∑
s∈TL

d(s, TL) · p(s) +
∑
s∈TR

d(s, TR) · p(s)

=
∑
s∈T

p(s) + Cost(TL) + Cost(TR)

That is, the cost of a subtree T is the probability of accessing the root (i.e., the total prob-
ability of accessing the keys in the subtree) plus the cost of searching its left subtree and
the cost of searching its right subtree. When we add the base case this leads to a recursive
algorithm.

Exercise 50.4. When computing the cost for the tree, one thought would have been to
compute the cost for each subtree of the root and add these two costs and the cost of the root
(p(Sr)) to get the cost of this solution. Would this simpler approach would have worked?

Solution. This does not work, because it does not take into account the increase in the cost
of the keys in the subtrees by being one edge below the root.

Algorithm 50.2 (Recursive Optimal Binary Search Tree).

OBST S =
if |S| = 0 then 0
else

∑
s∈S p(s) + mini∈〈 1...|S| 〉

(
OBST (S1,i−1) + OBST (Si+1,|S|)

)
Exercise 50.5. How would you return the optimal tree in addition to the cost of the tree?

365

Sharing. Without sharing, the recursive solution requires exponential work. To reduce
the cost, we can take advantage of sharing among the calls to OBST and represent the com-
putation with a DAG. To bound the number of vertices in the DAG, we count the number
of possible arguments to OBST . Because each argument is a contiguous subsequence from
the original sequence S, we can count the total number of contiguous subsequences as

n−1∑
i=0

(i+ 1) = n(n+ 1)/2.

The idea is that for each element with rank i, there are i+ 1 distinct starting positions 0 . . . i
and summing over all gives us te bound. The number vertices in the DAG is therefore
O(n2). Furthermore the longest path of vertices in the DAG is bounded by O(n), because
each call to OBST removes one key, causing the to stop after n calls.

Total Work and Span. The cost of each vertex in the DAG (each recursive in our code not
including the subcalls) is O(|S|) = O(n), because we need to consider each position and
sum up the probabilities of all the keys. The span is O(log n), because we can compute the
minimum by using a reduction.

Now multiplying the number of vertices by the work of each gives us the upper bound of
O(n3) on the work. For the span, we multiply the span each vertex with length of the path
to obtain the upper bound O(n log n).

Algorithm 50.3 (Recursive Optimal Binary Search Tree (indexed)). We present a stream-
lined algorithm that uses integer indexes to identify subproblems. In particular we specify
a subsequence of the original sorted sequence of keys S by its offset from the start (i) and
its length l. We then get the following recursive routine.

OBST S =
let
(* Determine OBST S[i, . . . , i+ l − 1] *)
OBST ′ (i, l) =
if l = 0 then 0

else
∑l−1
k=0 p(S[i+ k]) + minl−1

k=0 (OBST ′(i, k) + OBST ′(i+ k + 1, l − k − 1))
in OBST (0, |S|) end

Similar Problems. This example of the optimal BST is one of several applications of dy-
namic programming which effectively based on trying all binary trees and determining an
optimal tree given some cost criteria. Another such problem is the matrix chain product
problem. In this problem one is given a chain of matrices to be multiplied (A1×A2×· · ·An)
and wants to determine the cheapest order to execute the multiplies. For example given
the sequence of matricesA×B×C it can either be ordered as (A×B)×C or asA×(B×C).
If the matrices have sizes 2× 10, 10× 2, and 2× 10, respectively, it is much cheaper to cal-
culate (A × B) × C than a × (B × C). Since × is a binary operation any way to evaluate

366 CHAPTER 50. OPTIMAL BINARY SEARCH TREES

our product corresponds to a tree, and hence our goal is to pick the optimal tree. The ma-
trix chain product problem can therefore be solved in a very similar structure as the OBST
algorithm and with the same cost bounds.

Chapter 51

Implementing Dynamic
Programming

In previous chapters, we have considered several problems and showed that these prob-
lems admit a recursive solution, which via sharing, can be computed in polynomial work.
Without sharing, the recursive solutions would require exponential work. In this chap-
ter, we present two techniques for implementing such sharing. The two techniques called,
bottom-up , and top-down , are similar but different enough to have each their own ad-
vantages.

1 Bottom-Up Method

Constructing the DAG Bottom-Up. Given the DAG of a recursive solution, observe that
the leaves of the DAG may be computed directly because they don’t depend on any other
results. As we compute each vertex, imagine “pebbling” the vertex so as to indicate that
it is now available. Now, once the leaves are pebbled, any other vertex of the DAG, all
of whose in-neighbors are pebbled may also be computed and pebbled. This process of
pebbling a vertex whose in-neighbors are pebbled may be continued until all vertices of
the DAG, including the root, are pebbled. The pebbling of the root, in turn, completes the
computation and yields the result.

Depending on the topology of the DAG, there is usually plenty of freedom about which
vertex or vertices, we can pebble. Often times, there are not just one but many vertices, all
of which may be pebbled at once, i.e., in parallel. Depending on our goals, we map prefer
one pebbling strategy over another, to optimize for various metrics such as work, space,
and parallelism.

Example 51.1 (Minimum Edit Distance). Consider Minimum Edit Distance problem for

367

368 CHAPTER 51. IMPLEMENTING DYNAMIC PROGRAMMING

the two strings S = tcat and T = atc. We can draw the DAG as follows.

In the DAG, there are three types of edges

1. down edges

2. horizontal edges, which go from left to right, and

3. diagonal edges.

The numbers represent the i and the j for that position in the string. We draw the DAG
with the root at the bottom right, so that the vertices are structured the same way we might
fill an array indexed by i and j.

As an example, consider MED(4, 3). The characters S[4] and T [3] are not equal so the
recursive calls are to MED(3, 3) and MED(4, 2). This corresponds to the vertex to the left
and the one above. Now if we consider MED(4, 2) the characters S[4] and T [2] are equal
so the recursive call is to MED(3, 1). This corresponds to the vertex diagonally above and
to the left. In fact whenever the characters S[i] and T [j] are not equal we have edges from
directly above and directly to the left, and whenever they are equal we have an edge from
the diagonal to the left and above.

Based on the direction of the edges, we can pebble the vertices of the DAG in several
different ways. For example, we can pebble the DAG row-wise, by pebbling the first row
from left to right, and then the second row, and so on. Symmetrically, we can pebble the
DAG column-wise, starting with the first column and pebbling from top to bottom, and
then proceeding to the second and so on. The row-wise and column-wise pebbling orders
both yield a sequential algorithm. Finally, we can pebble the dag diagonally from top left
towards bottom right. In this order, each position within a diagonal may be pebbled in
parallel, leading thus to a parallel algorithm.

1. BOTTOM-UP METHOD 369

Algorithm 51.1 (Bottom up MED). The pseudo-ccode for the bottom-up algorithm for
MED is given below. This algorithm pebbles the DAG diagonally and stores the result
of each vertex in a table M . Because the table is indexed by two integers, it can be rep-
resented by an array, which allows constant work random access. Each call to diagonals
processes one diagonal and updates the table M . The size of the diagonals grows and then
shrinks. We note that the index calculations are tricky.

med S T =
let

medOne M (i, j) =
case (i, j) of

(i, 0)⇒ i
| (0, j)⇒ j
| (i, j)⇒

if (S[i− 1] = T [j − 1]) thenM [i− 1, j − 1]
else 1 + min(M [i, j − 1],M [i− 1, j])

diagonals M k =
if (k > |S|+ |T |) then
M

else
let
s = max(0, k − |T |)
e = min(k, |S|)
MM = M ∪ {(i, k − i) 7→ medOne M (i, k − i) : i ∈ {s, . . . , e}}

in
diagonals MM (k + 1)

end
in

diagonals {} 0
end

Example 51.2. The drawing below illustrates the diagonals as pebbled by the bottom-up
algorithm given above.

370 CHAPTER 51. IMPLEMENTING DYNAMIC PROGRAMMING

2 Top-Down Method: Memoization

Definition 51.2 (Memoization and Memo Table). The top-down approach is based on run-
ning the recursive code pretty much as is, but with some additional structure to store re-
sults as they are computed. In particular, we keep a mapping from the arguments of the
recursive function to its solutions, and each time we return from a recursive call, we add
the argument-result pair to the mapping. This way when we come across the same argu-
ment a second time we can just look up the solution instead of having to recompute it.
This process is called memoization, and the table used to map the arguments to solutions
is called a memo table.

Implementing Memoization. Being able to store and look up previous results efficiently
is key to effective memoization. This in turn requires being able to check quickly if an
argument is equal to a previous argument. If the arguments are complex data structures
then such an equality test might be expensive on its own. Beyond checking for equality,
looking up a previous result also requires storing the mapping in a table in which insertions
and lookups are fast. Obvious choices are either balanced search trees or hash tables. The
first requires a total order over the possible arguments, and an efficient way to check if one
argument is “less” than another. The second requires that the arguments can be hashed,
and to be efficient we need that it is unlikely that two different arguments hash to the value.

Checking equality of arbitrary arguments, comparing them, or hashing them can be com-
plicated. Fortunately in many cases, arguments can be arranged so that they are integers or
small sequences of integers (tuples, triples, etc). Such integer-valued arguments simplify
the implementation of such operations: we can cheaply compare or hash integer argu-
ments.

2. TOP-DOWN METHOD: MEMOIZATION 371

Example 51.3. For the examples that we have consider so far including the Subset Sum
Problem , the Minimum Edit Distance Problem , and the Optimal Binary Search Problem
, we have set up surrogate integer values to represent the input values.

Algorithm 51.3 (The Memo Function). To implement the memoization we define the fol-
lowing function:

memo f M a =
case find M a of
SOME(v)⇒ (M, v)
| NONE⇒ let (M ′, v) = f M a

in (update(M ′, a, v), v) end

In this function f is the function that is being memoized, M is the memo table, and a is
the argument to f . This function simply looks up the value a in the memo table. If it
exists, then it returns the corresponding result. Otherwise it evaluates the function on the
argument, and as well as returning the result it stores it in the memo.

As an example, we can now write med using memoization as follows.

Algorithm 51.4 (Memoized MED). The pseudo-code below uses memoization to achieve
sharing of solutions to subproblems.

med S T =
let

medOne M (i, j) =
case (i, j) of

(, 0)⇒ (M, i)
| (0,)⇒ (M, j)
| ⇒ if (S[i− 1] = T [i− 1]) then

memo medOne M (i− 1, j − 1)
else
let

(M2, v1) = memo medOne M (i, j − 1)
(M3, v2) = memo medOne M2 (i− 1, j)

in
(M3, 1 + min(v1, v2))

end
(, r) = medOne {} (|S|, |T |))

in
r

end

Note. Note that the memo table M is threaded through the algorithm. In particular every
call to MED takes a memo table as an argument, and returns a memo table as a result
(possibly updated). Because of this passing, the code is purely functional.

372 CHAPTER 51. IMPLEMENTING DYNAMIC PROGRAMMING

Limitation of Top-Down Method. The top-down approach as described is is inherently
sequential. By threading the memo table through the computation, we force a total or-
dering on all calls to med . It is possible to solve these problems by combining several
techniques

• using hidden state to implement the memo function such that the memo table is used
implicitly

• using concurrent hash tables to store the results so that parallel calls might be in flight
at the same time, and

• using synchronization variables to make sure that no function is computed more than
once.

These techniques are all advanced techniques and are beyond the scope of this book.

Part XIV

Graphs

373

Chapter 52

Graphs and their Representation

This chapter describes graphs and the techniques for representing them.

1 Graphs and Relations

Graphs (sometimes referred to as networks) are one of the most important abstractions
in computer science. They are typically used to represent relationships between things
from the most abstract to the most concrete, e.g., mathematical objects, people, events,
and molecules. Here, what we mean by a “relationship” is essentially anything that we
can represent abstractly by the mathematical notion of a relation. Recall that relation is
defined as a subset of the Cartesian product of two sets.

Example 52.1 (Friends). We can represent the friendship relation between a set of people P
as a subset of the Cartesian product of the people, i.e.,G ⊂ P×P . IfP = {Alice,Arthur ,Bob, Josepha}
then a relation might be:

{(Alice,Bob), (Alice,Arthur), (Bob,Alice), (Bob,Arthur),
(Arthur , Josefa), (Arthur ,Bob), (Arthur ,Alice), (Josefa,Arthur)}

This relation can then be represented as a directed graph where each arc denotes a member
of the relation or as an undirected graph where directed edge denotes a pair of the members
of the relation of the form (a, b) and (b, a).

374

2. APPLICATIONS OF GRAPHS 375

Background on Graphs. Graphs Chapter presents a brief review of the graph terminol-
ogy that we use in this book. The rest of this chapter and other chapters on graphs assumes
familiarity with the basic graph terminology reviewed therein.

2 Applications of Graphs

Graphs are used in computer science to model many different kinds of data and phenom-
ena. This section briefly mentions some of the many applications of graphs.

Social Network Graphs. In social network graphs, vertices are people and edges repre-
sent relationships among the people, such as who knows whom, who communicates with
whom, who influences whom or others in social organizations. An example is the twitter
graph of who follows whom. These can be used to determine how information flows, how
topics become hot, how communities develop, etc.

Transportation Networks. In road networks, vertices are intersections and edges are the
road segments between them, and for public transportation networks vertices are stops
and edges are the links between them. Such networks are used by many widely used map
applications to find the best routes between locations. They are also used for studying
traffic patterns, traffic light timings, and many aspects of transportation.

Utility Graphs. In utility graphs, vertices are junctions and edges are conduits between
junctions. Examples include the power grid carrying electricity throughout the world, the
internet with junctions being routers, and the water supply network with the conduits
being physical pipes. Analyzing properties of these graphs is very important in under-
standing the reliability of such utilities under failure or attack, or in minimizing the costs
to build infrastructure that matches required demands.

Document-Link Graphs. In document-link graphs, vertices are a set of documents, and
edges are links between documents. The best example is the link graph of the web, where

376 CHAPTER 52. GRAPHS AND THEIR REPRESENTATION

each web page is a vertex, and each hyperlink a directed edge. Link graphs are used, for
example, to analyze relevance of web pages, the best sources of information, and good link
sites.

Graphs in Compilers. Graphs are used extensively in compilers. Vertices can represent
variables, instructions, or blocks of code, and the edges represent relationships among
them. Often one of the first steps of a compiler is to turn the written syntax for the program
into a graph, which is then manipulated. Such graphs can be used for type inference, for
so called data flow analysis, register allocation and many other purposes.

Robot Motion Planning. Vertices represent the states a robot can be in and the edges the
possible transitions between the states. This requires approximating continuous motion as
a sequence of discrete steps. Such graph plans are used, for example, in planning paths for
autonomous vehicles.

Neural Networks and Deep Learning. Vertices represent neurons and edges the synapses
between them. Neural networks are used to understand how our brain works and how
connections change when we learn. The human brain has about 1011 neurons and close to
1015 synapses. Neural networks are also used for learning a variety of relationships from
large data sets.

Protein-Protein Interactions Graphs. Vertices represent proteins and edges represent in-
teractions between them; such interactions usually correspond to biological functions of
proteins. These graphs can be used, for example, to study molecular pathways—chains of
molecular interactions in a cellular process. Humans have over 120K proteins with millions
of interactions among them.

Finite-Element Meshes. Vertices are cells in space, and edges represent neighboring cells.
In engineering many simulations of physical systems, such as the flow of air over a car or
airplane wing, the spread of earthquakes through the ground, or the structural vibrations
of a building, involve partitioning space into discrete elements (cells), and modeling the
interaction of neighboring elements as a graph.

Graphs in Quantum Field Theory. Vertices represent states of a quantum system and the
edges the transitions between them. The graphs can be used to analyze path integrals and
summing these up generates a quantum amplitude.

Semantic Networks. Vertices represent words or concepts and edges represent the rela-
tionships among the words or concepts. These have been used in various models of how

3. GRAPHS REPRESENTATIONS 377

humans organize their knowledge, and how machines might simulate such an organiza-
tion.

Graphs in Epidemiology. Vertices represent individuals and directed edges the transfer
of an infectious disease from one individual to another. Analyzing such graphs has become
an important component in understanding and controlling the spread of diseases.

Constraint Graphs. Vertices are items and edges represent constraints among them. For
example the GSM network for cell phones consists of a collection of overlapping cells. Any
pair of cells that overlap must operate at different frequencies. These constraints can be
modeled as a graph where the cells are vertices and edges are placed between cells that
overlap.

Dependence Graphs. Vertices are tasks or jobs that need to be done, and edges are con-
straints specifying what tasks needs to be done before other tasks. The edges represent
dependences or precedences among items. Such graphs are often used in large projects in
laying out what components rely on other components and used to minimize the total time
or cost to completion while abiding by the dependences. These graphs should be acyclic.

3 Graphs Representations

We can represent graphs in many different ways. To choose an efficient and fast represen-
tation for a graph, it is important to know the kinds of operations that are needed by the
algorithms that we expect to use on that graph. Common operations a graph G = (V,E)
include the following.

(1) Map a function over the vertices v ∈ V .

(2) Map a function over the edges (u, v) ∈ E.

(3) Map a function over the (in or out) neighbors of a vertex v ∈ V .

(4) Return the degree of a vertex v ∈ V .

(5) Determine if the edge (u, v) is in E.

(6) Insert or delete an isolated vertex.

(7) Insert or delete an edge.

Different representations do better on some operations and worse on others. Cost can also
depend on the density of the graph, i.e. the relationship of the number of vertices and
number of edges.

378 CHAPTER 52. GRAPHS AND THEIR REPRESENTATION

To enable high-level, mathematical reasoning about algorithms, we represent graphs by
using the abstract data types such as sequences , sets , and tables . This approach enables
specifying the algorithms at a high level and then selecting the lowest cost implementation
for each algorithm.

Assumptions.

• In the rest of the chapter, we focus on directed graphs. To represent undirected
graphs, we can simply keep each edge in both directions. In some cases, it suffices to
keep an edge in just one direction.

• For the following discussion, consider a graph G = (V,E) with n vertices and m
edges.

• Throughout we assume that we only delete isolated vertices. If a vertex is incident
on edges, then this means that we first have to delete the edges before deleting the
vertex.

3.1 Edge Sets

Perhaps the simplest representation of a graph is based on its definition. Assuming we
have a universe of possible vertices V (e.g., the integers, or character strings), we can rep-
resent directed graphs in that universe as:

G = (V set , (V × V) set).

The (V set) is the set of vertices and the ((V × V) set) is the set of directed edges. The sets
could be represented with lists, arrays, trees, or hash tables.

Example 52.2. Using the edge-set representation, the directed graph

can be prepresented as:

V = string
V = {Alice,Arthur,Bob, Josefa} : V set
E = {(Alice,Bob), (Alice,Arthur), (Josefa,Arthur), (Bob,Arthur),

(Arthur, Josefa), (Arthur,Bob), (Arthur,Alice), (Bob,Alice)}
: (V × V) set

3. GRAPHS REPRESENTATIONS 379

Consider the tree-based cost specification for sets. Using edge sets for a graph with m
edges, we can determine if a directed edge (u, v) is in the graph with O (lgm) = O (lg n)
work using a find , and insert or delete an edge (u, v) in the same work.

Although edge sets are efficient for finding, inserting, or deleting an edge, they are not
efficient if we want to identify the neighbors of a vertex v. For example, finding the set of
out edges of v requires filtering the edges whose first element matches v:

{(x, y) ∈ E | v = x} .

For m edges this requires Θ (m) work and Θ (lg n) span, which is not work efficient.

Exercise 52.1. Prove that for a graph with n vertices and m edges, O(lgm) = O(lg n).

Solution. For any graph, we have m ≤ n2 and therefore O(lgm) = O(lg n).

Cost Specification 52.1 (Edge Sets for Graphs). For a graph represented asG = (V set , (V×
V) set) and assuming a tree-based cost model for sets, we have the following costs for
common graph operations.

Work Span
Map a function over all vertices v ∈ V Θ (n) Θ (lg n)
Map a function over all edges (u, v) ∈ E Θ (m) Θ (lg n)
Map a function over neighbors of a vertex Θ (m) Θ (lg n)
Find the degree of a vertex Θ (m) Θ (lg n)
Is edge (u, v) ∈ E Θ (lg n) Θ (lg n)
Insert or delete a vertex Θ (lg n) Θ (lg n)
Insert or delete an edge Θ (lg n) Θ (lg n)

This assumes the function being mapped has constant work and span. For vertex deletion,
we assume that the vertex is isolated (has no incident edges).

Exercise 52.2. What is the cost of deleting a vertex with out-degree d?

3.2 Adjacency Tables

Definition 52.2 (Adjacency Table Representation). The adjacency-table representation of
a graph consists of a table mapping every vertex to the set of its out-neighbors and can be
defined as

G = (V × (V set)) table.

Example 52.3. Using the adjacency-table representation, the directed graph

380 CHAPTER 52. GRAPHS AND THEIR REPRESENTATION

can be prepresented as:

{ (52.1)
Alice 7→ {Arthur,Bob} , (52.2)
Bob 7→ {Alice,Arthur} , (52.3)
Arthur 7→ {Alice, Josefa} , (52.4)
Josefa 7→ {Arthur} (52.5)
} (52.6)

The adjacency-table representation supports efficient access to the out neighbors of a ver-
tex by using a table lookup. Assuming the tree-based cost model for tables, this requires
Θ (lg n) work and span.

We can check if a directed edge (u, v) is in the graph by first obtaining the adjacency set
for u, and then using a find operation to determine if v is in the set of neighbors. Using a
tree-based cost model, this requires Θ (lg n) work and span.

Inserting an edge, or deleting an edge requires Θ (lg n) work and span. The cost of finding,
inserting or deleting an edge is therefore the same as with edge sets.

Note that after we find the out-neighbor set of a vertex, we can apply a constant work
function over the neighbors in Θ (dG(v)) work and Θ (lg dG(v)) span.

Cost Specification 52.3 (Adjacency Tables). For a graph represented asG = (V×(V set)) table
and assuming a tree-based cost model for sets and tables, we have that:

Operation Work Span
Map a function over all vertices v ∈ V Θ (n) Θ (lg n)
Map a function over all edges (u, v) ∈ E Θ (m) Θ (lg n)
Map a function over neighbors of a vertex Θ (lg n+ dg(v)) Θ (lg n)
Find the degree of a vertex Θ (lg n) Θ (lg n)
Is edge (u, v) ∈ E Θ (lg n) Θ (lg n)
Insert or delete a vertex Θ (lg n) Θ (lg n)
Insert or delete an edge Θ (lg n) Θ (lg n)

This assumes the function being mapped uses constant work and span.

Note. The adjacency-table representation is more efficient than the edge-set only for oper-
ations that involve operating locally on individual vertices and their out-edges.

3.3 Adjacency Sequences

Definition 52.4 (Adjacency Sequences for Enumerable Graphs). For enumerable graphs
G = (V,E), where V = {0 . . . (n − 1)}, we can use sequences to improve the efficiency

3. GRAPHS REPRESENTATIONS 381

of the adjacency table representation. Sequences can be used for both the outer table and
inner set. The type of a graph in this representation is thus

G = (int seq) seq .

Here the length of the outer sequence in n, and the length of each inner sequences equals
the degree of the corresponding vertex.

This representation allows for fast random access, requiring only Θ (1) work to access the
ith vertex.

Example 52.4. We can relabel the directed graph

by assigning the labels 0, 1, 2, 3 to Alice,Arthur,Bob, Josefa respectively. We can represent
the resulting enumerable graph with the following adjacency sequence:

〈 (52.7)
〈 1, 2 〉 , (52.8)
〈 0, 2, 3 〉 , (52.9)
〈 0, 1 〉 , (52.10)
〈 1 〉 (52.11)

〉. (52.12)

Exercise 52.3. What is the cost of finding the out-neighbors of a vertex?

Solution. It is Θ (1) work and span.

Exercise 52.4. Why does the cost of mapping over all edges require Ω(n) work?

Solution. Because any algorithm that maps over all the edges must touch each and every
vertex.

Cost Specification 52.5 (Adjacency Sequence). Consider a graph with vertices V = {0, . . . , n− 1},
represented as G = (int seq) seq . Assuming an (persistent) array-sequence cost model, the

382 CHAPTER 52. GRAPHS AND THEIR REPRESENTATION

cost of the key graph operations are as follows.

Operation Work Span
Map a function over all vertices v ∈ V Θ (n) Θ (1)
Map a function over all edges (u, v) ∈ E Θ (n+m) Θ (1)
Map a function over neighbors of a vertex Θ (dg(v)) Θ (1)
Find the degree of a vertex Θ (1) Θ (1)
Is edge (u, v) ∈ E Θ (dg(u)) Θ (lg dg(u))
Insert or delete a vertex Θ (n) Θ (1)
Insert or delete an edge Θ (n) Θ (1)

For mapping over vertices and edges, we assume that the function being mapped has con-
stant work and span. For vertex deletions, we assume that all edges incident on the vertex
has been removed and (the vertex is isolated).

