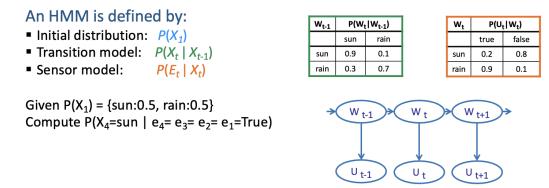
15-281 Spring 2023

Learning Objectives

- To practice computing HMM probabilities
- To run Predict and Observe steps in the forward algorithm

Q1. Hidden Markov Models

Below is the Weather HMM from class. We want to predict the weather given both a distribution for weather today given weather yesterday (transition model) and weather today given people using umbrella today (sensor model). We want to compute the weather on day 4 $P(X_4|e_1, e_2, e_3, e_4)$ assuming that we've witnessed umbrellas each day (all the evidence is True that there is an umbrella). Note that the states are the weather $X_i = W_i$ and the evidence is the umbrella $e_i = U_i$.

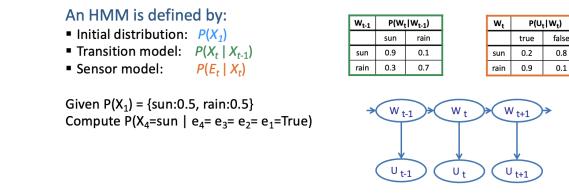


(a) OBSERVE! We are given the initial distribution $P(X_1)$. Now we need to Observe the evidence $e_1 = True$ and compute $P(X_1|e_1)$. We can derive the equation for $P(X_1|e_1)$ directly using Bayes Rule with the probabilities $P(e_1|X_1)$ and $P(X_1)$ or by computing the joint $P(X_1, e_1)$ and normalizing $Z = P(e_1)$. Write the equation below and then compute the probability table $P(X_1|e_1)$.

$P(X_1 e_1) =$	Table $P(X_1 e_1)$
$P(X_1, e_1)/P(e_1) = P(e_1 X_1)P(X_1)/\sum_x P(e_1 x)P(x)$	sun .1/(.1+.45) = .18
	rain $.45/(.1+.45) = .82$

(b) PREDICT! Now we have $P(X_1|e_1)$, and we want to Predict $P(X_2|e_1)$. We can do this by summing over X_1 : $P(X_2|e_1) = \sum_{x \in X_1} P(X_2|x)P(x|e_1)$. Rewrite this equation below and then compute the probability table using your answer above and the HMM model tables.

$P(X_2 e_1) =$	Table $P(X_2 e_1)$
$\sum_{x \in X_1} P(X_2 x) P(x e_1)$	Table $P(X_2 e_1)$ sun .9*.18 + .3*.82 = .41
	rain $1^*.18 + .7^*.82 = .59$



(c) OBSERVE! Now that we've predicted X_2 , we can update the probability given new evidence $e_2 = True$. Use the Observation update to write the formula for $P(X_2|e_1, e_2)$ using $P(X_2|e_1)$ above and then solve.

$P(X_2 e_1, e_2) =$	Table $P(X_2 e_1, e_2)$ sun .2*.41/.613 = .13
$\alpha P(X_2, e_2 e_1) = P(e_2 X_2)P(X_2 e_1) / \sum_{x \in X_2} P(e_2 x)P(x e_1)$	$\frac{\text{sun} .2^*.41/.613 = .13}{\text{rain} .9^*.59/.613 = .87}$

(d) PREDICT! Compute $P(X_3|e_1, e_2)$ using the transition probabilities and $P(X_2|e_1, e_2)$ above. Write this equation below and then compute the probability table.

$P(X_3 e_1, e_2) =$	Table $P(X_3 e_1, e_2)$
$\sum_{x \in X_2} P(X_3 x) P(x e_1, e_2)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

(e) OBSERVE! Now that we've predicted X_3 , we can update the probability given new evidence $e_3 = True$. Use the Observation update to write the formula for $P(X_3|e_1, e_2, e_3)$ using $P(X_3|e_1, e_2)$ above and then solve.

$P(X_3 e_1, e_2, e_3) = \alpha P(X_3, e_3 e_1, e_2) = \alpha P(e_3 X_3) P(X_3 e_1, e_2)$	Table $P(X_3 e_1, e_2, e_3)$ sun .2*.38/.634 = .12
$\alpha = 1/\sum_{x \in X_3} P(e_3 x) P(x e_1, e_2)$	$rain 0.9^{*}.62/.634 = .88$

(f) PREDICT! Compute $P(X_4|e_1, e_2, e_3)$ using the transition probabilities and $P(X_3|e_1, e_2, e_3)$ above. Write the equation below and then compute the probability table.

$P(X_4 e_1, e_2, e_3) =$	Table $P(X_4 e_1, e_2, e_3)$ sun .9*.12 + .3*.88 = .37
$\sum_{x \in X_3} P(X_4 x) P(x e_1, e_2, e_3)$	
	rain $.1^*.12 + .7^*.88 = .63$

(g) OBSERVE! Finally, we can update the probability of X_4 given new evidence $e_4 = True$ (and the rest of the evidence). Use the Observation update rule to write the formula for $P(X_4|e_1, e_2, e_3, e_4)$ using $P(X_4|e_1, e_2, e_3)$ above and then solve for the new probability table.

$P(X_4 e_1, e_2, e_3, e_4) =$	Table $P(X_4 e_1, e_2, e_3, e_4)$
$\alpha P(X_4, e_4 e_1, e_2, e_3) = \alpha P(e_4 X_4) P(X_4 e_1, e_2, e_3)$	$sun : .2^*.37/.641 = .115$
$\alpha = 1 / \sum_{x \in X_4} P(e_4 x) P(x e_1, e_2, e_3)$	rain $.9^*.63/.641 = .885$