Using ephemeral array sequences can improve work efficiency of deletion operations. A
vertex can be marked deleted in O (1) work. An edge can likewise be found and marked
deleted in Θ (lg dg(n)) work. Insertions can also be done more efficiently by an “array
doubling technique”, which yields amortized constant work per update. Recall, however,
that ephemeral operations can be tricky to use in parallel algorithms.

Exercise 52.5. Give a constant-span algorithm for deleting an edge from a graph.

Hint (Finding an Element via Injection). Give a linear-work, constant-span algorithm for
finding the position of an element in a sequence in constant span using sequence inject .

Hint (Deleting an Element). Give a linear-work, constant-span algorithm for deleting an
element at a specified position in a sequence.

Adjacency List Representation. In the adjacency sequence representation, we can rep-
resent the inner sequences (the out-neighbor sequence of each vertex) by using arrays or
lists. If we use lists, then the resulting representation is the same as the classic adjacency
list representation of graphs. This is a traditional representation used in sequential algo-
rithms. It is not well suited for parallel algorithms since traversing the adjacency list of a
vertex will take span proportional to its degree.

Mixed Adjacency Sequences and Tables. It is possible to mix adjacency tables and ad-
jacency sequences by having either the inner sets or the outer table be a sequence, but not
both. Using sequences for the inner sets has the advantage that it defines an ordering over
the edges of a vertex. This can be helpful in some algorithms.

3.4 Adjacency Matrices

For enumerable graphs that are dense (i.e.,m is not much smaller than n2), representing the
graph as a boolean matrix can make sense. For a graph with n vertices such a matrix has n

3. GRAPHS REPRESENTATIONS 383

rows and n columns and contains a true (or 1) in location (i, j) (i-th row and j-th column)
if and only if (i, j) ∈ E. Otherwise it contains a false (or 0). For undirected graphs the
matrix is symmetric and contains false (or 0) along the diagonal since undirected graphs
have no self edges. For directed graphs the trues (1s) can be in arbitrary positions.

A matrix can be represented as a sequence of sequences of booleans (or zeros and ones),
for which the type of the representation is:

G = (bool seq) seq

For a graph with n vertices the outer sequence and all the inner sequences have equal
length n.

Example 52.5. The graph:

has the adjacency matrix:
0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

which can be represented as the nested sequence:

〈 〈 0, 0, 1, 1 〉 , (52.13)
〈 0, 0, 0, 1 〉 , (52.14)
〈 1, 0, 0, 1 〉 , (52.15)
〈 1, 1, 1, 0 〉 〉. (52.16)

Cost Specification 52.6 (Adjacency Matrix). For a graph represented as an adjacency ma-
trix with V = {0, . . . , n− 1} and G = (bool seq) seq , and assuming the an array-sequence
cost model, we have that:

Operation Work Span
Map a function over all vertices v ∈ V Θ (n) Θ (1)
Map a function over all edges (u, v) ∈ E Θ

(
n2
)

Θ (1)
Map a function over neighbors of a vertex Θ (n) Θ (1)
Find the degree of a vertex Θ (n) Θ (lg n)
Is edge (u, v) ∈ E Θ (1) Θ (1)
Insert or delete a vertex Θ

(
n2
)

Θ (1)
Insert or delete an edge Θ (n) Θ (1)

384 CHAPTER 52. GRAPHS AND THEIR REPRESENTATION

These costs assume the function being mapped uses constant work and span.

As with other representations, using ephemeral sequences can improve the efficiency of
update operations (insert/delete a vertex or an edge) to amortized constant time.

Exercise 52.6. Give a constant-span algorithm for computing the complement of a graph.

Solution. Map over the vertices a function that for each out-edge complements the boolean.

3.5 Representing Weighted Graphs

Many applications of graphs require associating values with the edges of a graph resulting
in weighted or labeled graphs . This section presents several techniques for representing
such graphs.

Example 52.6. An example directed weighted graph.

Label Table. This chapter covered three different representations of graphs: edge sets,
adjacency tables, and adjacency sequences. We can extend each of these representations
to support edge-weights by representing the function from edges to weights as a separate
table. This weight table maps each edge to its value and allows finding weight of an edge
e = (u, v) by using a table lookup.

Example 52.7. For the weighted graph shown above the weight table is:

W = {(0, 2) 7→ 0.7, (0, 3) 7→ −1.5, (2, 3) 7→ −2.0, (3, 1) 7→ 3.0} .

Weight tables work uniformly with all graph representations, and they are elegant, because
they separate edge weights from the structural information. However, keeping a separate
weight table creates redundancy, wasting space and possibly requiring additional work to
lookup the weights. We can eliminate the redundancy by storing the weights directly with
the edge.

3. GRAPHS REPRESENTATIONS 385

For example, when using the edge-set representation for graphs, we can keep the weight
along with the edge in the edge sets. Similarly, when using the adjacency-table represen-
tation, we can replace each set of neighbors with a set consisting of the neighbor and the
weight of the edge from the vertex to the neighbor. Finally, we can extend an adjacency
sequences by creating a sequence of neighbor-weight pairs for each out edge of a vertex.

Example 52.8. For the weighted graph shown above the adjacency table representation is

G = {0 7→ {2 7→ 0.7, 3 7→ −1.5} , 2 7→ {3 7→ −2.0} , 3 7→ {1 7→ 3.0}} ,

and the adjacency sequence representation is

G = 〈 〈 (2, 0.7), (3,−1.5) 〉 , 〈 〉 , 〈 (3,−2.0) 〉 , 〈 (1, 3.0) 〉 〉 .

Chapter 53

Graph Search

The terms graph search and graph traversal refer to a class of algorithms that systemat-
ically explore the vertices and edges of a graph. Graph-search can be used to solve many
interesting problems on (directed or undirected) graphs and is indeed at the heart of many
graph algorithms. In this chapter, we introduce the concept of a graph search, and develop
a generic graph-search algorithm. We then consider further specializations of this generic
algorithm, including the priority-first search (PFS) algorithms, breadth-first search (BFS)
, and depth-first search (DFS) .

Assumption (Directed and Undirected Graphs). Because undirected graphs can be repre-
sented as directed graphs where each edge is replaced with two edges in opposite direc-
tions, we consider in this chapter directed graphs only.

1 Generic Graph Search

Definition 53.1 (Source). A graph search usually starts at a specific source vertex s ∈ V or
a set of vertices sources. Graph search then searches out from the source(s) and iteratively
visits the unvisited neighbors of vertices that have already been visited.

Definition 53.2 (Visited Vertices). Graph search algorithms keep track of the visited ver-
tices, which have already been visited, and avoid re-visiting them. We typically denote the
set of visited vertices with the variable X .

Definition 53.3 (Frontier and Discovered Vertices). For a graph G = (V,E) and a visited
set X ⊂ V , the frontier set or simply the frontier is the set of un-visited out-neighbors of
X , i.e., the set N+

G (X) \X . We often denote the frontier set with the variable F . We refer to
each vertex in the frontier as a discovered vertex.

Reminder. Recall thatN+
G (v) are the out-neighbors of the vertex v in the graphG, andN+

G (U) =⋃
v∈U N

+
G (v) (i.e., the union of all out-neighbors of U).

386

1. GENERIC GRAPH SEARCH 387

Algorithm 53.4 (Graph Search (Single Source)). The generic graph-search algorithm that
starts at a single source vertex s is given below.

1 graphSearch(G, s) =
2 let
3 explore X F =
4 if (|F | = 0) then X
5 else
6 let
7 choose U ⊆ F such that |U | ≥ 1
8 visit U
9 X = X ∪ U
10 F = N+

G (X) \X
11 in explore X F end
12 in
13 explore {} {s}
14 end

The algorithm starts by initializing the visited set of vertices X with the empty set and the
frontier with the source s. It then proceeds in a number of rounds, each corresponding to
a recursive call of explore . At each round, the algorithm selects a subset U of vertices in the
frontier (possibly all), visits them, and updates the visited and the frontier sets. If multiple
vertices are selected in U , they can usually be visited in parallel. The algorithm terminates
when the frontier is empty.

Note. The generic graph search algorithm as presented only keeps track of the visited setX .
Many real applications keep track of additional information.

Exercise 53.1. Does the algorithm visit all the vertices in the graph?

Solution. The algorithm does not necessarily visit all the vertices in the graph. In particu-
lar vertices for which there is no path from the source will never be visited.

Graph Search is Generic. Since the function graphSearch is not specific about the set
of vertices to be visited next, it can be used to describe many different graph-search algo-
rithms. In the rest of the book, we consider three methods for selecting the subset, each
leading to a specific graph-search algorithm.

• Selecting all of the vertices in the frontier leads to breadth-first search (BFS).

• Selecting the single most recent vertex added to the frontier leads to depth-first
search (DFS).

• Selecting the highest-priority vertex (or vertices) in the frontier, by some definition of
priority, leads to priority-first search (PFS).

388 CHAPTER 53. GRAPH SEARCH

As we will see, breadth-first search is parallel because it can visit many vertices at once
(the whole frontier). In contrast, depth-first-search is sequential, because it only visits one
vertex at a time.

2 Reachability

It is sometimes useful to find all vertices that can be reached in a graph from a source.
Graph search can solve this problem for any choice of U on each round.

Definition 53.5 (Reachability). We say that a vertex v is reachable from u in the graph G
(directed or undirected) if there is a path from u to v in G.

Problem 53.2 (The Graph Reachability Problem). For a graph G = (V,E) and a vertex v ∈
V , return all vertices U ⊆ V that are reachable from v.

Theorem 53.1 (Graph Search Solves Reachability). The function graphSearch (G =
(V,E)) s returns exactly the set of vertices that are reachable in G from s ∈ V , and does so
in at most |V | rounds, and for any selection of U on each round.

Proof. The algorithm finishes in at most |V | rounds since it visits at least one vertex on each
round.

It returns only reachable vertices by induction on the round number. In particular if all
vertices Xi on round i are reachable from s, then all vertices added on round i + 1 are
reachable. This is because by the definition of frontier there is a path through Xi and
extending by one to all Xi+1 \Xi.

We prove that it returns all reachable vertices by contradiction. Let’s say that a vertex
v is reachable from s and is not in the set R returned by graphSearch G s. Consider
any simple path from s to v. This must exist since v is reachable from s. Let u be the
vertex immediately before v on the path. It cannot be in R because if it were then v would
have been in the frontier on the final termination round and the algorithm would not have
finished. Similarly the item before u on the path could not be in R, and this repeats all the
way back to the source s. This is a contradiction since s must be in R.

Example 53.1 (Web Crawling). An example of graph search are web crawlers that try to
find all pages available on the web, or at least those reachable from some source(s). They
start with the URL of some source page, probably one with lots of links. The crawler visits
the source page, and adds all the URLs on the page to the frontier. It then picks some
number of URLs from the frontier and visits them, possibly in parallel, adding the un-
visited URLs within each to the frontier. When repeated this process is a graph search and
will therefore reveal all web pages reachable from the source URL.

3. GRAPH-SEARCH TREE 389

In practice the crawl might start with many sources instead of just one. It might also be
sloppy on immediately adding visited pages to the visited set, allowing for more asyn-
chronous parallelism at the cost of possibly visiting pages more than once.

Connected Components. When a graph is undirected then the reachability problem from
s is the same as finding the connected component that contains s. If we go through all
the vertices, then we can identify all the connected components in the graph. This method,
however, is sequential. In later chapters we will see how to find connected components in
polylogarithmic span using graph contraction.

Exercise 53.3 (Multi-Source Search). Present a multi-source version of the single-source
graph search algorithm.

3 Graph-Search Tree

Consider the time at which a vertex v is visited. We can “blame” the visit of v to an in-
neighbor u of v that has already been visited. Because each vertex is visited at most once,
we can define a “search tree” by including in the tree the visited vertices and their blamed
vertices.

Definition 53.6 (Graph-Search Tree). Let G = (V,E) be a graph. A graph-search tree for
an execution of the graph search algorithm of G is a rooted tree over the visited vertices
X ⊆ V and the edges E′ ⊆ E such that every vertex v ∈ X \ {s} has a parent u that is in X
when v is visited and the (u, v) ∈ E. The source s is the root of the tree (and has no parent).

Note. The definition allows the parent of a vertex v to be any in-neighbor of v, which is in
X at the time that v is visited. In many specific graph-search algorithms, there is usually a
specific parent (and a specific edge) that can be “blamed” for the discovery of v.

4 Priority-First Search (PFS)

Many graph-search algorithms can be viewed as visiting vertices in some priority order.
The idea is to assign a priority to all vertices in the frontier, allowing the priority of a
vertex to change whenever an in-neighbor of that vertex is visited. When picking the set of
vertices U to visit, we have several options:

• the highest priority vertex, breaking ties arbitrarily,

• all highest priority vertices, or

• all vertices close to being the highest priority, perhaps the top k.

390 CHAPTER 53. GRAPH SEARCH

This specialization of generic graph search is called Priority-First Search or PFS for short.

In this book we only consider instances of PFS that follow the first two cases above. The
third case, where we select the k highest priority vertices, is sometimes called beam search.

Note. PFS is a relatively common form of graph search. We will use it in Breadth-First
Search , Dijkstra’s algorithm and Prim’s algorithm.

Priority-first search is a greedy technique, because it greedily selects among the choices
available (the vertices in the frontier) based on some “cost function” (the priorities) and
never backs up. Algorithms based on PFS are hence often referred to as greedy algorithms.

Sometimes, especially in the artificial intelligence literature, PFS is called best-first search.
In this context the search explores a set of vertices, often called nodes, representing states
or possible solutions of a problem. The importance of each node can be evaluated based
on some application-specific heuristic. Picking the nodes carefully can significantly reduce
the number of nodes needed to reach a satisfactory node (state or solution).

Chapter 54

Breadth-First Search

The breadth-first search or BFS algorithm is a special case of the generic graph-search
algorithm . The BFS algorithm visits vertices in the graph in the order of their distances
from the source. In addition to solving the reachability problem, BFS can be used to find
the shortest (unweighted) path from a source vertex to all other vertices, determining if a
graph is bipartite, bounding the diameter of an undirected graph, partitioning graphs, and
as a subroutine for finding the maximum flow in a flow network (using Ford-Fulkerson’s
algorithm). As with the other graph searches, BFS can be applied to both directed and
undirected graphs. BFS is inherently parallel, at least if the diameter of the graph is mod-
est.

1 BFS and Distances

Definition 54.1 (Distance of a Vertex). To understand how BFS operates, consider a graph
G = (V,E) and a source vertex s ∈ V . For a given source vertex s, define the distance of a
vertex v ∈ V from s as the shortest distance from s to v, that is the number of edges on the
shortest path connecting s to v in G, denoted as δG(s, v).

Definition 54.2 (Breadth First Search). Breadth First Search (BFS) is a graph search that
explores a given graph “outward” in all directions in increasing order of distances. More
precisely, for all distances i < j in the graph, a vertex at distance i is visited before a vertex
at distance j.

Example 54.1. An example graph and the distances of its vertices to the source vertex 0
are illustrated below. We can imagine the vertices at each distance to form a layer in the
graph. BFS visits the vertices on layers 0, 1, 2, and 3 in that order. For example, because f
is on layer 3, we have that δ(s, f) = 3. In fact there are three shortest paths of equal length:
〈 s, a, c, f 〉, 〈 s, a, d, f 〉 and 〈 s, b, d, f 〉.

391

392 CHAPTER 54. BREADTH-FIRST SEARCH

Note. BFS does not specify the order in which the vertices at a given distance should be
visited: they can be visited in arbitrary order one by one, or they can all be visited at the
same time in parallel. We first present a sequential algorithm for BFS that visits the vertices
at a distance one by one. We then present a parallel algorithm that visits the vertices at
each distance all at once.

Reminder (Representing Enumerable Graphs). Consider an enumerable graph G = (V,E)
where V = {0, 1, . . . , n − 1}. As discussed earlier in adjacency sequence representations
we can represent enumerable graphs as an adjacency sequence—that is, a sequence of se-
quences, where the ith inner sequence contains the out-neighbors of vertex i. This repre-
sentation allows for finding the out-neighbors of a vertex in constant-work (and span).

Example 54.2. The enumerable graph below can be represented as

〈 〈 1, 2 〉 , 〈 2, 3, 4 〉 , 〈 4 〉 , 〈 5, 6 〉 , 〈 0, 4, 6 〉 , 〈 〉 , 〈 〉 〉 .

2 Sequential BFS

We present a sequential BFS algorithm that visits the vertices at a distance one by one and

2. SEQUENTIAL BFS 393

present an implementation that achieves linear work and span in the size of the graph (total
number of vertices and edges).

Algorithm 54.3 (Sequential BFS: Reachability). The sequential breadth first search (BFS)
algorithm is a specialization of graph search where a frontier vertex with the closest dis-
tance is visited in each round. Because in general there can be many vertices at the same
distance, any one of the vertices can be selected, breaking ties arbitrarily. The code for the
algorithm is shown below. As in generic graph search , the algorithm revolves around
a frontier F and a visited set X . To ensure that vertices are visited in distance order, the
frontier keeps the distance for each vertex. The algorithm returns the set of vertices X
reachable from s in G, and the maximum over all vertices v ∈ X of δG(s, v).

1 BFSReach (G = (V,E)) s =
2 let explore X F i =
3 if (|F | = 0) then (X, i)
4 else let
5 (u, j) = argmin(v,k)∈F (k)

6 X = X ∪ {u}
7 F = F \ {(u, j)}
8 F = F ∪

{
(v, j + 1) : v ∈ N+

G (u) | v 6∈ X ∧ (v,) 6∈ F)
}

9 in explore X F j end
10 in explore {} {(s, 0)} 0 end

Exercise 54.1. The computation of the new F is not quite defined in the same way as in
the generic graph search . Prove that the technique used here is consistent with that of the
generic algorithm.

Exercise 54.2. Prove that the algorithm is correct, i.e., visits all reachable vertices from the
source in the order of their distances to the source.

2.1 Cost of Sequential BFS

Sequential BFS accepts a simple and efficient implementation. To streamline the presenta-
tion and analysis, we consider here a version of the algorithm for enumerable graphs.

To start with, note that the algorithm uses the visited set X and the frontier F in a linear
fashion. That is, the algorithm only uses the most version of X and F . This allows using
ephemeral data structures to represent the visited set and the frontier.

Representation of the Visited Set. We can use a boolean sequence of size |V | to represent
the visited set. The value in the ith position indicates whether the vertex i is visited or not.
We initialize the sequence with all false’s, indicating that none of the vertices are visited.
When we visit a vertex, we update the corresponding element to true. Because the visited
set is used linearly, we can represent it with an ephemeral array, where update and sub
(lookup) operations require constant work and span.

394 CHAPTER 54. BREADTH-FIRST SEARCH

Representation of the Frontier. The frontier needs support several operations, including

1. checking that a vertex is not in the frontier,

2. removing the vertex with the smallest distance, and

3. adding the neighbors of a vertex into the frontier.

To check that a vertex is in the frontier, we can maintain an array of indicators, indicating
whether that vertex is in the frontier or not. This is very similar to the representation of
the visited set X described above . Because a vertex cannot be in the visited set and in the
frontier at the same time, we can merge these two representations and keep in X a value
indicating, whether a vertex is visited, or in the frontier, remains to be unexplored. Intu-
itively, we can think of these three different values as three distinct colors, typically called,
white (unexplored), in the frontier (gray), and visited (black). This “color abstraction” is
due to Dijkstra.

To represent the frontier, we can use a standard priority queue data structure, which sup-
port insert and remove operations in logarithmic work and span. Because BFS visits the
vertices only in increasing order of their distances, we only insert into the frontier vertices
whose distances are no smaller than those in the frontier. In other words, the priorities
increase monotonically as the algorithm proceeds.

Based on this observation, we can use simpler priority queue data structure, i.e., just a
simple ephemeral queue. Such a data structure requires constant work and span to push to
the tail of the queue and to pop from the head of the queue. In each round, we simply pop
the vertex u at the head of the queue and visit u by marking the visited sequence. After
the visit, we take all of u’s out-neighbors and check for each if they are visited. We push
each unvisited out-neighbor into the tail of the queue. This implementation maintains the
invariant that if a vertex has distance smaller than another, then it is closer to the head of
the queue.

Note. Dijkstra was well-known for his meticulous attention to use of color. During his
tenure at University of Texas at Austin, he would consistently question visiting faculty
about their choice of color in their presentations. For example, he would ask “why is that
red and not blue?”

Analysis. For per-round costs, consider a round, i.e., recursive invocation of the function
explore. The work includes checking whether the frontier (queue) is empty or not, which
is constant work. If not empty, then we pop a vertex in constant work, and then mark
it visited, also in constant work. We then find all the out-neighbors of the vertex, which
requires constant work by using the array-sequence based representation. We then check
for each neighbor whether it is visited and if not, push it to the tail of the queue, which
requires constant work per out-neighbor.

Thus the only non-constant work in a round involves the handling of out-neighbors. To
bound this cost, observe that each vertex is pushed onto the queue at most once. Thus the

3. PARALLEL BFS 395

total number of push operations is bounded by the number of vertices and their work cost
is O (|V |). To bound the cost checking that each neighbor is visited, note that each such
check corresponds exactly to one edge in the graph, and thus their number is bounded by
m, and the their total work cost is O (|E|).

Because creating the initial sequence keeping track of visited vertices requires Θ(|V |) work,
the total work of sequential BFS is O (|V |+ |E|).

Exercise 54.3. Prove that the queue based implementation of sequential BFS is correct.

3 Parallel BFS

The sequential BFS algorithm visits one vertex in each round. But a moments reflection
should convince us that the vertices in the same round are already in the frontier and could
all be visited at the same time. In this section, we present a parallel BFS algorithm that does
exactly that.

Algorithm 54.4 (Parallel BFS: Reachability). The parallel BFS algorithm is an instance of
Algorithm 53.4 where all frontier vertices are visited in each round. The code for the al-
gorithm is shown below. The algorithm searches the graph outward, starting at distance 0
(just the source s), and visiting the vertices at a distance on each round. It maintains the dis-
tance i, which it is currently visiting. The algorithms returns the set of vertices X reachable
from s in G, and the maximum over all vertices v ∈ X of δG(s, v).

1 BFSReach (G = (V,E), s) =
2 let explore X F i =
3 if (|F | = 0) then (X, i− 1)
4 else let
5 X = X ∪ F
6 F = N+

G (F) \X
7 in explore X F (i+ 1) end
8 in explore {} {s} 0 end

Parallel BFS and Distances. The Parallel BFS algorithm maintains an important invari-
ant on the distance of the vertices and their visit order. To see this invariant, let Xi denote
the vertices visited before distance (round) i. At round i, the algorithm visits vertices at a
distance i, and because the algorithm visits distances in increasing order, the vertices in Xi

are exactly those with distance less than i from the source. The following lemma establishes
this invariant.

Lemma 54.1 (Parallel BFS and Distances). In BFSReach (G = (V,E)) s, at the beginning
of every invocation of explore) (line 3), we have

X = Xi = {v ∈ V | δG(s, v) < i} , and
F = Fi = {v ∈ V | δG(s, v) = i}

396 CHAPTER 54. BREADTH-FIRST SEARCH

Proof. We prove the lemma by induction on the distance i.

In the base case, i = 0, and we have X0 = {} and F0 = {s}. This is true, because no vertex
has distance less than 0 from s and only s has distance 0 from s.

For the inductive step, we assume the properties are correct for i and want to show they
are correct for i + 1. For Xi+1, the algorithm takes the union of all vertices at distance less
than i (Xi) and all vertices at distance exactly i (Fi). So Xi+1 is exactly the vertices at a
distance less than i+ 1.

The algorithm computes Fi+1, as all neighbors of Fi minus the set Xi+1. By induction
hypothesis, all vertices Fi have distance i from s and therefore any neighbor v of F has
δG(s, v) ≤ i + 1. Furthermore, any vertex at distance i + 1 is reachable from a vertex
at distance i and therefore, the out-neighbors of Fi contain all vertices at distance i + 1.
Removing Xi+1, we are therefore left with exactly those vertices at distance i+ 1.

Example 54.3. The figure below illustrates the BFS visit order by using overlapping circles
from smaller to larger. Initially, X0 is empty and F0 is the single source vertex s, as it is the
only vertex that is a distance 0 from s. X1 is all the vertices that have distance less than 1
from s (just s), and F1 contains those vertices that are on the middle ring, a distance exactly
1 from s (a and b). The outer ring contains vertices in F2, which are a distance 2 from s (c
and d). Notice that vertices in a frontier can share the same neighbors (e.g., a and b share d).
NG(F) is defined as the union of neighbors of the vertices in F to avoid duplicate vertices.

Exercise 54.4. In general, from which frontiers could the vertices inNG(Fi) come when the
graph is undirected? What if the graph is directed?

3.1 Cost of Parallel BFS

We analyze the cost the BFS variant for reachability from source. For the analysis, we rep-
resent the main data structures by using tree-based sets and tables. This approach applies

3. PARALLEL BFS 397

to graphs whose vertices accept a comparison (total-order) operation. For a graph with m
edges and n vertices, we show that the algorithm requires O(m lg n) work O

(
d lg2 n

)
span

where d the largest distance d of any reachable vertex from the source.

Bounding Cost using Aggregation. When analyzing the cost of BFS, a natural method is
to sum the work and span over the rounds of the algorithm, each of which visits vertices
at a specific distance. In contrast with recurrence based analysis, this approach makes the
cost somewhat more concrete but can be made complicated by the fact that the cost per
round depends on the structure of the graph. We bound the cost by observing that BFS
visits each vertex at most once, and since the algorithm only looks at a vertices out-edges
when visiting it, the algorithm also only uses every edge at most once.

Let’s first analyze the cost per round. In each round, the only non-trivial work consists
of the union X ∪ F , the calculation of neighbors N = N+

G (F), and the set difference to
calculate the new frontier F = N \X . The cost of these operations depends on the number
of out-edges of the vertices in the frontier. Let’s use |F | to denote the number of out-edges
for a frontier plus the size of the frontier, i.e., |F | =

∑
v∈F (1 + d+

G(v)). We show that the
costs for each round and the total are:

Work Span

X ∪ F O(|F | lg n) O(lg n)

N+
G (F) O(|F | lg n) O(lg2 n)

N \X O(|F | lg n) O(lg n)

Total over d rounds O(m lg n) O(d lg2 n)

The first and last lines fall directly out of the tree-based cost specification for the set ADT.
Note that |N | ≤ |F |. The second line is a bit more involved. The union of out-neighbors is
implemented as

N+
G (F) = Table.reduce Set .Union

{}
(Table.restrict G F)

Let GF = Table.restrict G F . The work to find GF is O(|F | lg n). For the cost of the union,
note that the set union results in a set whose size is no more than the sum of the sizes of
the sets unioned. Furthermore recall that the cost of set union on sets of size k and l (k ≤ l)
is bounded by O(k log(1 + l/k)) ⊂ O(k + l). The O(k + l) follows from the fact that for
x ≥ 0, log x < x. The total work per level of reduce is therefore no more than |F |. Since
there are O(lg n) such levels, the work is bounded by

W (reduce union {} GF)

= O
(

lg |GF |
∑

(v 7→N(v))∈GF (1 + |N(v)|)
)

= O (lg n · |F |) .

398 CHAPTER 54. BREADTH-FIRST SEARCH

The span is bounded by

S (reduce union {} GF) = O(lg2 n),

because each union has span O(lg n) and the reduction tree is bounded by lg n depth.

Focusing on a single round, we can see that the cost per vertex and edge visited in that
round is O(lg n). Furthermore we know that every reachable vertex only appears in the
frontier exactly once. Therefore, all the out-edges of a reachable vertex are also processed
only once. Thus the cost per edge We and per vertex Wv over the algorithm is the same
as the cost per round. We thus conclude that Wv = We = O(lg n). Since the total work is
W = Wvn+Wem (recall that n = |V | and m = |E|), we thus conclude that

WBFS(n,m, d) = O(n lg n+m lg n)
= O(m lg n), and

SBFS(n,m, d) = O(d lg2 n).

We drop the n lg n term in the work since for BFS we cannot reach any more vertices than
there are edges.

Notice that span depends on d. In the worst case d ∈ Ω(n) and BFS is sequential. Many real-
world graphs, however, have low diameter; for such graphs BFS has good parallelism.

4 Shortest Paths and Shortest-Path Trees

As established in Lemma 54.1, the Parallel BFS algorithm effectively calculates the dis-
tance to each of the reachable vertices. In this section, we extend parallel BFS to compute
distances.

Algorithm 54.5 (Unweighted Shortest Paths). The following variant of the Parallel BFS
algorithm takes a graph and a source and returns a table mapping every reachable vertex v
to δG(s, v). The algorithm uses the table X both to keep track of the visited vertices and for
each of these vertices to keep its distance from s. When visiting the vertices in the frontier
the algorithm adds them to X with distance i.

1 BFSDistance(G = (V,E), s) =
2 let explore X F i =
3 if (|F | = 0) then (X, i− 1)
4 else let
5 X = X ∪ {v 7→ i : v ∈ F}
6 F = N+

G (F) \ domain(X)
7 in explore X F (i+ 1) end
8 in explore {} {s} 0 end

4. SHORTEST PATHS AND SHORTEST-PATH TREES 399

Shortest Paths. In addition to computing distances, we can also use BFS to compute a
shortest path from the source to each reachable vertex. The basic idea is to use the graph-
search tree for BFS. Recall that the search tree is over the visited vertices, and the parent of
each vertex v is an in-neighbor of v that was already visited when v is visited.

Theorem 54.2 (BFS Tree Gives Shortest Paths). Given a graph-search tree for BFS, the path
from any vertex v to the source s in the tree when reversed is a shortest path from s to v in
G.

Proof. The proof is by induction on the distance of the vertex. For the distance-0 vertex, we
only have the source and the lemma holds trivially. Suppose that the lemma holds for all
distances up to but excluding distance i. Consider a vertex v visited at distance i. We know
that all in-neighbors already visited when v is visited are at distance i − 1, because other-
wise, by Lemma 54.1, the algorithm would visit v earlier. Note that if the in-neighbors are
at a larger distance, then, by Lemma 54.1, they would not have been visited. By induction,
the property holds for all in-neighbors of v. Because a shortest path to v goes through one
of the in-neighbors, the property also holds for v.

Shortest-path Tree. Because of this property we refer to a graph-search tree generated
by BFS as a (unweighted) shortest-path tree. Given such a shortest-path tree, we can then
compute the shortest path to a particular vertex v by following the path in the tree from s
to v.

We can generate a shortest-path tree in two ways. One way is to change BFS slightly to
keep track of parents. We do this later in Algorithm 54.6. Another is to post process the
result of Algorithm 54.5. In particular each vertex can pick as its parent any one of its
in-neighbors that has a distance that is closer than its own distance. If X is a mapping of
vertices to their distances from s in G (as returned by BFSDistance), then the shortest path
tree can be computed as:

T = {v 7→ u : (u, v) ∈ E | X[u] < X[v]}.

In T each visited vertex, other than s, will map to its parent in the shortest path tree. For a
given v there can be multiple edges that satisfy X(u) < X(v), and the construction of the
table, and corresponding tree, will pick one of them.

Example 54.4. A directed graph (left) and two possible BFS trees with distances from s
(middle and right). Non-tree edges, which are edges of the graph that are not on a shortest
paths are indicated by dashed lines.

400 CHAPTER 54. BREADTH-FIRST SEARCH

Single-Source Shortest Paths. The problem of finding the shortest path from a source to
all other vertices (unreachable vertices are assumed to have infinite distance), is called the
single-source shortest path problem. Here we are measuring the length of a path as the
number of edges along the path. In later chapters we consider shortest paths where each
edge has a weight (length), and the shortest paths are the ones for which the sums of the
weights are minimized. Breadth-first search does not work for the weighted case.

BFS Tree with Sequences. Assume performing parallel BFS on an enumerable graph,
which can be represented using sequences also see the reminder above .

Notice that in BFS the visited set is used linearly and thus we can represent it with an
ephemeral data structure. Because the vertices are enumerable, we can use a sequence,
specifically an ephemeral or a single-threaded array sequence . To mark the visited vertices
we use inject , which requires constant work per vertex. For marking vertices, we can use
either a Boolean flag to indicate its status, or the label of the parent vertex (if any). The
latter representation can help up construct a BFS tree.

Algorithm 54.6 (BFS Tree with Sequences). We present a variant of BFS that computes the
shortest-path tree from the source by using sequence-based data structures. The algorithm
returns a shortest-paths tree as a sequence mapping each vertex (position) to its parent in
the shortest-paths tree. The source points to itself and unvisited vertices contain None.

The algorithm is similar to the generic graph search algorithm with one important dif-
ference: the visited sequence X contains the parents for both the visited and the frontier

4. SHORTEST PATHS AND SHORTEST-PATH TREES 401

vertices, instead of just for the visited vertices. This approach streamlines the computation
of the shortest path tree. The frontier F is represented using a sequence of vertices.

Each round starts by visiting the vertices in the frontier. Next, it computes the sequence
N of the unvisited neighbors of vertices in the frontier, each paired with Some(v) for the
vertex v ∈ F it came from. It does this by calculating for each vertex v ∈ F its unvisited
neighbors (the function f(v)) and then flattening the results.

The algorithm uses inject to write each of the frontier vertices into X . Any given vertex in
N can appear multiple times with different source vertices, but inject will select one parent
for each, breaking ties arbitrarily. The iteration completes by having each vertex inN check
if it was selected and keeping those that were selected as the next frontier. This removes
any duplicates from N so every new frontier vertex will appear exactly once.

1 BFSTree (G, s) =
2 let
3 explore(X,F) =
4 if (|F | = 0) then X
5 else let
6 (* Visit F *)
7 f(v) = 〈 (u,Some v) : u ∈ G[v] | X[u] = None 〉
8 N = Seq .flatten 〈 f(v) : v ∈ F 〉
9 X = Seq .inject X N
10 F = 〈u : (u, v) ∈ N | X[u] = v 〉
11 in explore(X,F) end
12 X = 〈None : v ∈ 〈 0, . . . , |G| − 1 〉 〉
13 X = Seq .update X (s,Some s)
14 in explore(X, {s}) end

4.1 Cost with Sequences

We analyze the work and span of the variant of BFS that returns a shortest-paths tree .

Because the algorithm uses visited-set linearly, i.e., once the visited vertices X is updated,
it is never used again. We can use ephemeral sequences or single-threaded sequences to
represent X . In such a representation all update and inject operations take constant work
per position updated. Initialization requires Θ(n) work and constant span.

Cost Analysis. The cost of the algorithm is dominated by flatten, inject , and by the con-
struction of the next frontier F in Lines 8, 9, and 10. The following table gives costs for each
round, and then the total across rounds including also the Θ(n) initialization cost.

402 CHAPTER 54. BREADTH-FIRST SEARCH

Line Work Span

8 (f(v) and flatten) O (|Fi|) O (lg n)
9 (inject) O (|Fi|) O (1)
10 (the new F) O (|Fi|) O (lg n)

Total over d rounds O (n+m) O (d lg n)

As before, d is the length of the longest reachable path from the root.

Chapter 55

Depth-First Search

The Depth-First Search (DFS) algorithm is a special case of the generic graph-search algo-
rithm, where each round visits the frontier vertex that is most recently discovered. DFS has
many applications. For example, it can be used to solve the reachability problem, to find
cycles in a graph, to topologically sort a directed acyclic graph, to find strongly connected
components of a directed graph, and to test whether a graph is biconnected or not. Unlike
BFS, DFS is inherently sequential, because it only visits one vertex at a time.

1 DFS Reachability

Recall that in graph search, in each round, we can choose any (non-empty) subset of the
vertices in the frontier and visit them. We say a vertex is discovered when it is added to
the frontier. The DFS algorithm is a specific graph search that in each round picks the most
recently discovered vertex in the frontier and visits it.

Because DFS only visits one vertex in each round, the unvisited (out) neighbors of that
vertex will be discovered in the round, and will be the most recent. To break ties among
the out-neighbors, we assume the out-edges of each vertex are ordered. We allow any order
of the out-neighbors.

Algorithm 55.1 (DFS with a Stack). We can implement DFS by representing the frontier
with a stack. In each round we pop the top (first) vertex off the stack and visit it. We then
push the out-neighbors discovered in the round onto the stack in their out-neighbor order.
In the pseudo-code below we use a sequence for the stack, the nth F 0 removes the first
element in the frontier and the sequence append (@) pushes the out-neighbors onto the
frontier. As with other graph searches X is the set of visited vertices, and the algorithm
returns all vertices reachable from s in G.

403

404 CHAPTER 55. DEPTH-FIRST SEARCH

1 DFSStack (G, s) =
2 let
3 explore X F =
4 if (|F | = 0) then X
5 else
6 let
7 u = nth F 0
8 visit u
9 X = X ∪ {u}
10 F =

〈
v : v ∈ N+

G (u) | v 6∈ X
〉

@ F [1 . . . |F | − 1]
11 in explore X F end
12 in explore {} 〈 s 〉 end

Algorithm 55.2 (DFS, Recursively). We can implement DFS more simply via recursion. As
usual, X is the set of visited vertices, which the algorithm returns. In the recursive DFS ,
immediately after a vertex v is visited (i.e., added to the set X), the algorithm iterates over
all its neighbors trying to visit them. Therefore the next vertex the algorithm will visit is
the first unvisited out-neighbor of v, if any.

DFSReach (G, s) =
let DFS (X, v) =

if v
?
∈ X then X

else
let X ′ = X ∪ {v} in

iterate DFS X ′ N+
G (v)

end
in DFS ({} , s) end

Note. The notation v
?
∈ X stands for checking that v is in set X . It returns true if v is in X

and false otherwise.

Note. Unlike the generic search algorithm and BFS, the algorithm does not maintain the
frontier explicitly. Instead, the frontier is implicitly represented in the recursion—i.e., when
we return from DFS , its caller will continue to iterate over vertices in the frontier.

Example 55.1. Below is an example of DFS on a graph where edges are ordered counter-
clockwise, starting from the left. Each row of the table corresponds to the arguments to
one call to DFS (X, v) in the order they are called. In the last four rows the vertices have
already been visited, so the call returns immediately without revisiting the vertices since
they appear in X .

2. DFS TREES 405

v X visit
s {} X
a {s} X
c {s, a} X
e {s, a, c} X
f {s, a, c, e} X
b {s, a, c, e, f} X
d {s, a, c, e, f, b} X
c {s, a, c, e, f, b, d} 7
f {s, a, c, e, f, b, d} 7
s {s, a, c, e, f, b, d} 7
b {s, a, c, e, f, b, d} 7

2 DFS Trees

Definition 55.3 (Tree and Non-Tree Edges in DFS). Consider performing DFS on a graph
G = (V,E) with some source s. We call an edge (u, v) ∈ E a tree edge if the vertex v is
discovered during the visit to u. The tree edges T define the DFS tree rooted at s.

We classify the non-tree edges further into back edges, forward edges, and cross edges.

• A non-tree edge (u, v) is a back edge if v is an ancestor of u in the DFS tree.

• A non-tree edge (u, v) is a forward edge if v is a descendant of u in the DFS tree.

• A non-tree edge (u, v) is a cross edge if v is neither an ancestor nor a descendant of u
in the DFS tree.

Example 55.2. Tree edges (black), and non-tree edges (red, dashed) illustrated with the
original graph and drawn as a tree.

406 CHAPTER 55. DEPTH-FIRST SEARCH

Exercise 55.1. Show that undirected graphs cannot have any cross edges.

Proof. We prove by contradiction. Let’s say {u, v} is a cross edge, and without loss of
generality let’s say u is visited first. Then as we visit the neighbors of u we will visit v,
making the edge a tree edge—a contradiction.

DFS Visit, Revisit, and Finish. When applying DFS, it turns out it is helpful to distin-
guish the following points in the algorithm for each vertex v:

• visit: when v is (first) visited

• revisit: when v is re-visited, or encountered but not visited again, and

• finish: when all vertices reachable from v have been visited.

Essentially all applications of DFS do their interesting work during their initial visit, the
revisits, and the finish. For this reason it is useful to define a generic version of DFS ,
which makes it possible to perform a desired computation at a visit, revisit, and finish.

Note. In the recursive formulation of DFS finish of v corresponds to when the iterate com-
pletes and the algorithm returns from DFS (, v)).

Algorithm 55.4 (Generic DFS). The generic DFS algorithm takes a graph, a source, and
an application-specific state or structure Σ and threads Σ through the computation along
with the visited set X . The three application-specific functions visit , finish , and revisit
manipulate the state. The algorithm returns the final state with the visited vertices.

3. DFS NUMBERS 407

1 DFSGeneric G ((Σ, X), v) =

2 if (v
?
∈ X) then (revisit Σ v,X)

3 else let
4 Σ′ = visit Σ v
5 X ′ = X ∪ {v}
6 (Σ′′, X ′′) = iterate (DFSGeneric G) (Σ′, X ′) (N+

G (v))
7 in (finish Σ′′ v,X ′′) end

Note. The generic algorithm starts takes in as an argument a visited set X (instead of start-
ing with the empty set). This allows performing DFS multiple times over the same graph
possibly with different sources without revisiting previously visited vertices.

Algorithm 55.5 (Generic DFSAll). The DFSAll algorithm runs DFS over all vertices of a
graph, visiting each once.

DFSAll (G = (V,E)) Σ =
iterate (DFSGeneric G) (Σ, {}) V

Exercise 55.2. Why would we need the function DFSAll?

Solution. DFS from a source visits only the vertices reachable from that source. If there
are vertices than are not reachable from the source, they will not be visited. We can use
DFSAll to make sure that all vertices in the graph are visited.

3 DFS Numbers

Definition 55.6 (DFS Numbers). In DFS, we can assign two timestamps to each vertex: the
time at which a vertex runs visit (when first visited) and the time it runs finish (when done
visiting its out-neighbors). These are respectively called the visit time and the finish time.
We refer to the timestamps as DFS numbers.

Example 55.3. A graph and its DFS numbers are shown below; t1/t2 denotes the times-
tamps showing when the vertex is visited and finished respectively. Note that vertex a
gets a finish time of 12 since it does not finish until all vertices reachable from its two out
neighbors, c and b, have been fully explored. Vertices d, e and f have no un-visited out
neighbors, and hence their finish time is one more than their visit time.

408 CHAPTER 55. DEPTH-FIRST SEARCH

Generating DFS Numbers. We can generate the visit and finish times by using the generic
DFS algorithm with the following definitions:

Σ0 = (0, {} , {})
visit (i, TV , TF) v = (i+ 1, TV ∪ {v 7→ i}, TF)
finish (i, TV , TF) v = (i+ 1, TV , TF ∪ {v 7→ i})
revisit Σ v = Σ.

The state Σ is a triple representing the time i, a table TV mapping vertices to their visit
times, and a table TF mapping vertices to their finish time. The time starts at 0 and the
tables start empty. Each visit tags v in TV with the current time, and each finish tags v in
TF with the current time. They both increment the time. The revisit function does nothing.
When called as

DFSAll G Σ0

the resulting tables will include visit and finish times for all vertices in G.

Lemma 55.1 (DFS Numbers). The visit and finish times can be used to determine which
edges are cross edges, forward edges, and back edges. In particular for all non-tree edges
(u, v) ∈ E \ T we have

(u, v) =

 cross if TV(u) > TV(v) and TF (u) > TF (v)
forward if TV(u) < TV(v) and TF (u) > TF (v)
back if TV(u) > TV(v) and TF (u) < TF (v)

Example 55.4. An example DFS from source s, its tree and non-tree edges, and its DFS
numbers are illustrated below.

4. COST OF DFS 409

Exercise 55.3. Prove the DFS Numbers Lemma .

Exercise 55.4. Consider a DFS on a graph and define for each vertex v,its exploration
interval as the time interval [TV(v), TF (v)]. Restate the DFS Numbers Lemma in terms of
exploration intervals and their overlaps.

4 Cost of DFS

We analyze the cost of DFS, specifically the DFSAll function, which applies DFS to all
vertices in the graph. Because DFSAll is generic, the cost depends on the state Σ and the
function visit , revisit , and finish . We therefore present a bound in terms of the number of
calls to these functions.

Lemma 55.2 (Bound on DFS calls). For a graph G = (V,E) with m edges, and n vertices,
and for any state Σ, the call DFSAll G Σ makes n + m calls to DFS , n calls to visit and
finish , and m calls to revisit .

Proof. Because each vertex is added to X , when it is first visited, every vertex will only be
visited (and finished) once. The revisit function gets called every time DFS is called but
the vertex is not visited, i.e., for a total of m + n − n = m times. Because each vertex is
visited exactly once, every out-edge is also traversed once, invoking a call to DFS . There
are also n calls to DFS directly from DFSAll G Σ. Total number of calls to DFS is therefore
n+m.

Cost of Graph Operations. Each call to DFS performs one find operation to check v
?
∈ X .

Every time the algorithm visits a vertex, it performs one insertion of v into X (X ∪ {v}). In
total, the algorithm therefore performs at most n insertion and m + n find operations. To
iterate over the out-neighbors of a vertex, the algorithm also have to lookup the neighbors
of each vertex once.

410 CHAPTER 55. DEPTH-FIRST SEARCH

For a tree-based implementation of sets and an adjacency table representation of graphs all
operations take O(lg n) work.

For enumerable graphs with V = {0, . . . , n− 1} we can implement DFS more efficiently
using an ephemeral array sequences for X , and adjacency sequences for the graphs giving
O(1) work per operation.

Algorithm 55.7 (DFS with Array Sequences). The following version of DFS uses adjacency
sequences for representing the graph and array sequences for keeping track of the visited
vertices.

DFSSeq : (int seq) seq → α× int → bool seq

1 DFSseq G (Σ, s) =
2 let DFS ((Σ, X), v) =
3 if X[v] then (revisit Σ v,X)
4 else let
5 Σ′ = visit Σ v
6 X ′ = Seq .update X (v,true)
7 (Σ′′, X ′′) = iterate DFS (Σ′, X ′) (G[v])
8 in (finish Σ′′ v,X ′′) end
10 in DFS ((Σ, X0), s) end

Cost Specification 55.8 (DFS). Consider the DFS algorithm on a graph with m out edges,
and n vertices.

For adjacency table representation of graphs, and the tree-based cost specification for sets
and tables, DFS runs in O((m+ n) lg n) work and span (assuming visit , finish , and revisit ,
all take O(log n) work).

For enumerable graphs using adjacency sequences (array based), and ephemeral sequences
for X , DFS runs in O(m + n) work and span (assuming visit , finish , and revisit , all take
constant work).

4.1 Parallel DFS

Difficulty of Parallel DFS. At first sight, we might think that DFS can be parallelized
by searching the out edges in parallel. This will work if the searches on each out edge
never “meet up”, which is the case for a tree. However, in general when portions of the
graph reachable through the outgoing edges are shared, visiting them in parallel creates
complications. This is because it is important that each vertex is only visited once, and in
DFS it is also important that the earlier out-edge visits any shared vertices, not the later
one. This makes it very difficult to parallelize.

Example 55.5. Consider the example graph drawn below.

5. CYCLE DETECTION 411

If we search the out-edges of s in parallel, we would visit the vertices a, c and e in parallel
with b, d and f . This is not the DFS order because in the DFS order b and d will be visited
after a. In fact, it is BFS ordering. Furthermore the two parallel searches would have to
synchronize to avoid visiting vertices, such as b, twice.

Remark (DFS is P-Complete). Depth-first search is known to be P-complete, a class of com-
putations that can be done in polynomial work but are widely believed not to admit a poly-
logarithmic span algorithm. A detailed discussion of this topic is beyond the scope of this
book, but it provides evidence that DFS is unlikely to be highly parallel.

5 Cycle Detection

Definition 55.9 (Cycle-Detection Problem). The cycle-detection problem requires deter-
mining whether there is a cycle in a graph.

We can use DFS to detect cycles in a directed graph. To see this, consider the different
kinds of non-tree edges in a DFS. Forward edges don’t create cycles because they go from
ancestors to descendants, and thus create an alternative path between vertices but in the
same direction as the tree edges. Cross edges don’t create cycles because they create a
unidirectional path from one set of vertices to another. Back edges do create cycles by
making an ancestor reachable from a descendant (which is reachable from a descendant).

Theorem 55.3 (Back Edges Imply Cycles). A directed graph G = (V,E) has a cycle if and
only if a DFSAll on G has a back edge.

Proof. To prove the theorem we consider both directions of the implication.

If a graph has a back edge (u, v), then there is a path from v to u in the DFS tree, followed
by the edge (u, v), forming thus a cycle.

412 CHAPTER 55. DEPTH-FIRST SEARCH

Consider a graph with a cycle and perform DFS on the graph. Consider the first vertex
v at which the DFS enters the cycle and let u be the vertex before v in the cycle, i.e., the
edge (u, v) in on the cycle. The DFS will next visit all the vertices in the cycle, because each
vertex is reachable from v, and revisit v through the edge (u, v). Because v is an ancestor of
u in the DFS tree, (u, v) is a back edge.

By the theorem above we can check for cycles in a directed graph by generating the DFS
numbers and checking that there is no back edge. Alternatively, we can check for cycles
directly with DFS by maintaining a set of ancestors and checking that there is no edge that
leads to an ancestor.

Algorithm 55.10 (Directed Cycle Detection). Define the state Σ is a pair containing a boolean
flag indicating whether a cycle has been found and a set ancestors containing all ancestors
of the current vertex. Define the initial state Σ0 and the functions visit , finish , and revisit as
follows.

Σ0 = (false, {})
visit (flag , ancestors) v = (flag , ancestors ∪ {v})
finish (flag , ancestors v = (flag , ancestors \ {v})
revisit (flag , ancestors) v = (flag ∨ (v

?
∈ ancestors), ancestors)

The function cycleDetect defined as

cycleDetect G = first (DFSAll G Σ0)

returns true if and only if there are any directed cycles in G.

To maintain ancestors , we add a vertex to the set when we first visit it and remove it when
we finish it. On a revisit to a vertex v we simply check if v is in ancestors and if it is, then
there is a cycle.

Cycle Detection in Undirected Graphs. We can try to apply the cycle-detection algo-
rithm to undirected graphs by representing an undirected edge as two directed edges, one
in each direction. Unfortunately this does not work, because it will find that every edge
{u, v} forms a cycle of length two, from u to v and back to u.

Exercise 55.5. Design a cycle finding algorithm for undirected graphs.

6 Topological Sort

Definition 55.11 (Directed Acyclic Graph (DAG)). A directed acyclic graph, or a DAG, is
a directed graph with no cycles.

6. TOPOLOGICAL SORT 413

DAGs and Partial Orders. A partial order ≤p over a set of elements is a binary relation
that satisfies

• transitivity (a ≤p b and b ≤p c implies a ≤p c), and

• antisymmetry (for distinct a and b, a ≤p b and b ≤p a cannot both be true).

A partial order allows elements to be unordered—i.e., neither a ≤p b nor b ≤p a—hence,
the term “partial”.

In a graph, if we interpret a ≤p b as b is reachable from a then transitivity is true for all
graphs, and antisymmetry is true if there are no cycles in the graph. If two vertices cannot
reach each other, they are unordered. Reachability in a DAG therefore defines a partial
order over the vertices. In the rest of this section, we associate with DAGs a partial order
relation that corresponds to reachability.

Given a DAG, it is sometimes useful to put the vertices in a total order that is consistent
with the partial order. That is to say that if a ≤p b in the partial ordering then a is before
b in the total ordering. This is always possible, and is called a topological sort. The term
“topological” comes from the fact that if we order the vertices in a line from left to right, all
edges in the graph would go from left to right.

Example 55.6 (Dependency Graphs). Topological sort is often useful for dependency graphs,
which are directed graphs where vertices represent tasks to be performed and edges rep-
resent the dependencies between them. Accomplishing nearly anything that is reasonably
complex requires performing a number of tasks some of which depend on each other. For
example, on a cold winter morning, we would put our socks first and then our shoes. Like-
wise, we would put on our pullover before our coat. If we organize these tasks as a graph, a
topological sort of the graph tells us how we can dress without breaking the dependencies.

Note that dependency graphs should not have cycles, because otherwise it would be im-
possible to satisfy the dependencies. Dependency graphs are therefore DAGs.

Definition 55.12 (Topological Sort of a DAG). The topological sort (or topological ordering)
of a DAG (V,E) is a total ordering, v1 < v2 . . . < vn of the vertices in V such that for any
directed edge (vi, vj) ∈ E, i < j holds. Equivalently if vi can reach vj then i ≤ j.

Example 55.7 (Climbers Sort). As an example, consider what a rock climber must do before
starting a climb to protect herself in case of a fall. For simplicity, we only consider the tasks
of wearing a harness and tying into the rope. The example is illustrative of many situations
which require a set of actions or tasks with dependencies among them.

The graph below presents a subset of the tasks that a rock climber must follow before they
start climbing, along with the dependencies between the tasks. The graph is a directed
graph with the vertices being the tasks, and the directed edges being the dependences be-
tween tasks. Performing each task and observing the dependencies in this graph is crucial
for the safety of the climber—any mistake puts the climber as well as her belayer and other
climbers into serious danger. While instructions are clear, errors in following them abound.

414 CHAPTER 55. DEPTH-FIRST SEARCH

There are many possible topological orderings for the DAG. For example, following the
tasks in alphabetical order yield a topological sort. For a climber’s perspective, this is not
a good order, because it has too many switches between the harness and the rope. To
minimize errors, climbers prefer to put on the harness (tasks B, D, and E, in that order),
prepare the rope (tasks A and B), rope through, and finally complete the knot, get her gear
checked, and climb on (tasks F, G, and I, in that order).

6. TOPOLOGICAL SORT 415

The following property of DFS numbers allows us to use them to solve topological sorting
using DFS.

Lemma 55.4 (DAG Finish Order). For DFSAll on a DAG G, if a vertex u is reachable from
v then u will finish before v.

Proof. We consider two cases.

1. u is visited before v. In this case u must finish before v is visited otherwise there
would be a path from u to v and hence a cycle.

2. v is visited before u. In this case since u is reachable from v it must be visited while
searching from v and therefore finish before v finishes.

This lemma implies that if we order the vertices by finishing time (latest first), then all
vertices reachable from a vertex v will appear after v in the ordering. This is exactly the
property we require from a topological sort. We could therefore simply generate the DFS
numbers and sort by decreasing finish time. We can also calculate the ordering directly as
follows.

Algorithm 55.13 (Topological Sort). Define the state Σ as a sequence of vertices represent-
ing a topological sort of the vertices finished thus far. Define the initial state Σ0 and the
functions visit , finish , and revisit as follows.

Σ0 = 〈 〉
visit Σ v = Σ
finish Σ v = 〈 v 〉 @ Σ
revisit Σ v = Σ

The function decreasingFinish defined as

decreasingFinish G = first (DFSAll G Σ0)

returns a topological order for all the vertices of the DAG G.

This specialization of DFS adds a vertex to the front of the sequence Σ each time a vertex
finishes. This effectively ensures that vertices are inserted in decreasing order of their finish
time (the last vertex to finish will be the first). The visit and revisit functions do nothing.

Exercise 55.6. Prove that for enumerable graphs, the work and span of the topological sort
algorithm can be bounded by O(|V |+ |E|).

Hint. You will need to represent sequences in a way that ensures that all of visit , revisit
and finish requires constant work.

416 CHAPTER 55. DEPTH-FIRST SEARCH

7 Strongly Connected Components (SCC)

Definition 55.14 (Strongly Connected Graph). A directed graph G = (V,E) is strongly
connected if all vertices can reach each other.

Definition 55.15 (Strongly Connected Components). For a directed graph G = (V,E), a
subgraph H of G is a strongly connected component if H is strongly connected and is
maximal, i.e., adding more vertices and edges from G into H , breaks strong connectivitiy.

Definition 55.16 (Component DAG). Contracting each strongly connected component in
a graph into a vertex and eliminating duplicate edges between components yields a com-
ponent DAG, where each component is represented by a single vertex.

Example 55.8. The graph illustrated below on the left has three strongly connected com-
ponents. The component DAG on the right shows the graph that remains after we contract
each component to a single vertex.

Definition 55.17 (SCC Problem). The Strongly Connected Components (SCC) problem re-
quires finding the strongly connected components of a graph and returning them in topo-
logical order.

Example 55.9. For the graph

7. STRONGLY CONNECTED COMPONENTS (SCC) 417

the strongly connected components in topological order are:

〈 {c, f, d} , {a} , {e, b} 〉

Intuition for an Algorithm. To develop some intuition towards an algorithm for the SCC
problem, suppose that we find one representative vertex for each component and we topo-
logically sort the representatives according to the components DAG. We know that if we
run a DFS from a representative vertex u, we will find all the vertices in the connected
component of u, but also possibly more, because vertices in another component can be
reachable, leading to an undesirable “overflow.” Notice now that if we reach a vertex v
that is not within u’s component, then v’s component “comes after” u’s in the topological
sort of the DAG of components, because all edges between components flow from “left to
right” in the topological order.

We can prevent this “overflow” by flipping the direction of each edge in the graph—this
is called transposing the graph. This does not change the reachability relation within a
connected component but the edges between components now flow from “right to left”
with respect to the topological sort of the component DAG. This means that if we search
out of a representative of a component, we will reach the vertices in the component and
the (non-component) vertices that are in earlier components.

Recall that we assumed that our representatives are topologically sorted. Imagine now
starting with the first representative and performing a DFS, we know that there will be no
overflow. Let’s mark these vertices visited and move on to the second representative and
perform a DFS. We may now reach vertices from the first component, but this is easy to
detect, because we have already marked them visited, and there will be no overflow. In
this way, we can find all the connected components with a forward sweep through our
representatives, while doing DFS in the transposed graph.

418 CHAPTER 55. DEPTH-FIRST SEARCH

Our algorithm will effectively follow this intuition but with a twist: we cannot topologi-
cally sort an arbitrary graph, specifically graphs that have cycles. We will therefore con-
sider relaxation and sort the vertices of the graph in decreasing finish time by using the
function decreasingFinish from Algorithm 55.13. This suffices because it will correctly or-
der vertices in different components.

Lemma 55.5 (First Visited). For a directed graph G = (V,E) if u ∈ V is the first vertex
visited by a DFS in its component, then for all v reachable from u, TF (u) > TF (v). Recall
that TF (x) is the finish time of x.

Proof. Since u is the first visited in its component, and it can reach all other vertices in its
component, it will visit and finish all of them before finishing. Therefore if v is in the same
component, v will finish first. If v is in a different component there are two cases:

1. v is visited before u. Since u is not reachable from v, v must have finished before u is
even visited.

2. u visited before v. In this case u is an ancestor of v and therefore must finish after v
finishes.

Note these two cases are effectively the same as in Lemma 55.4.

Algorithm 55.18 (Strongly Connected Components). The algorithm SCC starts by sorting
the vertices of the graph in decreasing of their finish time by using the function decreasingFinish
from Algorithm 55.13. The function DFSReach returns the set of all vertices reachable from
v that have not already been visited as indicated by X , as well as an updated X including
the vertices that it visits. The iterate goes over the vertices in F in order. The if (|A| = 0)
skips over empty sets, which arises when the vertex v has already been visited.

SCC (G = (V,E) =
let
F = decreasingFinish G
GT = transpose G

SCCOne ((X, comps), v) =
let (X ′, comp) = DFSReach GT (X, v) in
if |comp| = 0 then

(X ′, comps)
else

(X ′, 〈 comp 〉 @ comps)
end

in
iterate SCCOne ({} , 〈 〉) F

end

7. STRONGLY CONNECTED COMPONENTS (SCC) 419

Example 55.10. Consider the SCC algorithm on the following graph G:

If decreasingFinish processes the vertices in alphabetical order, then we have that:

F = 〈 c, f, d, a, e, b 〉 .

In particular when a is visited, 〈 a, e, b 〉will be added and when c is visited 〈 c, f, d 〉will be
added. The transpose graph GT is:

The iterate of DFS on GT for each vertex in F , gives for each step:

DFSReach GT ({} , c) → {c, d, f}
DFSReach GT ({c, d, f} , f) → {}
DFSReach GT ({c, d, f} , d) → {}
DFSReach GT ({c, d, f} , a) → {a}
DFSReach GT ({a, c, d, f} , e) → {b, e}
DFSReach GT ({a, b, c, d, e, f} , b) → {}

All the empty sets are dropped, so the final output is:

〈 {c, d, f} , {a} , {b, e} 〉 .

Theorem 55.6 (SCC Correctness). Algorithm 55.18 solves the SCC problem.

Proof. Summary: Running DFSReach on the first vertex x of a SC component X will visit
exactly the vertices in X since the other components that it can reach in GT (can reach it in
G) have already been visited (first from each is earlier in F), and no other components can
be reached from x in GT . This leaves just X , which is reachable and unvisited.

Full proof: Because of Lemma 55.5, the first vertex from each SC component in F appears
before all other vertices it can reach. Thus when the iterate hits the first vertex x in a
component X , the following conditions are true:

420 CHAPTER 55. DEPTH-FIRST SEARCH

1. No vertex in X has been visited since we are working on the transpose of the graph,
and all reachable vertices from x come after x in F .

2. All vertices in X are reachable from x in the transpose graph since transposing does
not affect reachability within a component.

3. All other components that can reach X have previously been visited since their first
element appears before x in F , and all other vertices of the component are reachable
from the first.

4. All other components that cannot reach X in G cannot be reached from X in the
transpose GT—edges are reversed.

Therefore when running DFSReach on x we will visit exactly the vertices in X—they have
not been visited (1) and are reachable (2), and all other components have either been vis-
ited (3), or are unreachable (4). Running DFSReach on any vertex that is not first in its
component will return the empty set since its component has already been visited.

Finally the components are returned in topological order since in F the first vertex in each
component are in topological order, and hence will be visited in that order.

Exercise 55.7. Give the algorithm for DFSReach used in the SCC algorithm in terms of
the generic DFS algorithm .

Exercise 55.8. What is the work and span of the SCC algorithm ? Work out the repre-
sentation that you use for the graphs as well as other data structures such as the visited
set.

8 Discussions

Compared to BFS DFS has the disadvantage of being sequential. If we don’t insist on visit-
ing vertices in DFS order, then it is possible to parallelize DFS; such parallel unordered DFS
algorithms are beyond the scope of this book. Given that BFS exposes plenty of parallelism,
one might ask why do we need DFS at all. There are several reasons why.

• BFS and DFS can have very different space requirements. For most practical graphs,
the frontier in BFS will be significantly larger than the frontier in DFS, because most
graphs have small diameters. In some cases, keeping in memory the frontier of BFS
could be a challenge.

• In some applications, the graph is so large that it cannot possibly be represented di-
rectly but must be “discovered” as we traverse it. In such graphs, computing the
frontier of BFS could be infeasible. Many graphs representing large search spaces
have this property, e.g., a game search tree or the configuration space in (robot) mo-
tion planning. Because DFS “drills down” to the “goal”, it performs much better.

8. DISCUSSIONS 421

• In same applications DFS exhibits better “data locality” compared to BFS. For exam-
ple, many garbage collection algorithms benefit from DFS rather than BFS, because
DFS traversal order corresponds more closely with data layout.

Part XV

Shortest Paths

422

Chapter 56

Introduction

Given a graph where edges are labeled with weights (or distances) and a source vertex,
what is the shortest path between the source and some other vertex? Problems requiring
us to answer such queries are broadly known as shortest-paths problems.

In this chapter, we define several flavors of shortest-path problems and in the next three
chapters describe three algorithms for solving them: Dijkstra’s , Bellman-Ford’s , and
Johnson’s algorithms. Dijkstra’s algorithm is more efficient but it is mostly sequential and
it works only for graphs where edge weights are non-negative. Bellman-Ford’s algorithm is
a good parallel algorithm and works for all graphs but performs significantly more work.
Dijkstra’s and Bellman-Ford’s algorithms both find shortest paths from a single source,
Johnson’s algorithm extends this to find shortest paths between all pairs of vertices. It is
also highly parallel.

1 Path Weights

Consider a weighted graph G = (V,E,w), where V is the set of vertices, E is the set of
edges, and w : E → R is a function mapping each edge to a real number, or a weight.
The graph can either be directed or undirected. For convenience we define w(u, v) = ∞ if
(u, v) 6∈ E.

Definition 56.1 (Path Weight). Given a weighted graph, we define the weight of the path
in the graph as the sum of the weights of the edges along that path.

Example 56.1. In the following graph the weight of the path 〈 s, a, b, e 〉 is 6. The weight of
the path 〈 s, a, b, s 〉 is 10.

423

424 CHAPTER 56. INTRODUCTION

Definition 56.2 (Shortest Paths and Distance). For a weighted graph G(V,E,w) a shortest
weighted path, or shortest path from vertex u to vertex v is a path from u to v with minimal
weight. In other words, a shortest path is the path with the smallest weight among all paths
from u to v. Note that there could be multiple paths with equal weight; if so they are all
shortest paths from u to v.

We define the distance from u to v, written δG(u, v), as the weight of a shortest path from
u to v. If there is no path from u to v, then the distance is infinity, i.e., δG(u, v) =∞.

Note. Historically, the term “shortest path” is used as a brief form for “shortest weighted
path” even though the term “shortest path” is inconsistent with the use of the term “weight.”
Some authors use the term “length” instead of weight; this approach has the disadvantage
that length are usually thought to be non-negative.

Example 56.2. In the following graph, the shortest path from s to e is 〈s, a, b, e〉with weight
6.

Negative Edge Weights. Negative edge weights have significant influence on shortest
paths, because they could cause the weight of paths to become non-monotonic: we can
decrease the weight of a path by adding a negative-weight edge to the path. Furthermore,
negative-weight edges allow for cycles with negative total weight. Such cycles in turn can
lead to shortest paths with total weight −∞.

For these reasons, we will need to be careful about negative edge weights when computing
shortest paths. As we will discover, even if there are no negative weight cycles, negative
edge weights make finding shortest paths more difficult.

2. SHORTEST PATH PROBLEMS 425

Example 56.3 (Negative Weights and Cycles). In the graph below, the cycle 〈 s, a, b, s 〉 has
a weight of −4 and the cycle 〈 s, a, b, s, a, b, s 〉 has a weight of −8. This means that the
shortest path from s to e has distance −∞.

2 Shortest Path Problems

Shortest path problems come in several flavors, such as single-pair, single-source, and all-
pairs problems.

Problem 56.1 (Single-Pair Shortest Paths). Given a weighted graph G, a source vertex s,
and a destination vertex t, the single-pair shortest path problem is to find the shortest
weighted path from s to t in G.

Problem 56.2 (Single-Source Shortest Paths (SSSP)). Given a weighted graphG = (V,E,w)
and a source vertex s, the single-source shortest path (SSSP) problem is to find a shortest
weighted path from s to every other vertex in V .

Problem 56.3 (All-Pairs Shortest Paths). Given a weighted graph, the all-pairs shortest
path problem is to find the shortest paths between all pairs of vertices in the graph.

Problem 56.4 (SSSP+). Consider a variant of the SSSP problem, where all the weights on
the edges are non-negative (i.e. w : E → R+). We refer to this as the SSSP+ problem.

Note. Shortest-path problems typically require finding only one of the possibly many short-
est paths between two vertices considered. In some cases, we only care about the distance
δG(u, v) but not the path itself.

3 The Sub-Paths Property

Definition 56.3 (Sub-Path). A sub-path of a path is itself a path that is contained within
the path.

Example 56.4. If p = 〈 a, b, c, e 〉 is a path in a graph, then the following are some valid
subpaths of p:

426 CHAPTER 56. INTRODUCTION

• 〈 a, b, c, e 〉,

• 〈 a, b, c 〉,

• 〈 b, c 〉, and

• 〈 b 〉.

Definition 56.4 (Sub-Paths Property). The sub-paths property states a basic fact about
shortest paths: any sub-path of a shortest path is itself a shortest path. The sub-paths
property makes it possible to construct shortest paths from smaller shortest paths. It is
used in all efficient shortest paths algorithms we know about.

Example 56.5 (Subpaths property). If a shortest path from Pittsburgh to San Francisco goes
through Chicago, then that shortest path includes the shortest path from Pittsburgh to
Chicago, and from Chicago to San Francisco.

Applying the Sub-Paths Property. To see how the sub-paths property can help find short-
est paths, consider the graph G shown below.

Suppose that an oracle has told us the shortest paths from s to all vertices except for the
vertex v, shown in red squares. We want to find the shortest path to v.

By inspecting the graph, we know that the shortest path to v goes through either one of a, b,
or c. Furthermore, by the sub-paths property, we know that the shortest path to v consists
of the shortest path to one of a, b, or c, and the edge to v. Thus, all we have to do is to find
the vertex u among the in-neighbors of v that minimizes the distance to v, i.e., δG(s, u) plus
the additional edge weight to get to v. The weight of the shortest path to v is therefore

min (δG(s, a) + 3, δG(s, b) + 6, δG(s, c) + 5) .

3. THE SUB-PATHS PROPERTY 427

The shortest path therefore goes through the vertex b with distance 10, which minimizes
the weight. We will use this observation in both Dijkstra’s and Bellman-Ford’s algorithm.

Exercise 56.5. Prove that the sub-paths property is correct.

Solution. We prove the property by using proof by contradiction. Consider a shortest
path p and suppose that it has a sub-path q that is not itself a shortest path between its
end-points. Replace now the sub-path q with a shortest path between the same end points.
This results in a path p′ that is shorter than p. But p is a shortest path to start with, so a
contradiction.

Chapter 57

Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single source shortest path problem with non-negative edge
weights, i.e., the SSSP+ problem. It uses priority-first search. It is a sequential algorithm.

1 Dijkstra’s Property

In BFS Chapter , we saw how BFS can be used to solve the single-source shortest path
problem on graphs without edge weights, or, equivalently, where all edges have weight 1.
BFS, however, does not work on general weighted graphs, because it ignores edge weights
(there can be a shortest path with more edges).

Example 57.1. Consider the following directed graph with 3 vertices.

In this graph, a BFS visits b and a on the same round, marking the shortest path to both as
directly from s. However the path to b via a is shorter. Since BFS never visits b again, it will
not find the actual shortest path.

Brute Force. Let’s start by noting that since no edges have negative weights, there cannot
be a negative-weight cycle. One can therefore never make a path shorter by visiting a
vertex twice—i.e., a path that cycles back to a vertex cannot have less weight than the path

428

1. DIJKSTRA’S PROPERTY 429

that ends at the first visit to the vertex. When searching for a shortest path, we thus have
to consider only the simple paths, i.e., paths with no repeated vertices.

Based on this observation we can use a brute-force algorithm for the SSSP+ problem, that,
for each vertex, considers all simple paths between the source and a destination and selects
the shortest such path. Unfortunately there can be a large number of paths between any
pair of vertices (exponential in the number of vertices), so any algorithm that tries to look
at all paths is not likely to scale beyond very small instances.

Applying the Sub-Paths Property. Let’s try to reduce the work. The brute-force algo-
rithm does redundant work since it does not take advantage of the sub-paths property,
which allows us to build shortest paths from smaller shortest paths.

Suppose that we have an oracle that tells us the shortest paths from s to some subset of the
vertices X ⊂ V with s ∈ X . Also let’s define Y to be the vertices not in X , i.e.,

Y = V \X.

Consider now this question: can we efficiently determine the shortest path to any one of
the vertices in Y ? If we could do this, then we would have an algorithm to add new vertices
to X repeatedly, until we are done.

To see if this can be done, let’s define the frontier as the set of vertices that are neighbors
of X but not in X , i.e. N+(X) \X (as in graph search). Observe that any path that leaves
X must go through a frontier vertex on the way out. Therefore for every v ∈ Y the shortest
path from s must start in X , since s ∈ X , and then leave X via a vertex in the frontier.

Now consider for each vertex v in the frontier F , the shortest path length that consists of
a path through X and then an edge to v, i.e., p(v) = minx∈X(δG(s, x) + w(x, v)). Among
these consider the vertex v with overall shortest path length, minv∈F p(v). Observe that no
other vertex in Y can be closer to the source than v because

430 CHAPTER 57. DIJKSTRA’S ALGORITHM

• all paths to Y must go through the frontier when exiting X , and

• edge weights are non-negative so a sub-path cannot be longer than the full path.

Therefore for non-negative edge weights the path that minimizes δG(s, x) + w(x, v), over
all x ∈ X and v ∈ F , is a minimum length path that goes from s to Y , i.e., miny∈Y δG(s, y).
There can be ties. We thus have answered the question that we set out to answer: we can
indeed determine the shortest path to one more vertex.

Lemma 57.1 establishes this intuition more formally.

Example 57.2. In the following graph suppose that we have found the shortest paths from
the source s to all the vertices in X (marked by numbers next to the vertices). The overall
shortest path to any vertex on the frontier via X and one more edge, is the path to vertex u
via vertex d, with lenght 5 + 4 = 9. If edge weights are non-negative there cannot be any
shorter way to get to u, whatever the path length from v to u is, therefore we know that
δ(s, u) = 9. Note that if edges can be negative, then it could be shorter to go through v
since the path length from v to u could be negative.

Lemma 57.1 (Dijkstra’s Property). Consider a (directed) weighted graph G = (V,E,w),
and a source vertex s ∈ V . Consider any partitioning of the vertices V intoX and Y = V \X
with s ∈ X , and let

p(v) = min
x∈X

(δG(s, x) + w(x, v))

then min
y∈Y

p(y) = min
y∈Y

δG(s, y).

Note (The Lemma Explained in plain English). The overall shortest-path weight from s via
a vertex in X directly to a neighbor in Y (in the frontier) is as short as any path from s to
any vertex in Y .

2. DIJKSTRA’S ALGORITHM WITH PRIORITY QUEUES 431

Proof. Consider a vertex vm ∈ Y such that δG(s, vm) = minv∈Y δG(s, v), and a shortest path
from s to vm in G. The path must go through an edge from a vertex vx ∈ X to a vertex vt
in Y . Since there are no negative weight edges, and the path to vt is a sub-path of the path
to vm, δG(s, vt) cannot be any greater than δG(s, vm) so it must be equal. We therefore have

min
y∈Y

p(y) ≤ δG(s, vt) = δG(s, vm) = min
y∈Y

δG(s, y),

but the leftmost term cannot be less than the rightmost, so they must be equal.

The reader might have noticed that the terminology that we used in explaining Dijkstra’s
algorithm closely relates to that of graph search. More specifically, recall that priority-
first search is a graph search, where each round visits the frontier vertex with the highest
priority. If, as usual, we denote the visited set byX , we can define the priority for a vertex v
in the frontier, p(v), as the weight of the shortest-path consisting of a path to x ∈ X and an
additional edge from x to v, as in Lemma 57.1. We can thus define Dijkstra’s algorithm in
terms of graph search.

Algorithm 57.1 (Dijkstra’s Algorithm). For a weighted graph G = (V,E,w) and a source
s, Dijkstra’s algorithm is priority-first search on G that

• starts at s with d(s) = 0,

• uses priority p(v) = min
x∈X

(d(x) + w(x, v)) (to be minimized), and

• sets d(v) = p(v) when v is visited.

When finished, returns d(v).

Note. Dijkstra’s algorithm visits vertices in non-decreasing shortest-path weight since on
each round it visits unvisited vertices that have the minimum shortest-path weight from s.

Theorem 57.2 (Correctness of Dijkstra’s Algorithm). Dijkstra’s algorithm returns d(v) =
δG(s, v) for v reachable from s.

Proof. We show that for each step in the algorithm, for all x ∈ X (the visited set), d(x) =
δG(s, x). This is true at the start since X = {s} and d(s) = 0. On each step the search adds
vertices v that minimizes P (v) = minx∈X(d(x) +w(x, v)). By our assumption we have that
d(x) = δG(s, x) for x ∈ X . By Lemma 57.1, p(v) = δG(s, v), giving d(v) = δG(s, v) for the
newly added vertices, maintaining the invariant. As with all priority-first searches, it will
eventually visit all reachable v.

2 Dijkstra’s Algorithm with Priority Queues

As described so far, Dijkstra’s algorithm does not specify how to calculate or maintain
the priorities. One way is to calculate all priorities of the frontier on each round of the

432 CHAPTER 57. DIJKSTRA’S ALGORITHM

search. This is effectively how Dijkstra originally described the algorithm. However, it is
more efficient to maintain the priorities with a priority queue. We describe and analyze an
implementation of Dijkstra’s algorithm using priority queues.

Algorithm 57.2 (Dijkstra’s Algorithm using Priority Queues). An implementation of Dijk-
stra’s algorithm that uses a priority queue to maintain p(v) is shown below. The priority
queue PQ supports deleteMin and insert operations.

1 dijkstraPQ G s =
2 let
3 dijkstra X Q = (* X maps vertices to distances. *)
4 case PQ .deleteMin Q of
5 (None,)⇒ X (* Queue empty, finished. *)
6 | (Some (d, v), Q′)⇒
7 if (v,) ∈ X then dijkstra X Q′ (* Already visited, skip. *)
8 else
9 let
10 X ′ = X ∪ {(v, d)} (* Set final distance of v to d. *)
11 relax (Q, (u,w)) = PQ .insert (d+ w, u) Q

12 Q′′ = iterate relax Q′ (N+
G (v)) (* Add neighbors to Q. *)

13 in dijkstra X ′ Q′′ end
14 Q0 = PQ .insert (0, s) PQ .empty (* Initial Q with source. *)
15 in dijkstra {} Q0 end

We assume N+
G (v) returns a pair (u,w(v, u)) for each neighbor u.

Remark. This algorithm only visits one vertex at a time even if there are multiple vertices
with equal distance. It would also be correct to visit all vertices with equal minimum
distance in parallel. In fact, BFS can be thought of as the special case of Dijkstra in which
the whole frontier has equal distance.

Example 57.3. An example run of Dijkstra’s algorithm. Note that after visiting s, a, and b,
the queueQ contains two distances for c corresponding to the two paths from s to c discov-
ered thus far. The algorithm takes the shortest distance and adds it toX . A similar situation
arises when c is visited, but this time for d. Note that when c is visited, an additional dis-
tance for a is added to the priority queue even though it is already visited. Redundant
entries for both are removed next before visiting d. The vertex e is never visited as it is
unreachable from s. Finally, notice that the distances in X never decrease.

2. DIJKSTRA’S ALGORITHM WITH PRIORITY QUEUES 433

434 CHAPTER 57. DIJKSTRA’S ALGORITHM

The algorithm maintains the visited setX as a table mapping each visited vertex u to d(u) =
δG(s, u). It also maintains a priority queue Q that keeps the frontier prioritized based on
the shortest distance from s directly from vertices in X . On each round, the algorithm
selects the vertex xwith least distance d in the priority queue and, if it has not already been
visited, visits it by adding (x 7→ d) to the table of visited vertices, and then adds all its
neighbors v to Q with the priorities d(x) + w(x, v) (i.e. the distance to v through x).

Note that a neighbor might already be inQ since it could have been added by another of its
in-neighbors. Q can therefore contain duplicate entries for a vertex with different priorities,
but what is important is that the minimum distance will always be pulled out first. Line 7
checks to see whether a vertex pulled from the priority queue has already been visited
and discards it if it has. This algorithm is just a concrete implementation of the previously
described Dijkstra’s algorithm.

Remark. There are a couple other variants on Dijkstra’s algorithm using priority queues.

One variant checks whether u is already in X inside the relax function, and if so does not

3. COST ANALYSIS OF DIJKSTRA’S ALGORITHM 435

inserts it into the priority queue. This does not affect the asymptotic work bounds, but
might give some improvement in practice.

Another variant decreases the priority of the neighbors instead of adding duplicates to the
priority queue. This requires a more powerful priority queue that supports a decreaseKey
function.

3 Cost Analysis of Dijkstra’s Algorithm

Data Structures. To analyze the work and span of priority-queue based implementation
of Dijkstra’s algorithm shown above, let’s first consider the priority queue ADT’s that we
use. For the priority queue, we assume PQ .insert and PQ .deleteMin have O(lg n) work
and span. We can represent the mapping from visited vertices to their distances as a table,
and input graph as an adjacency table.

Analysis. To analyze the work, we calculate the work for each significant operation and
sum them up to find the total work. Each vertex is only visited once and hence each out
edge is only visited once. The table below summarizes the costs of the operations, along
with the number of calls made to each. We use, as usual, n = |V | and m = |E|.

Operation Line Number of calls PQ Tree Table
PQ .deleteMin 4 m O(lgm) −
PQ .insert 11 m O(lgm) −
find 7 m − O(lg n)
insert 10 n − O(lg n)
N+
G (v) 12 n − O(lg n)

Total − O(m lg n) O(m lg n) O(m lg n)

The work is therefore

W (n,m) = O(m lg n).

Since the algorithm is sequential, the span is the same as the work.

Decrease Key Operation. We can improve the work of the algorithm by using a priority
queues that supports a decreaseKey operation. This leads to O(m+ n log n) work across all
priority queue operations.

Exercise 57.1. Give a version of Dijkstra’s algorithm that uses the decreaseKey operation.

Remark. For enumerated graphs the cost of the tree tables could be improved by using
adjacency sequences for the graph, and ephemeral or single-threaded sequences for the

436 CHAPTER 57. DIJKSTRA’S ALGORITHM

distance table, which are used linearly. This does not improve the overall asymptotic work
of Dijkstra’s algorithm because the cost of the priority queue operations at O(m log n)
dominate.

In the decreaseKey version of the algorithm, the cost of priority queue operations areO(m+
n log n) In this case, using sequences for graphs still does not help, because of theO(n log n)
term dominates. But a more efficient structure for the mapping of vertices to distances
could help.

Chapter 58

Bellman-Ford’s Algorithm

Bellman-Ford’s algorithm solves the single source shortest path problem with arbitrary
edge weights, and with significant parallelism.

1 Graphs with Negative Edge Weights

Negative edge weights might appear to be unnatural. For example, in a “map” graph,
which represents intersections and the roads between them, quantities of interest such as
the travel time, or the length of the road between two vertices are non-negative. Nega-
tive weights, do however, arise when we consider more complex properties and when we
reduce other problems to shortest paths.

Example 58.1 (Reducing Currency Exchange to Shortest Paths). Consider the following cur-
rency exchange problem: given a set of currencies and a set of exchange rates between
them, find the sequence of exchanges to get from currency u to currency v that gives the
maximum yield. Here is an example:

437

438 CHAPTER 58. BELLMAN-FORD’S ALGORITHM

The best sequence of exchanges from euros to Japanese yen, is through US dollars and
Chinese renminbi.

We now reduce this to the shortest paths problem. Given a unit in currency u, a path of
exchanges from u to v with rates r0, · · · , rl will yields r0 × · · · × rl units is currency v. This
is a product, but we can use the logarithm function to it to a sum. The idea is for each
exchange rate r(u, v) to include an edge (u, v) with weight w(u, v) = − lg(r(u, v)). The
weights can be negative. Now we have that for a path P with weights w0, . . . , wl

w(P) = w0 + · · ·+ wl
= −(lg(r0) + · · ·+ lg(rl))
= − lg(r0 × · · · × rl)

Hence by finding the shortest path we will find the path that has the greatest yield, and
furthermore the yield will be 2−w(P).

Exercise 58.1. In the currency exchange example, what does a negative weight cycle imply?

Impact of Negative Weights on Shortest Paths. Consider a graph with negative edge
weights. Are shortest paths on this graph always well defined?

To answer this question, consider two cases.

• First, assume that the graph does not have any cycles with total negative weight, i.e.,
for any cycle the sum of the weights of the edges on that cycle is not less than zero.
In this case, we can conclude that there is a shortest path between any two vertices
that is simple, i.e., contains no cycles.

• Second, assume that the graph has a cycle with total negative weight. In this case, any
shortest simple path that passes through a vertex in this cycle can be made shorter
by extending the path with the cycle. Furthermore, this process can be repeated,
ultimately allowing us to prove that the shortest path is −∞.

Based on this analysis, we expect a shortest path algorithm to alert us when it encounters
a negative-weight cycle. In other words, if there is a relevant negative-weight cycle, then
the algorithm should terminate and indicate the presence of such a cycle, otherwise, the
algorithm should compute the shortest paths as desired.

Exercise 58.2. Prove that if a graph has no negative-weight cycles, then there is a shortest
path between any two vertices that is simple.

Dijkstra with Negative Weights. Recall that Dijkstra’s assumes non-negative (edge) weights.
This assumption allows the algorithm to consider simple paths (with no cycles) only and
to construct longer shortest paths from shorter ones iteratively. The absence of negative
weights is crucial to this approach and the Dijkstra’s property , which underpins the ap-
proach does not hold in the presence of negative weights.

2. BELLMAN-FORD’S ALGORITHM 439

Example 58.2. To see where Dijkstra’s property fails with negative edge weights consider
the following example.

Dijkstra’s algorithm would visit b then a and leave b with a distance of 2 instead of the
correct distance 1. The problem is that when Dijkstra’s algorithm visits b, it fails to consider
the possibility of there being a shorter path from a to b (which is impossible with non-
negative edge weights).

2 Bellman-Ford’s Algorithm

Intuition behind Bellman-Ford. To develop some intuition for finding shortest paths in
graphs with negative edge weights, let’s recall the sub-path property of shortest paths.
This property states that any sub-path of a shortest path is a shortest path (between its end
vertices). The sub-paths property holds regardless of the edge weights.

Dijkstra’s algorithm exploits this property by building longer paths from shorter ones, i.e.,
by building shortest paths in non-decreasing order. With negative edge weights this does
not work anymore, because paths can get shorter as we add edges.

There is another way to exploit the same property: building paths that contain more and
more edges. To see how, suppose that we have found the shortest paths from a source to
all vertices with k or fewer edges or “hops”. We can compute the shortest path with (k+ 1)
or fewer hops from k or fewer hops extending all paths by one edge if doing so leads to
a shorter path and leaving them unchanged otherwise. If the graph does not have any
negative-weight cycles, then all shortest paths are simple and thus contain |V | − 1 or fewer
edges. Thus we only have to repeat this process as many times as the number of vertices.
This the basic idea behind Bellman-Ford’s algorithm , the details of which are worked out
in the rest of this chapter.

Definition 58.1 (k-hop Distance). For a graph G, the k-hop distance, written δkG(u, v), is
the shortest path from u to v considering only paths with at most k ≥ 0 edges. If no such
path with k or fewer edges exists, then δkG(u, v) =∞

440 CHAPTER 58. BELLMAN-FORD’S ALGORITHM

Computing k-hop distances. Given G = (V,E), suppose now that we have calculated
the k-hop distances, δkG(s, v), to all vertices v ∈ V . To find the (k + 1)-hop distance to v, we
consider the incoming edges of v and pick the shortest path to that vertex that arrives at an
in-neighbor u using k edges, i.e., δkG(s, u), and then takes the edge (u, v), i.e.,

δk+1(v) = min(δk(v), min
x∈N−(v)

(δk(x) + w(x, v))).

Recall that N−(v) indicates the in-neighbors of vertex v.

Example 58.3. In the following graph G, suppose that we have found the shortest paths
from the source s to vertices using k or fewer edges. Each vertex u is labeled with its k-
distance to s, written δkG(s, u). The weight of the shortest path to v using k + 1 or fewer
edges is

min

(
δkG(s, v),
min

(
δkG(s, a) + 3, δkG(s, b)− 6, δkG(s, c) + 5

))
The shortest path with at most k + 1 edges has weight −2 and goes through vertex b.

Computing Shortest Paths Iteratively. Now that we know how to construct shortest
paths with more hops , we can iterate the approach to obtain an algorithm for computing
shortest paths in G = (V,E) from a source s ∈ V as follows.

• Start by determining δ0
G(s, v) for all v ∈ V . Since no vertex other than the source is

reachable with a path of length 0, we have:

– δ0
G(s, s) = 0, and

– δ0
G(s, v) =∞ for all v 6= s.

• Next, iteratively for each round k > 0, compute for each vertex in parallel δk+1
G (s, v)

using δkG(s, ·)’s as described above .

2. BELLMAN-FORD’S ALGORITHM 441

The only question left is when to stop the iteration. Note that because the (k + 1)-hop
distance for a vertex is calculated in terms of the k-hop distances, if the (k+1)-hop distances
of all vertices remain unchanged relative to the k-hop distances, then the k+2-hop distances
will also be the same. Therefore we can stop when an iteration produces no change in the
distances of vertices.

But, are we guaranteed to stop? Not, if we have negative-weight cycles reachable from the
source, because such a cycle will decrease distances of some vertices on every iteration.
But, we can detect negative cycles by checking that the distances have not converged after
|V | iterations, because a simple (acyclic) path in a graph can include at most |V | − 1 edges
and, in the absence of negative-weight cycles, there always exist a simple shortest path.

Algorithm 58.2 (Bellman Ford Algorithm). The pseudo-code below shows the Bellman-
Ford algorithm for computing shortest paths in weighted graphs, where edge weights can
be negative. The algorithm terminates and returns either the weight of the shortest paths
for all vertices reachable from the source s or it indicates that the graph has a negative-
weight cycle.

The algorithm runs until convergence or until |V | iterations have been performed. If af-
ter |V | iterations, and the distances does not converge, then the algorithm concludes that
there is a negative-weight cycle that is reachable from the source vertex and returns None
(Line 9).

1 BellmanFord (G = (V,E)) s =
2 let
3 BF D k =
4 let
5 Din(v) = minu∈N−G (v)(D[u] + w(u, v)) (* Min in distance. *)
6 D′ = {v 7→ min(D[v], Din(v)) : v ∈ V } (* New distances. *)
7 in
8 if (k = |V |) then None (* Negative cycle, quit. *)
9 else if (all {D[v] = D′[v] : v ∈ V }) then
10 Some D (* No change so return distances. *)
11 else BF D′ (k + 1) (* Repeat. *)
12 end
13 D0 = {v 7→ ∞ : v ∈ V \ {s}} ∪ {s 7→ 0} (* Initial distances. *)
14 in BF D0 0 end

Example 58.4. Several steps of the Bellman Ford algorithm are shown below. The numbers
with squares indicate the current distances and highlight those that has changed on each
step.

442 CHAPTER 58. BELLMAN-FORD’S ALGORITHM

3. COST ANALYSIS 443

Theorem 58.1 (Correctness of Bellman-Ford). Given a directed weighted graphG = (V,E,w),
w : E → R, and a source s, the BellmanFord algorithm returns either δG(s, v) for all vertices
reachable from s, or indicates that there is a negative weight-cycle in G that is reachable
from s.

Proof. By induction on the number of edges k in a path. The base case is correct since
Ds = 0. For all v ∈ V \ s, on each step a shortest (s, v) path with up to k + 1 edges must
consist of a shortest (s, u) path of up to k edges followed by a single edge (u, v). Therefore
if we take the minimum of these we get the overall shortest path with up to k + 1 edges.
For the source the self edge will maintain Ds = 0. The algorithm can only proceed to n
rounds if there is a reachable negative-weight cycle. Otherwise a shortest path to every v
is simple and can consist of at most n vertices and hence n− 1 edges.

3 Cost Analysis

Data Structures. To analyze the cost Bellman-Ford, we first determine the representations

444 CHAPTER 58. BELLMAN-FORD’S ALGORITHM

for each structure in the algorithm. For the distance structure D, we use a table mapping
vertices to their distances. For graphs, we consider two different representations, one with
tables and another with sequences. In each case, we represent the graph as a mapping
from each vertex v to another inner mapping from each in-neighbor u to w(u, v). In turn,
we represent the mapping with a table or with a sequence.

Cost with Tables. Consider the cost of one round of the Bellman-Ford’s algorithm , i.e.,
a call to BF excluding recursive calls. The only nontrivial computations are on Lines 5,
6 and 9.

Lines 5 and 6 tabulate over the vertices. As the cost specification for tables with BSTs
show, the cost of tabulate over the vertices is the sum of the work for each vertex, and the
maximum of the spans plus O(lg n).

Now consider Line 5.

• First, the algorithm finds the neighbors in the graph, using a find G v. This requires
O(lg |V |) work and span.

• Second, the algorithm performs a map over the in-neighbors. Each position of the
map requires a find in the distance table forD[u], a find in the weight table forw(u, v),
and an add. The find operations take O(lg |V |) work and span.

• Third, the algorithm reduces over the in-neighbors to determine the shortest path
through an in-neighbor. This requires O(1 + |NG(v)|) work and O(lg |N−G(v)|) span.

Line 6 performs a tabulate by taking for each vertex the minimum of D[v] and Din(v),
which requires constant work for each vertex. Using n = |V | and m = |E|, we can write
the work for Lines 5 and 6 as

WBF (n,m) = O
(∑

v∈V

(
lg n+ |N−G (v)|+

∑
u∈N−G (v)(1 + lg n)

))
= O ((n+m) lg n) .

The first term is for looking up the current distance, the second term is for reduce, and the
third term is the cost for mapping over the neighbors.

Similarly, we can write the span by replacing the sums over vertices with maximums:

SBF (n,m) = O
(

maxv∈V

(
lg n+ lg |N−G (v)|+ maxu∈N−G (v)(1 + lg n)

))
= O(lg n).

Line 9 performs a tabulate and a reduce and thus requires O(n lg n) work and O(lg n) span.

Because the number of rounds (calls to BF) is bounded by n, and because the rounds
are sequential, we multiply the work and span for each round by the number of calls to

3. COST ANALYSIS 445

compute the total work and span, which, assuming m ≥ n, are

WBF (n,m) = O(nm lg n)
SBF (n,m) = O(n lg n).

Cost with Sequences. If we assume that the graphs is enumerable, then the vertices are
identified by the integers {0, 1, . . . , |V | − 1} and we can use sequences to represent the
graph. We can therefore use sequences instead of tables to represent the three mappings
used by the algorithm. In particular, we can use an adjacency sequence for the graphs
and the in-neighbors, and an array sequence for the distances. This improves the work
for looking up in-neighbors or distances from O(log n) to O(1). Retracing the steps of the
previous analysis and using the improved costs we obtain:

WBF (n,m) = O
(∑

v∈V

(
1 + |N−G (v)|+

∑
u∈N−G (v) 1

))
= O(n+m)

SBF (n,m) = O
(

maxv∈V

(
1 + lg |N−G (v)|+ maxu∈N−G (v) 1

))
= O(lg n).

Hence the overall complexity for BellmanFord with sequences, assuming m ≥ n, is

W (n,m) = O(nm)
S(n,m) = O(n lg n)

Using array sequences thus reduces the work by a O(lg n) factor.

Chapter 59

Johnson’s Algorithm

Johnson’s algorithm solves the all-pairs shortest paths (APSP) problem. It allows for neg-
ative weights and is significantly more efficient than simply running Bellman-Ford’s algo-
rithm from each source. It uses a clever trick to tweak the weights and eliminate negative
ones without altering shortest paths.

All Pairs from Single Source. One way to solve the APSP problem is by running the
Bellman-Ford algorithm from each vertex. For a graph with n vertices and m edges, this
gives an algorithm with total work

W (n,m) = O(mn)× n = O(mn2).

Johnson’s algorithm improves on this by using Dijkstra’s algorithm to find the shortest
paths from each source vertex and by using the more expensive Bellman-Ford’s algorithm
to tweak the weights. Johnson’s algorithm proceeds in two phases.

1. The first phase runs Bellman-Ford’s algorithm and uses the result to update the
weights on the edges and eliminate all negative weights.

2. The second phase runs Dijkstra’s algorithm from each vertex in parallel.

For a graph with n vertices and m edges, Johnson’s algorithm has the following costs:

Work Span
1× Bellman Ford O(mn) O(n log n)
n×Dijkstra n×O(m log n) O(m log n)

Total O(mn log n) O(m log n).

The work improves over the naive O(mn2) bound by a factor of n/ log n, and the span is
no more than a single Dijkstra. The parallelism is therefore Θ(n), which is significant.

446

447

Potentials. To update the weights on the graph we will use Bellman-Ford to assign a
“potential” p(v) to each vertex v. We then add and subtract the potentials on the endpoints
of each edge to get new weights. This adjustment change the weights of paths in the graph,
but it will not change the shortest path (i.e. its sequence of edges) between any two vertices.
The following lemma establishes this property, more formally.

Lemma 59.1 (Path Potentials). Consider a weighted graph G = (V,E,w), and any assign-
ment p(v) : V → R. For

w′(u, v) = w(u, v) + p(u)− p(v) ,

and G′ = (V,E,w′), we have that:

δG(u, v) = δG′(u, v)− p(u) + p(v) .

Proof. Summary: Along any path all potentials except the first and last cancel since each
is subtracted from the incoming edge and added to the outgoing edge. Therefore the total
weight of a path is the original weight +p(u) − p(v). Since this only depends on u and v,
which path is the shortest from u to v does not change, and the change in weight (p(u) −
p(v)) can be subtracted out.

Full proof: Consider any path of edges P = 〈 (h0, t0), · · · , (hl, tl) 〉 from u to v. Here h and
t means head and tail of each edge, and hence h0 = u, tl = v and ti = hi+1 for 0 ≤ i < l. In
the original graph the path length is

w(P) =

l∑
i=0

w(hi, ti) .

In the modified graph the path length is

w′(P) =
∑l
i=0(w(hi, ti) + p(hi)− p(ti))

= w(P) +
∑l
i=0 p(hi)−

∑l
i=0 p(ti)

Now if we look at the two sums on the right, and given that hi+1 = ti, all but the first
term of the first sum and last term of the second sum pairwise cancel out. This leaves just
p(h0)− p(tl) = p(u)− p(v). Therefore

w′(P) = w(P) + p(u)− p(v) .

Since p(v) and p(u) are the same for any path from u to v, this does not change which
path(s) from u to v is shortest, just the weight of that path. Therefore

δG′(u, v) = δG(u, v) + p(u)− p(v) ,

giving

δG(u, v) = δG′(u, v)− p(u) + p(v) .

448 CHAPTER 59. JOHNSON’S ALGORITHM

Algorithm 59.1 (Johnson’s Algorithm). The pseudo-code for Johnson’s algorithm is shown
below. It starts by adding a dummy source vertex s to the graph and zero weight edges
between the source and all other vertices. It then runs Bellman-Ford’s algorithm on this
graph and adjusts the weights by using the shortest paths computed. As established by
Lemma 59.2 this adjustment eliminates all negative weights from the graph. Finally, it
runs Dijkstra’s algorithm for each vertex u and returns the distance from u to all other
(reachable) vertices.

JohnsonAPSP (G = (V,E,w)) =
let
G+ = Add a dummy vertex s to G,

and a zero weight edge from s to all v ∈ V .
D = BellmanFord(G+, s)
w′(u, v) = w(u, v) +D[u]−D[v] (* w′(u, v) ≥ 0 *)
G′ = (V,E,w′)

Dijkstra ′ u =
let ∆u = Dijkstra G′ u
in {(u, v) 7→ (d−D[u] +D[v]) : (v 7→ d) ∈ ∆u} end

in
⋃
u∈V (Dijkstra ′ u) end

Example 59.1. As an example of Johnson’s algorithm consider the graph on the left.

On the right we show the graph after adding the sources and the edges from it to all other
vertices.

We now run Bellman-Ford’s algorithm on this graph. It gives the distances shown in
squares below on the left.

449

On the right we show the graph after the weights have been updated so that w′(u, v) =
w(u, v) +D[u]−D[v]. This graph has no negative weight cycles.

To calculate the distance from (a, d), for example, we can use δG(a, d) = δG′(a, d)−D[a] +
D[d], which gives the correct distance of 0 + 0 + (−4) = −4.

All the δG′(u, v) are calculated using Dijkstra’s.

Lemma 59.2 (Non-Negative Weights). For p(v) = δG+(s, v), all edge weights w′(u, v) =
w(u, v) + p(u)− p(v) are non-negative.

Proof. Summary: For an original edge (u, v) with weight −a, the distance to v has to be at
least a less than that to u. This difference p(u)− p(v) ≥ a will cancel out the negative edge.

Full proof: The sub-paths property tells us that:

δG′(s, v) ≤ δG′(s, u) + w(u, v) .

Since the shortest path cannot be longer than the shortest path through u, we have that:

0 ≤ δG′(s, u) + w(u, v)− δG′(s, v)
= w(u, v) + δG′(s, u)− δG′(s, v)
= w(u, v) + p(u)− p(v)

Note. Note that the Dijkstra function in Johnson’s algorithm readjusts the path weighs to
zero out the impact of the potentials. This readjustment guarantees that the final distances
are the correct distances.
Remark. Although we set the weights from the “dummy” source to each vertex to zero,
any finite weight for each edge will do. In fact all that matters is that the distances from
the source to all vertices in G′ are non-infinite. Therefore if there is a vertex in the original
graph G that can reach all other vertices then we can use it as the source and there is no
need to add a new source.

Part XVI

Graph Contraction and
Applications

450

Chapter 60

Introduction

Overview. In earlier chapters, we have mostly covered techniques for solving problems
on graphs that were developed in the context of sequential algorithms. Some of the algo-
rithms we considered were parallel while others were not. For example, we saw that BFS
has some parallelism since each level can be explored in parallel but there was no paral-
lelism in DFS . There was no parallelism in Dijkstra’s algorithm , but there was plenty of
parallelism in the Bellman-Ford algorithm and Johnson’s algorithm .

In this part of the book, we cover the “graph contraction” technique. This technique
was specifically designed to be used in parallel algorithms and allows obtaining poly-
logarithmic span for certain graph problems. This chapter presents an overview of graph
contraction. The following chapters present two specializations Edge Contraction and
Star Contraction of graph contraction, and apply the technique to graph connectivity .

1 Preliminaries

Note. The material here and the followup chapters on graph contraction relies on the graph
terminology introduced in the background chapter on graph theory .

Definition 60.1 (Graph Partition). Given a graph G, a graph partition of G is a collection
of graphs

H0 = (V0, E0), . . . ,Hk−1 = (Vk−1, Ek−1),

such that {V0, . . . , Vk−1} is a set partition of V and H0, . . . ,Hk−1 are vertex-induced sub-
graphs of G with respect to V0, . . . , Vk−1.

We refer to each subgraph Hi as a block or part of G.

Definition 60.2 (Internal and Cut Edges). Given a partition H0 = (V0, E0), . . . ,Hk−1 =

451

452 CHAPTER 60. INTRODUCTION

(Vk1 , Ek−1) of a graph G = (V,E), we define two kinds of edges: internal edges and cut
edges.

• We call an edge {v1, v2} an internal edge, if v1 ∈ Vi and v2 ∈ Vi. Note that {v1, v2} ∈
Ei.

• We call an edge {v1, v2} a cut edge, if v1 ∈ Vi and v2 ∈ Vj and i 6= j.

Exercise 60.1. One way to partition a graph is to make each connected component a block.
What are the internal and cut edges in such a partition?

Solution. There are no cut edges between the partitions. All edges of the graph are internal
edges.

Definition 60.3 (Partition Map). We sometimes describe a graph partition with a tuple
consisting of

1. a set of labels for the blocks, and

2. a partition map that maps each vertex to the label of its block.

The labels can be chosen arbitrarily but it is usually conceptually and computationally
easier to use a vertex inside a block as a representative for that block.

Example 60.1. The partition {{a,b,c} , {d} , {e,f}} of the vertices {a,b,c,d,e,f}, defines
three blocks as the corresponding vertex-induced subgraphs .

The edges {a,b}, {a,c}, and {e,f} are internal edges, and the edges {c,d}, {b,d}, {b,e}
and {d,f} are cut edges.

By labeling the blocks ’abc ’, ’d ’ and ’ef ’, we can specify the graph partition with follow-
ing partition map:

({abc,d,ef} , (60.1)
{a 7→ abc,b 7→ abc,c 7→ abc,d 7→ d,e 7→ ef,f 7→ ef}). (60.2)

2. GRAPH CONTRACTION 453

Instead of assigning a fresh label to each block, we can choose a representative vertex. For
example, by picking a,d, and e as representatives, we can represent the partition above
using the following partition map

({a,d,e} , (60.3)
{a 7→ a,b 7→ a,c 7→ a,d 7→ d,e 7→ e,f 7→ e}). (60.4)

2 Graph Contraction

Graph contraction is a contraction technique for computing properties of graphs in par-
allel. As a contraction technique, it is used to solve a problem instance by reducing it to a
smaller instance of the same problem.

Graph contraction plays important role in parallel algorithm design, because divide-and-
conquer can be difficult to apply to graph problems efficiently. Divide-and-conquer tech-
niques usually require partitioning graphs into smaller graphs in a balanced fashion such
that the number of cut edges is minimized. Because graphs can be highly irregular, they
can be difficult to partition. In fact, graph partitioning problems are typically NP-hard.

Quotient Graph. The key idea behind graph contraction is to contract the input graph
to a smaller quotient graph, solve the problem on the quotient graph, and then use that
solution to construct the solution for the input graph. We can specify this technique as an
inductive algorithm-design technique as follows.

Definition 60.4 (Graph-Contraction Technique). Graph contraction technique has a base
case and an inductive case. Each application of the inductive step is called a round of
graph contraction. In a graph contraction, rounds are repeated until the graph is small,
e.g., the graph has no remaining edges.

Base case: If the graph is small (e.g., it has no edges), then compute the desired result.

Inductive case:

• Contraction step: contract the graph into a smaller quotient graph.

– Partition the graph into blocks.

– Contract each block to a single super-vertex.

– Drop internal edges.

– Reroute cut edges to corresponding super-vertices.

• Recursive step: Recursively solve the problem for the quotient graph.

454 CHAPTER 60. INTRODUCTION

• Expansion step: By using the result for the quotient graph, compute the result for the
input graph.

Example 60.2. One round of graph contraction:

Contracting a graph down to a single vertex in three rounds:

Construction of the Quotient Graph. To construct a quotient graph, we represent each
block in the partition with a vertex, which we call a super-vertex. We then “map” the edges
of the graph to the quotient graph. Consider each edge (u, v) in the graph.

• If the edge is an internal edge, then we skip the edge.

• If the edge is a cut edge, then we create a new edge between the super-vertices rep-
resenting the blocks containing u and v.

Because there can be many cut edges between two blocks, this approach may create mul-
tiple edges between two super-vertices. We may remove duplicate edges or leave them in
the graph, in which case we would be working with multigraphs. Either approach has its
benefits and may, depending on the application, be preferable over the other.

2. GRAPH CONTRACTION 455

Important. Graph contraction is guided by a graph partition, which leads to blocks whose
vertices are disjoint. During the construction of the quotient graph, each vertex in the graph
is therefore mapped to a unique vertex in the quotient graph.

Applying Graph Contraction. The ultimate goal of graph contraction technique is to re-
duce the size of the graph by a constant fraction (possibly in expectation) at each round
of contraction. Depending on the graphs of interest many different graph-partition tech-
niques can be used to achieve this goal. As described, the graph-contraction technique is
generic in the kind of graph partition used. In the following chapters on Edge Contraction
and Star Contraction we consider two techniques, edge partitioning and star partitioning,
and the resulting graph-contraction algorithms.

Chapter 61

Edge Contraction

This section describes the edge partition and edge contraction. Edge contraction is an in-
stance of a graph-contraction where blocks being contracted correspond to edges.

1 Edge Partition

Definition 61.1 (Edge Partition). An edge partition is a graph partition where each block
is either a single vertex or two vertices connected by an edge.

Example 61.1. An example edge partition in which every block consists of two vertices
and an edge between them.

Exercise 61.1. Give an example graph whose edge partitions always contain a block that
consists of a single vertex.

456

1. EDGE PARTITION 457

Solution. Any graph which has an isolated vertex, i.e., a vertex with no incident edges
would work.

Edge Partitions and Vertex Matching. Finding an edge partition of a graph is closely
related to the problem of finding an independent edge set or a vertex matching. A vertex
matching in a graph is a subset of the edges that do not share an endpoint, i.e., no two edges
are incident on the same vertex. We can construct an edge partition from a vertex matching
by constructing a block for each edge in the matching and placing all the remaining vertices
into their own singleton blocks.

Definition 61.2 (Vertex Matching). A vertex matching for an undirected graph G = (V,E)
is a subset of edges M ⊆ E such that no two edges in M are incident on the same vertex.
In other words, each vertex in M have degree at most 1.

The problem of finding the largest vertex matching for a graph is called the maximum
vertex matching problem.

Algorithms for Maximum Vertex Matching. Maximum Vertex Matching is a well-studied
problem and many algorithms have been proposed, including one that can solve the prob-
lem in O(

√
|V ||E|) work.

Example 61.2 (Vertex Matching). A vertex matching for a graph (highlighted edges) and
the corresponding blocks.

The vertex matching defines four blocks (circled), two of them defined by the edges in the
matching, {a,b} and {d,f}, and two of them are the unmatched vertices c and e.

Note. For edge contraction, we do not need a maximum matching but one that it is suffi-
ciently large.

Algorithm 61.3 (Greedy Vertex Matching). We can use a greedy algorithm to construct a
vertex matching by iterating over the edges while maintaining an initially empty match-
ing M . The greedy algorithm considers each edge and proceeds as follows:

• if no edge inM is already incident on its endpoints, then the algorithm adds the edge
to M ,

458 CHAPTER 61. EDGE CONTRACTION

• otherwise, the algorithm tosses away the edge.

Exercise 61.2. Does the greedy vertex matching algorithm always returns a maximum ver-
tex matching?

Solution. No.

Exercise 61.3. Prove that the greedy algorithm finds a solution within a factor two of opti-
mal.

Exercise 61.4. Is the greedy algorithm parallel?

Solution. The greedy algorithm is sequential, because each decision depends on previous
decisions.

Randomized Symmetry Breaking. To find a vertex matching in parallel, we want to
make local and parallel decisions at each vertex independent of other vertices. One possi-
bility is for each vertex to select one of its neighbors arbitrarily but in some deterministic
fashion. Such a selection can be made in parallel but there is one problem: multiple vertices
might select the same vertex to match with.

We therefore need a way to break the symmetry that arises when two vertices try to match
with the same vertex. To this end, we can use randomization. There are several different
ways to use randomization but they are all essentially the same and yield the same bounds
with a constant factor.

Algorithm 61.4 (Parallel Vertex Matching). To compute a vertex matching the parallel
vertex matching algorithm flips a coin for each edge in parallel. The algorithm then selects
an edge (u, v) and matches u and v, if the coin for the edge comes up heads and all the
edges incident on u and v flip tails.

Example 61.3 (Parallel Vertex Matching). An example run of the parallel vertex matching
algorithm.

Exercise 61.5. Prove that the algorithm produces a vertex matching, i.e., it guarantees that
a vertex is matched with at most one other vertex.

1. EDGE PARTITION 459

1.1 Analysis of Parallel Edge Partition

We analyze the effectiveness of the parallel edge partition algorithm in selecting a match-
ing that consists of as many edge blocks (equivalently as few singleton blocks) as possible.
We first consider cycle graphs and then general graphs.

1.1.1 Cycle Graphs

Probability of Selecting an Edge in a Cycle. We want to determine the probability that
an edge is selected in a cycle, where each vertex has exactly two neighbors. Because the
coins are flipped independently at random, and each vertex has degree two, the probability
that an edge picks heads and its two adjacent edges pick tails is 1

2 ·
1
2 ·

1
2 = 1

8 .

Example 61.4 (Edge Partition of a Cycle). A graph consisting of a single cycle.

Each edge flips a coin that comes up either heads (H) or tails (T). We select an edge if it
turns up heads and all other edges incident on its endpoints are tails. In the example the
edges {c,d} and {b,f} are selected.

Expected Number of Edges Selected. To analyze the number of edges (blocks) selected
in expectation, let Re be an indicator random variable denoting whether e is selected or
not, that is Re = 1 if e is selected and 0 otherwise. Recall that the expectation of indicator
random variables is the same as the probability it has value 1 (true). Therefore we have
E[Re] = 1/8. Thus summing over all edges, we conclude that expected number of edges
selected is m

8 (note, m = n in a cycle graph). Thus we conclude that in expectation, a
constant fraction

(
1
8

)
of the edges are selected to be their own blocks.

Exercise 61.6. Modify the algorithm to improve the expected number of edges selected.

Improving the Expectation. There are several ways to improve the number of select
edges. One way is for each vertex to pick one of its neighbors and to select an edge (u, v) if

460 CHAPTER 61. EDGE CONTRACTION

it was picked by both u and v. In the case of a circle, this increases the expected number of
selected edges to m

4 .

Another way is let each edge pick a random number in some range and then select and
edge if it is the local maximum, i.e., it picked the highest number among all the edges
incident on its end points. This increases the expected number of selected edges to m

3 .

1.1.2 Star Graphs

Limitation of Edge Partition. Although our edge partition algorithm works quite well
on cycle graphs, it does not work well for arbitrary graphs. The problem is in an edge
partition, only one edge incident on a vertex can be its own block. Therefore if there is
a vertex with high degree, then only one of its edges can be selected. Star graphs are a
canonical example of such graphs, although there are many others.

Definition 61.5 (Star Graph). A star graph G = (V,E) is an undirected graph with

• a center vertex v ∈ V , and

• a set of edges E that attach v directly to the rest of the vertices, called satellites, i.e.,
E = {{v, u} : u ∈ V \ {v}}.

Example 61.5. The following are star graphs:

• a single vertex, and

• a single edge.

2 Edge Contraction

Algorithm 61.6 (Parallel Edge Contraction). Parallel edge contraction algorithm is a spe-
cialization of the graph contraction technique that uses the parallel vertex matching al-
gorithm to partition the graph for contraction.

Example 61.6 (Edge contraction). An example parallel edge contraction illustrated.

2. EDGE CONTRACTION 461

Analysis of Edge Contraction. The analysis of edge partition established that using
edge partition, we are able to select in expectation 1

8 of the edges as their own blocks if
the graph is a cycle. Therefore, after one round of contraction, the number of vertices and
edges in a cycle decrease by an expected constant fraction.

In randomized algorithms chapter , we showed that if each round of an algorithm reduces
the size by a constant fraction in expectation, and if the random choices in the rounds are
independent, then the algorithm will finish in O(lg n) rounds with high probability. Recall
that all we needed to do is multiply the expected fraction that remain across rounds and
then use Markov’s inequality to show that after some k lg n rounds the probability that
the problem size is a least 1 is very small. For a cycle graph, this technique leads to an
algorithm for graph contraction with linear work and O(lg2 n) span.

Analysis for Star Graphs. Edge contraction works quite poorly on other graphs such as
star graphs, and can result in a partition with many singleton blocks. This is because in
an edge partition, only one of the edges incident on a vertex can be its own block (Sec-
tion 1.1.2), leading to a poor contraction ratio. Edge contraction therefore is not effective
for general graphs.

Chapter 62

Star Contraction

This chapter covers star partition and star contraction, an efficient and parallel graph-
contraction technique for general graphs.

1 Star Partition

In an edge partition , if an edge incident on a vertex v is selected as a block, then none of
the other edges incident on v can be their own block. This limits the effectiveness of the
edge partition technique, because it is unable to contract graphs with high-degree vertices
significantly. In this section, we describe an alternative technique, star partition, that does
not have this limitation.

Definition 62.1 (Star Partition). A star partition of a graph G is a partition of G where
each block is vertex-induced subgraph with respect to a star graph .

Example 62.1. Consider star graph with center v and eight satellites.

• A partition consisting of the whole graph is a star partition, where the only block is

462

1. STAR PARTITION 463

the graph itself, induced by the star graph.

• A partition where each block is an isolated vertex is a star partition, because each
block is a vertex-induced subgraph of a single vertex, which is a star.

Example 62.2. Consider the graph shown below on the left. To partition this graph, we first
find two disjoint stars, which are highlighted. Each star induces a block consisting of its
vertices and the corresponding edges of the graph. These two blocks form a star partition
the graph. Note that in a star partition, a block might not be a star.

Constructing a Star Partition (Sequential). We can construct a star partition sequentially
by iteratively adding stars until the vertices are exhausted as follows.

• Select an arbitrary vertex v from the graph and make v the center of a star.

• Attach as satellites all the neighbors of v in the graph.

• Remove v and its satellites from the graph.

Computing a Star Partition (Parallel). We can construct a star partition in parallel by
making local independent decisions for each vertex, and using randomization to break
symmetry. One approach proceeds as follows.

• Flip a coin for each vertex.

• If a vertex flips heads, then it becomes the center of a star.

• If a vertex flips tails, then there are two cases.

– The vertex has a neighbor that flips heads. In this case, the vertex selects the
neighbor (breaking ties arbitrarily) and becomes a satellite.

– The vertex doesn’t have a neighbor that flips heads. In this case, the vertex
becomes a center.

464 CHAPTER 62. STAR CONTRACTION

Note that if a vertex doesn’t have a neighbor (it is “isolated”), then it will always become a
center.

Definition 62.2 (Isolated Vertices). We say that a vertex is isolated in a graph if it doesn’t
have a neighbor.

Note. The parallel approach to star partition is not optimal, because it might not always
create the smallest number of stars. This is acceptable for us, because we only need to
reduce the size of the graph by some constant factor.

Example 62.3 (Randomized Star Partition). The example below illustrates how we may
partition a graph using the parallel star partition algorithm described above. Vertices a
and b, which flip heads, become centers. Vertices c and e, which flipped tails, attempt to
become satellites by finding a center among their neighbors, breaking ties arbitrarily. If a
vertex does not have a neighbor that is a center (flipped heads), then it becomes a singleton
star (e.g., vertex d).

The resulting star partition has three stars: the star with center a (with no satellites), the
star with center b (with two satellites), and the singleton star d. The star partition thus
yields three blocks, which are defined by the subgraphs induced by each star.

Algorithm 62.3 (Parallel Star Partition). To specify the star-partition algorithm, we need a
source of randomness. We assume that each vertex has access to a random coin flip

heads v : V × Z→ B,

which returns true if the vertex v flips heads and false otherwise for this partition.

The function starPartition , whose pseudo-code is given below, takes as argument a graph
and a round number, and returns a graph partition specified by a set of centers and a
partition map from all vertices to centers.

The algorithm starts by flipping a coin for each vertex and selecting the edges that point
from tails to heads—this gives the set of edges TH . In this set of edges, there can be
multiple edges from the same non-center. Since we want to choose one center for each
satellite, we remove duplicates in Line 6, by creating a set of singleton tables and merging

1. STAR PARTITION 465

them, which selects one center per satellite. This completes the selection of satellites and
their centers.

Next, the algorithm determines the set of centers as all the non-satellite vertices. To com-
plete the process, the algorithm maps each center to itself (Line 10). These operations ef-
fectively promote unmatched non-centers to centers, forming singleton stars, and matches
all centers with themselves. Finally, the algorithm constructs the partition map by uniting
the mapping for the satellites and the centers.

1 starPartition G = (V,E) =
2 let
3 (* Find the arcs from satellites to centers. *)
4 TH = {(u, v) ∈ E | ¬(heads u) ∧ (heads v)}
5 (* Partition map: satellites map to centers *)
6 Ps =

⋃
(u,v)∈TH {u 7→ v}

7 (* Centers are non-satellite vertices *)
8 Vc = V \ domain(Ps)
9 (* Map centers to themselves *)
10 Pc = {u 7→ u : u ∈ Vc}
11 in
12 (Vc, Ps ∪ Pc)
13 end

Note. Most machines don’t have true sources of randomness, the function heads is there-
fore usually implemented with a pseudorandom number generator or with a good hash
function.

In the algorithm, Line 6 creates a set of singleton tables and merges them. This can be
implemented using sets and tables as follows.

Set .reduce (Table.union (lambda (x, y) . x))
∅
{{u 7→ v} : (u, v) ∈ TH }

Note that we supply to the union operation a function that selects the first of the two pos-
sibilities; this is an arbitrary choice and we could have favored the second.

Example 62.4. Consider the graph below and the random coin flips.

466 CHAPTER 62. STAR CONTRACTION

The star-partition algorithm proceeds on this example as follows. First, it computes

TH = {(c,a), (c,b), (e,b)} ,

as the edges from satellites to centers. Now, it converts each edge into a singleton table,
and merges all the tables into one table, which is going to become a part of the partition
map:

Ps = {c 7→ b,e 7→ b} .

Note that the edge (c,a) has been removed since when uniting the tables, we select only
one element for each key in the domain. Now for all remaining vertices Vc = V \domain(P) =
{a,b,d}we map them to themselves, giving:

Pc = {a 7→ a,b 7→ b,d 7→ d} .

The vertices in Pc are the centers. Finally we merge P and Pc to obtain the partition map

Ps ∪ Pc = {a 7→ a,b 7→ b,c 7→ b,d 7→ d,e 7→ b} .

Implementation. Suppose that we are given an enumerable graph with n vertices and m
edges. We can represent the graph using an edge set representation and represent the sets
with sequences. This means that we have a sequence of vertices and a sequence of edges.

This representation enables a relatively clean implementation of the star-partition algo-
rithm , as shown by the pseudo-code below. The implementation follows the pseudo-code
for the algorithm but is able to compute the satellites and centers compactly by using a
sequence inject operation. The implementation first constructs a vertex sequence V ′ where
each vertex maps to itself. It then constructs a sequence TH of “updates” from vertices that
flip heads into tails, and inject TH into the sequence of vertices V ′. The resulting sequence
P maps each vertex that flipped tails to a center, if the vertex has a neighbor that flipped
heads. The sequence P ensures that a vertex that has flipped heads remains unaffected by
the injection, e.g., if vertex i has flipped heads, then P [i] = i. We can thus compute set
of centers by filtering over P and use the sequence P to represent the partition map for

1. STAR PARTITION 467

satellites and centers jointly.

starPartition (G = (V,E)) =
let
V ′ = 〈 j : 0 ≤ j < |V | 〉
TH = 〈 (u, v) ∈ E | ¬(heads u) ∧ (heads v) 〉
P = Seq .inject V ′ TH
VC = 〈 j ∈ P | P [j] = j 〉

in (VC , P) end

Reminder (Edge-Set Representation). The edge set representation of a graph consists of a
set of vertices and a set of edges, where each undirected edge is represented with two arcs,
one in each direction.

Example 62.5. The edge-set representation of an undirected graph is shown below.

V = {a,b,c,d,e,f}
E = {(a,b), (b,a), (b,d), (b,e), (e,b), (d,b), (d,f), (a,c),

(c,a), (c,d), (d,c), (d,f), (f,d), (e,f), (f,e)}

1.1 Analysis of Star Partition

Theorem 62.1 (Cost of Star Partition). Based on the array-based cost specification for se-
quences, the cost of starPartition is

O(n+m)

work and

O(lg n)

span for a graph with n vertices and m edges.

Exercise 62.1. Prove the theorem.

468 CHAPTER 62. STAR CONTRACTION

Number of Satellites. Let us also bound the number of satellites found by starPartition.
Note first that there is a one-to-one mapping between the satellites and the set Ps computed
by the algorithm. The following lemma establishes that on a graph with n non-isolated
vertices, the number of satellites is at least n/4 in expectation. As we will see this means
that we can use star partition to perform graph contraction with logarithmic span.

Lemma 62.2 (Number of Satelites). For a graph G with n• non-isolated vertices, the ex-
pected number of satellites in a call to starPartition (G, i) with any i is at least n•/4.

Proof. For any vertex v, let Hv be the event that a vertex v comes up heads, Tv that it comes
up tails, and Rv that v ∈ domain(P) (i.e, it is a satellite). Consider any non-isolated vertex
v ∈ V (G). By definition, we know that a non-isolated vertex v has at least one neighbor
u. So, we know that Tv ∧ Hu implies Rv , since if v is a tail and u is a head v must either
join u’s star or some other star. Therefore, P [Rv] ≥ P [Tv]P [Hu] = 1/4. By the linearity of
expectation, the expected number of satellites is

E

[∑
v:v non-isolated

I {Rv}

]
=

∑
v:v non-isolated

E [I {Rv}]

≥ n•/4.

The final inequality follows because we have n• non-isolated vertices and because the ex-
pectation of an indicator random variable is equal to the probability that it takes the value
1.

2 Star Contraction

Definition 62.4 (Star Contraction). Star contraction is an instance of graph contraction that
uses star partitions to contract the graph.

Algorithm 62.5 (Star Contraction). The pseudo-code below gives a higher-order star-contraction
algorithm. The algorithm takes as arguments the graph G and two functions:

• base function specifies the computation in the base case, and

• expand function computes the result for the larger graph from the quotient graph.

In the base case, the graph contains no edges and the function base is called on vertex set.

In the recursive case, the graph is partitioned by a call to star partition (Line 6), which
returns the set of (centers) super-vertices V ′ and P the partition map mapping every
v ∈ V to a v′ ∈ V ′. The set V ′ defines the super-vertices of the quotient graph. Line 7
computes the edges of the quotient graph by routing the end-points of each edge in E to
the corresponding super-vertices in V ′ as specified by partition-map P . Note that the filter

2. STAR CONTRACTION 469

P [u] 6= P [v]. removes self edges. The algorithm then recurs on the quotient graph (V ′, E′).
The algorithm then computes the result for the whole graph by calling the function expand
on the result of the recursive call R.

1 starContract base expand (G = (V,E)) =
2 if |E| = 0 then
3 base (V)
4 else
5 let
6 (V ′, P) = starPartition (V,E)
7 E′ = {(P [u], P [v]) : (u, v) ∈ E | P [u] 6= P [v]}
8 R = starContract base expand (V ′, E′)
9 in
10 expand (V,E, V ′, P,R)
11 end

Theorem 62.3 (Work and Span of Star Contraction). For a graph G = (V,E), we can
contract the graph into a number of isolated vertices in O ((|V |+ |E|) lg |V |) work and
O(lg2 |V |) span.

Proof structure and assumptions. For the proof, we will consider work and span sepa-
rately and assume that

• function base has constant span and linear work in the number of vertices passed as
argument, and

• function expand has linear work and logarithmic span in the number of vertices and
edges at the corresponding step of the contraction.

Span of Star Contraction. Let n• be the number of non-isolated vertices. In star con-
traction, once a vertex becomes isolated, it remains isolated until the final round, since
contraction only removes edges. Let n′• denote the number of non-isolated vertices after
one round of star contraction. We can write the following recurrence for the span of star
contraction.

S(n•) =

{
S(n′•) +O(lg n) if n• > 0
1 otherwise.

Observe that n′• = n• − X , where X is the number of satellites (as defined earlier in the
lemma about starPartition), which are removed at a step of contraction. Because E [X] =
n•/4, E [n′•] = 3n/4. This is a familiar recurrence, which we know solves to O(lg2 n•), and
thus O(lg2 n), in expectation.

470 CHAPTER 62. STAR CONTRACTION

Work of Star Contraction. For work, we would like to show that the overall work is lin-
ear, because we might hope that the graph size is reduced by a constant fraction on each
round. Unfortunately, this is not the case. Although we have shown that star contrac-
tion can remove a constant fraction of the non-isolated vertices in one round, we have not
bounded the number of edges removed.

Because removing a satellite also removes the edge that attaches it to its star’s center, each
round removes at least as many edges as vertices. But this does not help us bound the
number of edges removed by a linear function of m, because there can be as many an n2

edges in the graph.

To bound the work, we will consider non-isolated and isolated vertices separately. Let n′•
denote the number of non-isolated vertices after one round of star contraction. For the
non-isolated vertices, we have the following work recurrence:

W (n•,m) ≤
{
W (n′•,m) +O(n• +m) if n• > 1
1 otherwise.

This recursion solves to

E [W (n•,m)] = O(n• +m lg n•) = O(n+m lg n).

To bound the work on isolated vertices, we note that there at most n of them at each round
and thus, the additional work is O(n lg n).

We thus conclude that the total work is

O((n+m) lg n).

Note. Consider as an example a star contraction where n and m have the following values
in each round.

round vertices edges
1 n m
2 n/2 m− n/2
3 n/4 m− 3n/4
4 n/8 m− 7n/8

It is clear that the number of edges does not drop belowm−n, so if there arem > 2n edges
to start with, the overall work will be O(m lg n).

Chapter 63

Graph Connectivity

This chapter presents a parallel graph connectivity algorithm that uses graph contraction
(more specifically star contraction).

1 Preliminaries

Definition 63.1 (The Graph Connectivity Problem). Given an undirected graphG = (V,E),
the graph-connectivity problem requires finding all of the connected components of G by
specifying the set of vertices in each component.

Assumption (Graph Representation). Throughout this chapter, we use an edge-set repre-
sentation for graphs, where every edge is represented as a pair of vertices, in both orders.
This is effectively equivalent to a directed graph representation of undirected graphs with
two arcs per edge. As usual we use n and m to denote the number of vertices and edges
respectively.

Example 63.1. The edge-set representation of an undirected graph is shown below.

471

472 CHAPTER 63. GRAPH CONNECTIVITY

V = {a,b,c,d,e,f}
E = {(a,b), (b,a), (b,d), (b,e), (e,b), (d,b), (d,f), (a,c),

(c,a), (c,d), (d,c), (d,f), (f,d), (e,f), (f,e)}

2 Algorithms for Connectivity

Sequential Algorithms for Connectivity. The graph connectivity problem can be solved
by using graph search as follows.

• Start at any vertex and find, using DFS or BFS, all vertices reachable from that vertex
and mark them visited. This creates the first connected component.

• Select another vertex, and if it has not already been visited, then search from that
vertex to create the second component. Repeat until all the vertices are considered.

This approach leads to perfectly sensible sequential algorithms for graph connectivity, but
the resulting algorithms have large span and are therefore poor parallel algorithms.

DFS is a purely sequential algorithm and has span Ω(m). BFS can yield some parallelism
but still the span of BFS is lower bounded by the diameter of a component, which can be
as large as n−1, e.g., a “chain” of n vertices has diameter n−1. Even when the diameter of
the graph is small, the span can be high, because we have to iterate over the components
sequentially. The span is lower bounded by the number of components, which can be
large.

Algorithm 63.2 (Component Count). The pseudo-code below shows a graph-contraction
based algorithm for determining the number of connected components in a graph. The call
to starPartition (Algorithm 62.3) on Line 6 returns the set of (centers) super-vertices V ′ and
a table P mapping every v ∈ V to a v′ ∈ V ′.

The set V ′ defines the super-vertices of the quotient graph. Line 7 completes the computa-
tion of the quotient graph.

• It computes the edges of the quotient graph by routing the end points of each edge
to the corresponding super-vertices in V ′, which is specified by the table P ;

• It removes all self edges via the filter P [u] 6= P [v].

The algorithm then recursively computes the number of connected components in the quo-
tient graph. Recursion bottoms out when the graph contains no edges, where the number
of components is equal to the number of vertices.

2. ALGORITHMS FOR CONNECTIVITY 473

1 countComponents (G = (V,E)) =
2 if |E| = 0 then
3 |V |
4 else
5 let
6 (V ′, P) = starPartition (V,E)
7 E′ = {(P [u], P [v]) : (u, v) ∈ E | P [u] 6= P [v]}
8 R = countComponents (V ′, E′)
9 in
10 R
11 end

Example 63.2. Consider an execution of countComponents that contracts the graph as fol-
lows.

The values of V ′, P , and E′ after each round of the contraction is shown below.

V ′ = {a,d,e}
Round 1 P ′ = {a 7→ a,b 7→ a,c 7→ a,d 7→ d,e 7→ e,f 7→ e}

E′ = {(a,e), (e,a), (a,d), (d,a), (d,e), (e,d)}

V ′ = {a,e}
Round 2 P ′ = {a 7→ a,d 7→ a,e 7→ e}

E′ = {(a,e), (e,a)}

V ′ = {a}
Round 3 P ′ = {a 7→ a,e 7→ a}

E′ = {}

Exercise 63.1. Express countComponents in terms of higher order function starContract
(Algorithm 62.5) by specifying the functions base and expand.

474 CHAPTER 63. GRAPH CONNECTIVITY

Computing Components. We can modify algorithm for counting components to com-
pute the components themselves. The idea is to construct recursively a mapping from
vertices to their components. The algorithm below implements this idea.

Algorithm 63.3 (Graph Connectivity). The algorithm below computes the connected com-
ponents of the input graph G and returns a tuple consisting of 1) a representative for each
component, and 2) a mapping from the vertices in the graph to the representative of their
component.

1 connectedComponents (G = (V,E)) =
2 if |E| = 0 then
3 (V, {v 7→ v : v ∈ V })
4 else
5 let
6 (V ′, P) = starPartition (V,E)
7 E′ = {(P [u], P [v]) : (u, v) ∈ E | P [u] 6= P [v]}
8 (V ′′, C) = connectedComponents (V ′, E′)
9 in
10 (V ′′, {u 7→ C[v] : (u 7→ v) ∈ P})
11 end

Example 63.3. Applying connectedComponents to the following graph

might return:

({a} , {a 7→ a,b 7→ a,c 7→ a,d 7→ a,e 7→ a,f 7→ a})

This is because there is a single component and all vertices will map to that component
label. In this case a was picked as the representative, but any of the initial vertices is a
valid representative, in which case all vertices would map to it.

Example 63.4. Consider the following graph.

2. ALGORITHMS FOR CONNECTIVITY 475

Suppose that starPartition returns:

V ′ = {a,d,e}
P = {a 7→ a,b 7→ a,c 7→ a,d 7→ d,e 7→ e,f 7→ e} .

This pairing corresponds to the case where a, d and e are chosen an centers.

Because the graph is connected, the recursive call to connectedComponents (V ′, E′) will
map all vertices in V ′ to the same vertex. Let’s say this vertex is a giving:

V ′′ = {a}
P ′ = {a 7→ a,d 7→ a,e 7→ a} .

Now {u 7→ P ′[v] : (u 7→ v) ∈ P} will for each vertex-super-vertex pair in P , look up what
that super-vertex got mapped to in the recursive call. For example, vertex f maps to vertex
e in P so we look up e in P ′, which gives us a so we know that f is in the component a.
Overall the result is:

{a 7→ a,b 7→ a,c 7→ a,d 7→ a,e 7→ a,f 7→ a} .

Note. The only differences between the algorithm for counting components and the al-
gorithm for computing the components is the base case, and “expansion step” (Defini-
tion 60.4) on Line 10 of Algorithm 63.3.

In the base case instead of returning the size of V returns all vertices in V along with a
mapping from each one to itself. This is a valid answer since if there are no edges each
vertex is its own component. In the inductive case, before returning from the recursion,
Line 10 constructs the mapping C from vertices to their components by mapping each
vertex to the component that its super-vertex (given byP) belongs to. This involves looking
up C[v] for every (u 7→ v) ∈ P . If we view a mapping as a function, then the expansion
step is equivalent to function composition, i.e., C ◦ P .

Exercise 63.2. Express countComponents in terms of higher order function starContract
(Algorithm 62.5) by specifying the functions base and expand.

Exercise 63.3. What is the work and span of the algorithm for counting components ?
Explain your choice of the representation for the graph. What happens if you choose a
different representation?

Exercise 63.4. What is the work and span of the algorithm for computing the components
? Explain your choice of the representation for the graph. What happens if you choose a
different representation?

Part XVII

Minimum Spanning Trees

476

Chapter 64

Introduction

This chapter defines the Minimum Spanning Tree (MST) problem and introduces a key
lemma called the “light-edge lemma” that nearly all algorithms for solving the problem
utilizes.

1 Spanning Trees

Recall that we say that an undirected graph is a forest if it has no cycles and a tree if it is
also connected. Given a connected, undirected graph, we might want to identify a subset
of the edges that form a tree, while including all the vertices. We call such a tree a spanning
tree.

Definition 64.1 (Spanning Tree). For a connected undirected graphG = (V,E), a spanning
tree is a tree T = (V,E′) with E′ ⊆ E.

Example 64.1. A graph (top), and two spanning trees for it.

Exercise 64.1. How many edges does a spanning tree have?

477

478 CHAPTER 64. INTRODUCTION

Solution. A graph can have many spanning trees, but all have |V | vertices and |V | − 1
edges.

Lemma 64.1 (Spanning Trees Edge Replacement). Let G = (V,E) be a connected graph
and let T be a spanning tree of G. Consider some edge e = {u, v} ∈ E that is not in T . Let
e′ be any edge on the path from u to v in T and let the tree T ′ be T \ {e′}∪ {e}, that is a tree
obtained by swapping e for e′. The tree T ′ is a spanning tree of G.

Proof. Consider any path in T that uses e′ = {u′, v′}. We can re-route this path to use
e = {u, v} instead and thus the path is a valid path in T ′. Thus, T ′ is connected, and is
acyclic. Furthermore T ′ has exactly the same number of nodes and edges as T and thus is
a spanning tree.

Sequential Algorithms for Spanning Trees. We can find a spanning tree of a graph by
using graph search.

• A DFS-tree is a spanning tree, because it includes a path from the source to all the
vertices in the graph.

• Similarly, we can construct a spanning tree based on BFS by including in the spanning
tree each edge that leads to the discovery of an unvisited vertex.

DFS and BFS are work-efficient algorithms for computing spanning trees but as their span
can be large. DFS in particular is sequential. The span of BFS can be as large as the diameter
of the graph, which can be large.

Parallel Algorithms for Spanning Trees. We can compute a spanning tree for a graph
by using graph contraction and, specifically star contraction . The idea is to use star
contraction and add all the edges that are selected to define the stars to the spanning tree.
Because graph contraction has poly-logarithmic span in expectation, this approach yields
a good parallel algorithm, though work can be suboptimal.

Exercise 64.2. Give an algorithm for computing the spanning tree of a graph using star
contraction. Prove that the algorithm is correct.

2 Minimum Spanning Trees

A graph can have many spanning trees. In some cases, such as in weighted graphs, we
may be interested in finding the spanning tree with the smallest total weight (i.e., sum of
the weights of its edges).

2. MINIMUM SPANNING TREES 479

Definition 64.2 (Minimum Spanning Trees). Given a connected, undirected weighted graph
G = (V,E,w), the minimum (weight) spanning tree (MST) problem requires finding a
spanning tree of minimum weight, where the weight of a tree T is defined as

w(T) =
∑

e∈E(T)

w(e).

Example 64.2. A graph (top) and its MST (bottom).

Example 64.3 (Network Design). Minimum spanning trees have many interesting appli-
cations in network design, i.e., in the design of a network that includes vertices and con-
nections between them. In such network design problems, it can be important to minimize
some cost function, defined in terms of the connections in the network. As an example,
suppose that you are wiring a building so that all the rooms are connected via bidirectional
communication wires. Suppose that you can connect any two rooms at the cost of the wire
connecting the rooms, which depends on the specifics of the building and the rooms but
is always a positive real number. We can represent this problem as a minimization prob-
lem over a graph, where vertices represent rooms and weighted edges represent possible
connections and their cost, attached to the graph as weights. To minimize the cost of the
wiring, we can find a minimum spanning tree of the graph. One of the algorithms that we
cover in this chapter (Boruvka’s algorithm) was discovered when developing the electric
network for the historical country of Moravia, which is today part of Czech Republic.

Distinct Edge-Weights Assumption. Throughout the discussion of minimum spanning
trees, we assume that all edges of graphs have distinct weights. This assumption causes
no loss-of-generality, because we can always break ties between edges by ordering them
arbitrarily as long as the ordering is deterministic. One way to achieve this is to order edges
based on their end-points or assign a unique label to each and break ties by comparing the
labels. Such an ordering can be done “statically” ahead of time before running our favorite
MST algorithm or “dynamically” as the algorithm runs. Another way is to tweak the edge
weights to ensure uniqueness of the weights without altering the ordering of edges with
distinct weights, though arguably this approach is rather clumsy from a practical point of
view.

Lemma 64.2 (MST Edge Replacement). Let G = (V,E) be a weighted graph and let T be
an MST for G. Let e = {u, v} ∈ E be an edge that is not in T . Then e is heavier than any
edge e′ on the path between u and v in T .

480 CHAPTER 64. INTRODUCTION

Proof. By Edge-Replacement Lemma for spanning trees we know that replacing e′ with e
yields a spanning tree T ′. If e lighter than e′, T ′ is ligther than T and thus T cannot be an
MST; a contradiction.

Exercise 64.3. Show that for any undirected connected graph with unique edge weights,
there exists one unique minimum spanning tree.

3 Light-Edge Property

There are several algorithms for computing minimum spanning trees. These algorithms
are all based on the same underlying property about cuts in a graph, which we will refer
to as the light-edge property. Intuitively, the light-edge property states that if we partition
the graph into two blocks, the minimum edge between the two blocks is in the MST. The
light-edge property gives a way to identify algorithmically the edges of the MST.

Definition 64.3 (Graph Cut). For a graph G = (V,E), a cut is defined in terms of a non-
empty proper subset U (V . The set U partitions the graph into blocks induced by the
vertex set U and the vertex set V \ U , which together are called the cut and written as
the cut (U, V \ U). We refer to the edges between the two parts as the cut edges written
E(U, V \ U). We sometimes say that a cut edge crosses the cut.

Example 64.4. If the subset U in the definition of graph-cuts is a single vertex v of the
graph. The cut edges consist of all edges incident on v.

Lemma 64.3 (Light-Edge Property). LetG = (V,E,w) be a connected undirected, weighted
graph with distinct edge weights. For any cut of G, the minimum weight edge that crosses
the cut is contained in the minimum spanning tree of G.

Proof.

The proof is by contradiction. Assume the lightest edge e = {u, v} is not in an MST. Since
the MST spans the graph, there is a simple path P connecting u and v in the MST (i.e.,
consisting of only edges in the MST). Path P crosses the cut between U and V \ U at least
once since u and v are on opposite sides of the cut.

Let e′ be an edge on the path P that crosses the cut. Because e is the lightest edge crossing
the cut, e′ is heavier than e. But by Edge-Replacement Lemma for spanning trees, we

4. APPROXIMATING METRIC TSP VIA MST 481

know that we can insert e into the MST and delete e′ and obtain a lighter spanning tree.
This is a contradiction, and thus the lightest edge crossing the cut is in the MST.

Example 64.5 (Cuts and Light Edges). The figures below illustrates two cuts. For each cut,
we can find the light edge that crosses that cut, which are the edges with weight 2 (top)
and 3 (bottom) respectively.

Light-Edge Property and Algorithms. An important implication of the light-edge prop-
erty as proved in Lemma 64.3 is that any lightest edge that crosses a cut can be immediately
added to the MST. In fact, the algorithms that we consider in this section all take advan-
tage of this implication. For example, Kruskal’s algorithm constructs the MST by greed-
ily adding the overall minimum edge. Prim’s algorithm grows an MST incrementally by
considering a cut between the current MST and the rest of graph. Boruvka’s algorithm
constructs a tree in parallel by considering the cut defined by each and every vertex.

Exercise 64.4. Consider any undirected, connected graph G with unique edge weights.
Show that for any cycle in the graph, the heaviest edge on the cycle is not in the MST of G.

4 Approximating Metric TSP via MST

TSP and MST. There is an interesting connection between minimum spanning trees and
the symmetric Traveling Salesperson Problem (TSP), an NP-hard problem: certain instances
of TSP can be approximated successfully by using MST’s. In this section, we present such
an approximation algorithm.

Lower Bounding TSP with MST. Recall that in TSP problem, we are given a set of n
cities (vertices) and are interested in finding a tour that visits all the vertices exactly once
and returns to the origin. In the symmetric case of the problem, the edges are undirected (or
equivalently the distance is the same in each direction). For the TSP problem, we usually
consider complete graphs, where there is an edge between any two vertices. Even if a

482 CHAPTER 64. INTRODUCTION

graph is not complete, we can typically complete it by inserting edges with large weights
that make sure that the edge never appears in a solution. Here we also assume the edge
weights are non-negative.

Since the solution to the TSP problem visits every vertex once (returning to the origin), it
spans the graph. But the solution is not a tree but a cycle in which each vertex is visited
once. Dropping any edge from the solution therefore would yield a spanning tree. There-
fore, a solution to the TSP problem cannot have less total weight than that of a minimum
spanning tree. We can thus conclude that for undirected graphs with non-negative edge
weights, a minimum spanning tree can be used to obtain a lower bound for the (symmetric)
TSP problem.

Approximating TSP with MST. As we shall see in the rest of this section, minimum
spanning trees can also be used to find an approximate solutions to the TSP problem,
effectively finding an upper bound. This, however, requires one more condition on the
TSP problem. In particular in addition to requiring that weights are non-negative we re-
quire that all distances satisfy the triangle inequality—i.e., for any three vertices a, b, and c,
w(a, c) ≤ w(a, b) + w(b, c).

Definition 64.4 (Metric Traveling Salesperson (TSP) Problem). Given a complete undi-
rected graph G = (V,E) with edge weights W : E → R such that

• for all e ∈ E, W (e) ≥ 0, and

• for all u, v, w ∈ E, W (u, v) +W (v, w) ≥W (u,w),

find the minimum-weight cycle that visits all the vertices.

From a TSP to an Euler Tour. We would like a way to use the MST to generate a path
to take as an approximate solution to the metric TSP problem. To do this we first consider
a path based on the MST that can visit a vertex multiple times, and then take shortcuts to
ensure we only visit each vertex once.

Given a minimum spanning tree T we can start at any vertex s and take a path based on
the depth-first search on the tree from s. In particular whenever we visit a new vertex v
from vertex u we traverse the edge from u to v and when we are done visiting everything
reachable from v we then back up on this same edge, traversing it from v to u. This way
every edge in our path is traversed exactly twice, and we end the path at our initial vertex.
If we view each undirected edge as two directed edges, then this path is a so-called Euler
tour of the tree—i.e. a cycle in a graph that visits every edge exactly once. Since T spans
the graph, the Euler tour will visit every vertex at least once, but possibly multiple times.

Example 64.6 (Euler Tour). The figure on the right shows an Euler tour of the tree on the
left. Starting at a, the tour visits a,b,e,f,e,b,a,c,d,c,a.

4. APPROXIMATING METRIC TSP VIA MST 483

Shortcuts. Recall that in the TSP problem, the underlying graph is complete and thus
there is an edge between every pair of vertices. Because it is possible to take an edge from
any vertex to any other, we can take shortcuts to avoid visiting vertices multiple times.
More precisely what we can do is the following: when we are about to go back to a vertex
that the tour has already visited, instead find the next vertex in the tour that has not been
visited and go directly to it. We call this a shortcut edge.

Example 64.7 (Shortcuts). The figure on the right shows a solution to TSP with shortcuts,
drawn in red. Starting at a, we can visit a,b,e,f,c,d,a.

Final Bounds. We are now ready to give an upper bound on the TSP problem in terms of
MST. Note that by the triangle inequality the shortcut edges are no longer than the paths
that they replace. Thus by taking shortcuts, the total distance is not increased. Since the
Euler tour traverses each edge in the minimum spanning tree twice (once in each direction),
the total weight of the path is exactly twice the weight of the MST. With shortcuts, we obtain
a solution to the TSP problem that is at most the weight of the Euler tour, and hence at most
twice the weight of the MST. Because the weight of the MST is also a lower bound on the
TSP, the solution we have found is within a factor of 2 of optimal. This means our approach
is an approximation algorithm for TSP that approximates the solution within a factor of 2.
This can be summarized as:

W (MST(G)) ≤W (TSP(G)) ≤ 2W (MST(G)) .

484 CHAPTER 64. INTRODUCTION

Remark. It is possible to reduce the approximation factor to 1.5 using a well known algo-
rithm developed by Nicos Christofides at CMU in 1976. The algorithm is also based on
the MST problem, but is followed by finding a vertex matching on the vertices in the MST
with odd-degree, adding these to the tree, finding an Euler tour of the combined graph, and
again shortcutting. Christofides algorithm was one of the first approximation algorithms
and it took over 40 years to improve on the result, and only very slightly.

Chapter 65

Sequential MST Algorithms

This chapter reviews two sequential algorithms, Prim’s and Kruskal’s , for computing
Minimum Spanning Trees.

1 Prim’s Algorithm

Prim’s algorithm performs a priority-first search to construct the minimum spanning tree.
To see the basic idea behind the algorithm, imagine that we have already visited a set X
of vertices. By Lemma 64.3, we know that the minimum-weight edge e with one of its
endpoint in X and the other in V \X is in the MST, because it is a minimum edge crossing
the cut defined by X . We can therefore add e to the MST and include the other endpoint
in X .

Algorithm 65.1 (Prim’s Algorithm). For a weighted undirected graph G = (V,E,w) and a
source s, Prim’s algorithm is priority-first search on G starting at an arbitrary s ∈ V with
T = ∅. The algorithm visits the next vertex in the frontier with the least priority, where the
priority of a vertex is defined as

p(v) = min
x∈X

w(x, v).

After visiting a vertex the algorithm extends the tree with the chosen edge T = T ∪{(u, v)}
when visiting v (w(u, v) = p(v)). When the algorithm terminates, T is the set of edges in
the MST.

Example 65.1. A step of Prim’s algorithm. Since the edge (c,f) has minimum weight
across the cut (X,Y), the algorithm will “visit” f adding (c,f) to T and f to X .

485

486 CHAPTER 65. SEQUENTIAL MST ALGORITHMS

Exercise 65.1. Prove the correctness of Prim’s algorithm.

Cost of Prim’s Algorithm. In the worst case, Prim’s algorithm visits every edge exactly
once. Because visiting an edge requires the removal of the edge from the priority queue
representing the frontier, the cost isO(lg n) per edge. This is the dominating cost, and using
binary heaps for the priority queue yields work and span ofO(m lg n). This can be reduced
to O(m+ n lg n) by using Fibonacci heaps.

Prim’s and Dijkstra’s. Prim’s algorithm is quite similar to Dijkstra’s algorithm for short-
est paths. Both are priority-first search algorithms. The only differences are

• Prim’s algorithms starts at an arbitrary vertex instead of at a source,

• Prim’s algorithm uses the priority

p(v) = min
x∈X

w(x, v)

instead of the priority used by Dijkstra’s:

min
x∈X

(d(x) + w(x, v))

• Prim’s algorithm maintains a tree T instead of a table of distances d(v).

Because of the similarity to implement Prim’s algorithm, we can basically use the same
priority-queue implementation as in Dijkstra’s algorithm. Such an implementation re-
quires O(m log n) work and span.

Remark. Prim’s algorithm was invented in 1930 by Czech mathematician Vojtech Jarnik
and later independently in 1957 by computer scientist Robert Prim. Edsger Dijkstra’s re-
discovered it in 1959 in the same paper he described his famous shortest path algorithm.

2. KRUSKAL’S ALGORITHM 487

2 Kruskal’s Algorithm

As described in Kruskal’s original paper, the algorithm is:

“Perform the following step as many times as possible: Among the edges of G
not yet chosen, choose the shortest edge which does not form any loops with
those edges already chosen.” [Kruskal, 1956]

In more modern terminology we would replace “shortest” with “lightest” and “loops”
with “cycles”.

Correctness of Kruskal’s Algorithm. Kruskal’s algorithm is correct since it maintains the
invariant on each step that the edges chosen so far are in the MST of G. This is true at the
start. Now on each step, any edge that forms a cycle with the already chosen edges cannot
be in the MST. This is because adding it would violate the tree property of an MST and we
know, by the invariant, that all the other edges on the cycle are in the MST. Now consider-
ing the edges that do not form a cycle, the minimum weight edge must be a “light edge”
since it is the least weight edge that connects the connected subgraph at either endpoint to
the rest of the graph. Finally we have to argue that all the MST edges have been added.
Well we considered all edges, and only tossed the ones that we could prove were not in the
MST (i.e. formed cycles with MST edges).

We could finish our discussion of Kruskal’s algorithm here, but a few words on how to
implement the idea efficiently are warranted. In particular checking if an edge forms a
cycle might be expensive if we are not careful. Indeed it was not until many years after
Kruskal’s original paper that an efficient approach to the algorithm was developed. Note
that to check if an edge (u, v) forms a cycle, all one needs to do is test if u and v are in the
same connected component as defined by the edges already chosen. One way to do this is
by contracting an edge (u, v) whenever it is added—i.e., collapse the edge and the vertices
u and v into a single super-vertex. However, if we implement this directly, we would need
to update all the other edges incident on u and v. This can be expensive since an edge
might need to be updated many times.

Union-Find. To get around these problem it is possible to update the edges lazily. What
we mean by lazily is that edges incident on a contracted vertex are not updated immedi-
ately, but rather later when the edge is processed. At that point the edge needs to determine
what supervertices (components) its endpoints are in. This idea can be implemented with
a union-find data structure. The ADT for a union-find data structure consists of the fol-
lowing operations on a union-find structure U :

• insert U v: insert the vertex v into U ,

• union U (u, v): join the two elements u and v into a single super-vertex,

488 CHAPTER 65. SEQUENTIAL MST ALGORITHMS

• find U v: return the super-vertex in which v belongs, possibly itself,

• equals u v: return true if u and v are the same super-vertex. Now we can simply
process the edges in increasing order.

Algorithm 65.2 (Union-Find Kruskal).

1 kruskal (G = (V,E,w)) =
2 let
3 addEdge ((U, T), e = (u, v)) =
4 let u′ = find (U, u)
5 v′ = find (U, v)
6 in if (equals (u′, v′) then (U, T)
7 else (union (U, u′, v′), T ∪ e)
8 end
9 U = iterate insert ∅ V
10 E′ = sort (E,w)
11 in
12 iterate addEdge (U, ∅) E′
13 end

Exercise 65.2. Prove that Kruskal’s algorithm correctly find the MST of a undirected graph
with unique edge weights.

Cost of Kruskal’s. To analyze the work and span of the algorithm we first note that there
is no parallelism, so the span equals the work. To analyze the work we can partition it into
the work required for sorting the edges and then the work required to iterate over the edges
using union and find. The sort requires O(m log n) work. The union and find operations
can be implemented in O(log n) work each requiring another O(m log n) work since they
are called O(m) times. The overall work is therefore O(m log n). It turns out that the union
and find operations can actually be implemented with less than O(log n) amortized work,
but this does not reduce the overall work since we still have to sort.

Chapter 66

Parallel MST Algorithms

This chapter presents a parallel algorithm, due to Boruvka, for computing minimum span-
ning trees in parallel. As with all parallel algorithms, the algorithm is trivially a sequential
algorithm also, and in fact sequential version of the algorithm are known to perform well
in practice.

1 Boruvka’s Algorithm

As discussed in previous sections, Kruskal and Prim’s algorithm are sequential algorithms.
In this section, we present an MST algorithm that runs efficiently in parallel using graph
contraction. This parallel algorithm is based on an approach by Boruvka. As Kruskal’s and
Prim’s, Boruvka’s algorithm constructs the MST by inserting light edges but unlike them,
it inserts many light edges at once.

Vertex Bridges. To see how we can select multiple light edges, recall that by Lemma 64.3
all light edges that cross a cut must be in the MST. Consider now a cut that is defined by a
vertex v and the rest of the vertices in the graph. The edges that cross this cut are exactly
the edges incident on v. Therefore, by the light edge rule, for v, the minimum weight edge
between it and its neighbors is in the MST. Since this argument applies to all vertices at the
same time, the minimum weight edges incident on any vertex is in the MST. We call such
edges vertex-bridges or more simply as bridges.

Example 66.1. The vertex bridges of the graph are highlighted.

489

490 CHAPTER 66. PARALLEL MST ALGORITHMS

1.1 Algorithm Idea

Let’s start by finding the bridge for each and every vertex in the graph. We know that the
bridges are all in the MST and thus we can insert them into the MST in parallel. At this
point, we might be done—we might have already selected all the MST edges and we can
stop. But in most cases, we will not have a spanning tree.

To see how we can proceed, note that the bridges define a partition of the graph, because
each and every vertex is the end-point of some bridge and thus is in a block. Consider
now the edges that remain internal to a block but are not bridges. Such an edge cannot
be in the MST, because inserting it into the MST would create a cycle. The edges that
cross the blocks, however, could be in the MST. We therefore want to eliminate the internal
edges from consideration, but keep the cross edges. We can do so by performing a graph
contraction based on the partition defined by the bridges.

Boruvka’s algorithm iterates this approach until the graph is reduced to a single vertex.

Example 66.2 (One Round of Boruvka’s Algorithm). Consider the graph below and the
highlighted vertex-bridges.

• The vertices a and b both pick edge {a,b};

• vertex c picks {c,d}, d;

• the vertices d and f both pick {d,f}, and

1. BORUVKA’S ALGORITHM 491

• e picks {e,b}.

The edge (e,f), which is in the MST, is not selected (neither e nor f pick it).

To proceed, we can take the partitions defined by bridges and contract them by using
graph contraction. The figure below illustrates such a contraction. After the contraction
completes, we obtain multiple edges between the the resulting partitions.

Redundant Edges. When performing graph contraction, we have to be careful about re-
dundant edges. In our discussion of graph contraction of unweighted graphs, we men-
tioned that we may treat redundant edges differently based on the application. In un-
weighted graphs, the task is usually simple because we can keep any one of the redundant
edges, and it usually does not matter which one. When the edges have weights, however,
we have to decide to keep all the edges or select some of the edges to keep. For the purposes
of MST, in particular, we can keep all the edges or keep just the edge with the minimum
weight, because the others, cannot be in the MST. In the example above, we would keep
the edge with weight 4.

Summary. What we just covered is exactly Boruvka’s idea. He did not discuss imple-
menting the contraction in parallel. At the time, there were not any computers let alone
parallel ones. In summary, Boruvka’s algorithm can be described as follows.

Algorithm 66.1 (Boruvka). While there are edges remaining:

1. select the minimum weight edge out of each vertex and contract each part defined by
these edges into a vertex;

2. remove self edges, and when there are redundant edges keep the minimum weight
edge; and

3. add all selected edges to the MST.

492 CHAPTER 66. PARALLEL MST ALGORITHMS

1.2 Boruvka’s Algorithm with Tree Contraction

We can implement Boruvka’s algorithm as described in Section 1.1 by using tree contrac-
tion. In this section we describe how to do this and analyze its cost.

Tree Contraction. To contract the partition defined by the vertex-bridges, we cannot use
edge or star contraction, because the blocks may not correspond to an edge or a star. The
blocks in general are trees, because each vertex selects exactly one bridge. To contract
the block that is induced by the bridges in the block, it suffices to contract along the tree
formed by the tree edges. We can do this by removing all non-bridge edges from a block
and contracting the block by applying star contraction to it. Because each round of star
contraction applied on a tree yields another tree, the number of edges goes down with the
number of vertices.

Therefore the total work to contract all the partitions is bounded by O(n) if using array
sequences. The span remains O(log2 n).

After contracting each tree, we have to update the edges, by re-routing the cut edges be-
tween blocks to their new endpoints. This can lead to multiple edges between two vertices,
effectively giving us a multi-graph. This can be an effective solution, and allows the up-
dating the edges in O(m) work.

Example 66.3. An example where finding the bridges for all vertices yields a tree that is
not a star graph. Note that the selected bridges form a minimum spanning tree.

Cost of Boruvka by Using Tree Contraction. Let’s first bound the number of rounds of
contraction. Observe that contracting a bridge removes exactly one vertex (contraction of
an edge can be viewed as folding one endpoint into the other). Therefore, if k bridges are
selected then k vertices are removed.

Because each vertex picks a vertex bridge independently in parallel, it is possible that k =
n. In this case, we would be able to fold all the vertices in one round. In the general case,
however, one edge can be chosen by two vertices as vertex bridges. Therefore at least n/2
vertex bridges are picked and thus n/2 vertices will be removed. Consequently, Boruvka’s
algorithm will take at most lg n rounds of selecting bridges and contracting by using 1.2.

1. BORUVKA’S ALGORITHM 493

Because updating all cut edges requires O(m) work and because there are log n rounds,
Boruvka’s algorithm takes O(m log n) work and O(log3 n) span.

1.3 Boruvka’s Algorithm with Star Contraction

Star Partition on Bridges. We now describe how to improve the span of Boruvka by a
logarithmic factor by interleaving steps of star contraction with steps of finding the vertex-
bridges. The idea is to apply star contraction to the subgraph of the graph induced by the
bridges. The key observation is that because each non-isolated vertex has a bridge, the
subraph is large enough to give us a constant contraction ratio. Specifically, we will prove
that the technique reduces the number of vertices by a constant factor (in expectation),
leading to logarithmic number of total rounds. Consequently, we will reduce the overall
span for finding the MST from O(log3 n) to O(log2 n) and maintain the same work.

Example 66.4. An example of Boruvka with star contraction.

Algorithm 66.2 (Star Partition along Bridges). Given a function vertexBridges (G) that
finds the vertex-bridges out of each vertex in G, the function bridgeStarPartition
performs star contraction along the vertex bridges. To apply star contraction, the algorithm
modifies standard starContract function so that after flipping coins, we only contract
edges which are vertex-bridges. In the code w denotes the weight of the edge (u, v).

494 CHAPTER 66. PARALLEL MST ALGORITHMS

1 bridgeStarPartition (G = (V,E), i) =
2 let
3 Eb = vertexBridges (G)
4 P = {u 7→ (v, w) ∈ Eb | (flips (u) = T) ∧ (flips (v) = H)}
5 V ′ = V \ domain(P)
6 in
7 (V ′, P)
8 end

Contraction Ratio. Before we go into details about how we might keep track of the MST
and other information, let us try to understand what effects this change has on the number
of vertices contracted away. If we have n non-isolated vertices, the following lemma shows
that the algorithm bridgeStarPartition still selects n/4 satellities in expectation on each step,
and this contracting the graph along these edges will lead to a 1/4 factor reduction in the
number of vertices. The lemma thus implies that this MST algorithm will take onlyO(log n)
rounds, just like the original star contraction algorithm.

Lemma 66.1 (Number of Bridged Satellites). For a graphGwith n non-isolated vertices, let
Xn be the random variable indicating the number of vertices removed by bridgeStarPartition (G, r).
Then, E [Xn] ≥ n/4.

Proof. The proof is pretty much identical to our proof for starContract except here we’re
not working with the whole edge set, only a restricted one Eb. Let v ∈ V (G) be a non-
isolated vertex. Like before, let Hv be the event that v comes up heads, Tv that it comes up
tails, and Rv that v ∈ domain (P) (i.e, it is removed). Since v is a non-isolated vertex, v has
neighbors—and one of them has the minimum weight, so there exists a vertex u such that
(v, u) ∈ Eb. Then, we have that Tv ∧Hu implies Rv since if v is a tail and u is a head, then
v must join u. Therefore, P [Rv] ≥ P [Tv]P [Hu] = 1/4. By the linearity of expectation, we
have that the number of removed vertices is

E

[∑
v:v non-isolated

I {Rv}

]
=

∑
v:v non-isolated

E [I {Rv}] ≥ n/4

since we have n vertices that are non-isolated.

Exercise 66.1. Compare the proof the bridged-satellites lemma to the original star-partition
lemma. What remains the same, what has changed?

Tracking Edges. There is a little bit of trickiness in constructing the result MST. As the
graph contracts, the endpoints of each edge changes. Therefore, if we want to return the
edges of the minimum spanning tree, then we might need to keep track of changes in how
edges are re-routed between vertices. To avoid this, we associate a unique label with every
edge and return the tree as a set of labels (i.e. the labels of the edges in the spanning tree).
We also associate the weight directly with the edge. The type of each edge is therefore

1. BORUVKA’S ALGORITHM 495

(vertex × vertex × weight × label), where the two vertex endpoints can change as
the graph contracts but the weight and label stays fixed. This leads to the slightly-updated
version of bridgeStarPartition that appears in the algorithm given below.

Algorithm 66.3 (Boruvka’s based on Star Contraction). The function vertexBridge(G) finds
the minimum edge out of each vertex v and maps v to the pair consisting of the neighbor
along the edge and the edge label. To this end, the function makes a singleton table for
each edge and then merge all the tables with a function to resolve collisions, which favors
lighter edge.

The function bridgeStarPartition performs star contraction on the subgraph induced by
the bridges. It starts by selecting the bridges and then in Line 12 it picks from bridges the
edges that go from a tail to a head. It then generates a mapping from tails to heads along
minimum edges, creating stars. Line 13 removes all vertices that are in this mapping to star
centers.

The function bridgeStarPartition is ready to be used in the MST code, similar to the graphContract
code studied last time, except we return the set of labels for the MST edges instead of the
remaining vertices. The code is given below. The MST algorithm is called by running
MST(G, ∅, 0). As an aside, we know that T is a spanning forest on the contracted nodes.

496 CHAPTER 66. PARALLEL MST ALGORITHMS

1 vertexBridges E =
2 let
3 ET = {(u, v, w, l) 7→ {u 7→ (v, w, l)} : (u, v, w, l) ∈ E}
4 select ((v1, w1, l1), (v2, w2, l2)) =
5 if (w1 ≤ w2) then (v1, w1, l1) else (v2, w2, l2)
6 in
7 reduce (union select) {} ET
8 end
9 bridgeStarPartition (G = (V,E)) =
10 let
11 Eb = vertexBridges G
12 P = {(u 7→ (v, w, `)) ∈ Eb | (flip(u) = T) ∧ (flip(v) = H)}
13 V ′ = V \ domain(P)
14 in
15 (V ′, P)
16 end
17 MST (V,E) T =
18 if (|E| = 0) then T
19 else
20 let
21 (V ′, PT) = bridgeStarPartition (V,E)
22 P = {u 7→ v : u 7→ (v, w, `) ∈ PT} ∪ {v 7→ v : v ∈ V ′}
23 T ′ = {` : u 7→ (v, w, `) ∈ PT}
24 E′ = {(P [u], P [v], w, l) : (u, v, w, l) ∈ E | P [u] 6= P [v]}
25 in
26 MST (V ′, E′) (T ∪ T ′)
27 end

Remark. Even though Boruvka’s algorithm is not the only parallel algorithm, it was the
earliest, invented in 1926, as a method for constructing an efficient electricity network in
Moravia in the Czech Republic. It was re-invented many times over.

	Introduction
	Parallelism
	Parallel Hardware
	Parallel Software
	Work, Span, Parallel Time
	Work and Span
	Work Efficiency

	Specification, Problem, and Implementation
	Algorithm Specification
	Data Structure Specification
	Problem
	Implementation

	Genome Sequencing (An Example)
	Genome Sequencing Problem
	Background
	Sequencing Methods
	Genome Sequencing Problem
	Understanding the Structure of the Problem

	Algorithms for Genome Sequencing
	Brute Force
	Brute Force Reloaded
	Shortest Superstrings by Algorithmic Reduction
	Traveling Salesperson Problem
	Reducing Shortest Superstrings to TSP
	Greedy Algorithm

	Concluding Remarks

	I Background
	Sets and Relations
	Sets
	Relations

	Graph Theory
	Basic Definitions
	Weighted Graphs
	Subgraphs
	Connectivity
	Graph Partition
	Trees

	II A Language for Specifying Algorithms
	Introduction
	Functional Algorithms
	Pure Functions
	Safe for Parallelism
	Persistence
	Benign Effects

	Functions as Values
	Functional Algorithms

	The Lambda Calculus
	Syntax and Semantics
	Parallelism and Reduction Order

	The SPARC Language
	Syntax and Semantics of SPARC

	III Concurrency
	Threads, Concurrency, and Parallelism
	Threads
	Concurrency and Parallelism
	Mutable State and Race Conditions

	Critical Sections and Mutual Exclusion

	IV Analysis of Algorithms
	Introduction
	Asymptotics
	Basics
	Big-O, big-Omega, and big-Theta
	Some Conventions

	Cost Models
	Machine-Based Cost Models
	RAM Model
	PRAM: Parallel Random Access Machine

	Language Based Models
	The Work-Span Model
	Scheduling

	Recurrences
	The Basics
	Some conventions
	The Tree Method
	The Brick Method
	Substitution Method
	Master Method

	V Sequences
	Introduction
	Defining Sequences

	The Sequence Abstract Data Type
	The Abstract Data Type
	Basic Functions
	Tabulate
	Map and Filter
	Subsequences
	Append and Flatten
	Update and Inject
	Collect
	Aggregation by Iteration
	Aggregation by Reduction
	Aggregation with Scan

	Array Sequences
	A Parametric Implementation
	Implementing the Primitive Functions

	Cost of Sequences
	Cost Specifications
	Array Sequences
	Tree Sequences
	List Sequences

	Examples
	Miscellaneous Examples
	Computing Primes

	Ephemeral and Single-Threaded Sequences
	Persistent and Emphemeral Implementations
	Ephemeral Sequences
	Single-Threaded Sequences
	Implementation

	Tree Sequences
	Primitive Tree Sequences
	Parametric Implementation of Tree Sequences

	VI Algorithm Design And Analysis
	Introduction
	Basic Techniques
	Algorithmic Reduction
	Brute Force

	Divide and Conquer
	Divide and Conquer
	Merge Sort
	Sequence Scan
	Euclidean Traveling Salesperson Problem
	Divide and Conquer with Reduce

	Contraction
	Contraction Technique
	Reduce with Contraction
	Scan with Contraction

	Maximum Contiguous Subsequence Sum
	The Problem
	Brute Force
	Applying Reduction
	Auxiliary Problems
	Reduction to MCSSS
	Reduction to MCSSE

	Divide And Conquer
	A First Solution
	Divide And Conquer with Strengthening

	VII Probability
	Introduction
	Probability Spaces
	Probability Spaces and Events
	Properties of Probability Spaces
	The Union Bound
	Conditional Probability
	Law of Total Probability
	Independence

	Random Variables
	Probability Mass Function
	Bernoulli, Binomial, and Geometric RVs
	Functions of Random Variables
	Conditioning
	Independence

	Expectation
	Definitions
	Composing Expectations
	Linearity of Expectations
	Conditional Expectation
	Variance and Standard Deviation
	Markov's Inequality
	Chebyshev's Inequality
	Chernoff Bounds

	A Darts Game
	Fixed Success Probability
	Expected Size

	VIII Randomization
	Introduction
	Randomized Algorithms
	Advantages of Randomization
	Disadvantages of Randomization

	Analysis of Randomized Algorithms

	Order Statistics
	The Order Statistics Problem
	Randomized Algorithm for Order Statistics
	Analysis
	Analysis with the Dart Game
	A Direct Analysis

	Exercises

	The Quick Sort Algorithm
	Quicksort
	Analysis of Quicksort
	Analysis with the Dart Game
	A Direct Analysis
	Alternative Analysis of Quicksort

	Concluding Remarks

	IX Binary Search Trees
	Introduction
	Motivation
	Preliminaries
	Searching a BST
	Balancing BSTs
	An Interface for Sets

	Parametric BSTs
	The Parametric Data Type
	Algorithms based on joinMid
	Parallel Functions
	Cost Specification
	Cost of Union, Intersection, and Difference

	Treaps
	Treap Properties
	Height Analysis of Treaps
	The Treap Data Structure

	Augmenting Binary Search Trees
	Augmenting with Values
	Augmenting with Size
	Example: Rank and Select in BSTs

	Augmenting with Reduced Values

	X Sets and Tables
	Sets
	Motivation
	Sets ADT
	Cost of Sets

	Tables
	Interface
	Cost Specification for Tables

	Ordering and Augmentation
	Ordered Sets Interface
	Cost specification: Ordered Sets
	Interface: Augmented Ordered Tables

	Example: Indexing and Searching

	XI Priority Queues
	Priority Queues
	Implementing Priority Queues
	Meldable Priority Queues
	Leftist Heaps

	XII Hashing
	Foundations
	Introduction
	Hash Functions
	Universal Hashing

	Hash Tables
	Nested Tables
	A Parametric Design
	Separate Chaining
	Perfect Hashing

	Flat Tables or Open Addressing
	A Parametric Implementation of Flat Tables
	Linear Probing
	Quadratic Probing
	Double Hashing

	Concluding Remarks

	XIII Dynamic Programming
	Introduction
	Two Problems
	Subset Sums
	Minimum Edit Distance

	Optimal Binary Search Trees
	Implementing Dynamic Programming
	Bottom-Up Method
	Top-Down Method: Memoization

	XIV Graphs
	Graphs and their Representation
	Graphs and Relations
	Applications of Graphs
	Graphs Representations
	Edge Sets
	Adjacency Tables
	Adjacency Sequences
	Adjacency Matrices
	Representing Weighted Graphs

	Graph Search
	Generic Graph Search
	Reachability
	Graph-Search Tree
	Priority-First Search (PFS)

	Breadth-First Search
	BFS and Distances
	Sequential BFS
	Cost of Sequential BFS

	Parallel BFS
	Cost of Parallel BFS

	Shortest Paths and Shortest-Path Trees
	Cost with Sequences

	Depth-First Search
	DFS Reachability
	DFS Trees
	DFS Numbers
	Cost of DFS
	Parallel DFS

	Cycle Detection
	Topological Sort
	Strongly Connected Components (SCC)
	Discussions

	XV Shortest Paths
	Introduction
	Path Weights
	Shortest Path Problems
	The Sub-Paths Property

	Dijkstra's Algorithm
	Dijkstra's Property
	Dijkstra's Algorithm with Priority Queues
	Cost Analysis of Dijkstra's Algorithm

	Bellman-Ford's Algorithm
	Graphs with Negative Edge Weights
	Bellman-Ford's Algorithm
	Cost Analysis

	Johnson's Algorithm

	XVI Graph Contraction and Applications
	Introduction
	Preliminaries
	Graph Contraction

	Edge Contraction
	Edge Partition
	Analysis of Parallel Edge Partition

	Edge Contraction

	Star Contraction
	Star Partition
	Analysis of Star Partition

	Star Contraction

	Graph Connectivity
	Preliminaries
	Algorithms for Connectivity

	XVII Minimum Spanning Trees
	Introduction
	Spanning Trees
	Minimum Spanning Trees
	Light-Edge Property
	Approximating Metric TSP via MST

	Sequential MST Algorithms
	Prim's Algorithm
	Kruskal's Algorithm

	Parallel MST Algorithms
	Boruvka's Algorithm
	Algorithm Idea
	Boruvka's Algorithm with Tree Contraction
	Boruvka's Algorithm with Star Contraction

