
Warm-up as You Log In
Given
§ Set actions (persistent/static)
§ Set states (persistent/static)
§ Function T(s,a,s_prime)

Write the pseudo code for:
§ function V(s) return value

that implements:

V (s) = max
a2actions

X

s02states

T (s, a, s0)V (s0)

Announcements
Assignments:
§ HW5 (written)

§ Due Tonight, 10 pm
§ P3 Checkpoint

§ Due Friday 3/3, 10 pm
§ HW6 (online)

§ Due Tues 3/14, 10 pm (Tuesday after spring break)
§ P3 All

§ Due Friday 3/17, 10 pm
§ Midsemester grades submitted by end of Fall break
§ Midsemester feedback!

AI: Representation and Problem Solving
Markov Decision Processes

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu

Non-Deterministic Search

Example: Grid World

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(a,s’)

§ Maybe a terminal state

What is Markov about MDPs?

“Markov” generally means that given the present state, the future
and the past are independent

For Markov decision processes, “Markov” means action outcomes
depend only on the current state

This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Markov Decision Processes

An MDP is defined by:
§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ Maybe a terminal state

MDPs are non-deterministic search problems
§ One way to solve them is with expectimax search
§ We’ll have a new tool soon

𝑎 = argmax
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

3𝑎 = argmax
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

𝑉 𝑠 = max
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation

𝑉 𝑠 =4
#"

𝑃 𝑠" 𝑉 𝑠"

Question from Lecture 4
Expectimax tree search:
Which action do we
choose?

A) Left
B) Center
C) Right
D) Eight

412 8 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

𝑉 𝑠 = max
!

4
#"

[𝑃 𝑠" 𝑠, 𝑎) 𝑉(𝑠")]

Expectimax Notation

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 = '
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉%&'
) 𝑠 = '

"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%
) 𝑠#] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 = '
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉%&'
) 𝑠 = '

"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%
) 𝑠#] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes

expected utility if followed
§ An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
§ It computed the action for a single state only

Example: Racing

Example: Racing
A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Cool

Warm

Overheated

Fast

Slow

Slow

0.5

0.5

1.0

1.0

+1

+1

+1

+2

-10

1.0

Slow
(r=1)

Fast
(r=2)

0.5

0.5

0.5 Fast
(r=-10)

Slow
(r=1)

1.0

0.5

Racing Search Tree

MDP Search Trees
Each MDP state projects an expectimax-like search tree

a

s

sʼ

s, a

(s,a,sʼ) called a transition

T(s,a,sʼ) = P(sʼ|s,a)

R(s,a,sʼ)

s,a,sʼ

s is a state

(s, a) is a q-
state

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

𝑉 𝑠 = max
!

4
#"

𝑃 𝑠" 𝑠, 𝑎) 𝑉(𝑠")

Recursive Expectimax

a

s

sʼ

s, a

s,a,sʼ

𝑉 𝑠 = max
!

4
#"

𝑃 𝑠" 𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠" + 𝑉 𝑠"

Recursive Expectimax

a

s

sʼ

s, a

s,a,sʼ

Which sequence of optimal policies matches
the following sequence of living rewards:
{-0.01, -0.03, -0.4, -2.0}

I. {A, B, C, D}
II. {B, C, A, D}
III. {D, C, B, A}
IV. {D, A, C, B}

Poll 1

D)

A)

C)

B)+1

-1

+1

-1

+1

-1

+1

-1

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Value Iteration

Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a
Vk+1(s)

s, a

s,a,sʼ
Vk(s’)

Example: Value Iteration

0 0 0

2 1 0

Assume no discount!

1.0

Slow
(R=1)

Fast
(R=2)

0.5

0.5

0.5 Fast
(R=-10)Slow

(R=1)

1.0

0.5

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

1.0

Slow
(R=1)

Fast
(R=2)

0.5

0.5

0.5 Fast
(R=-10)Slow

(R=1)

1.0

0.5

Simple Deterministic Example
§ Actions: B, C, D: East, West
§ Actions: A, E: Exit
§ Transitions: deterministic
§ Rewards only for transitioning to terminal state

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉 𝑠 = max
!

𝑅 𝑠, 𝑎, 𝑠" + 𝑉 𝑠"

Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉$%& 𝑠 = max
!

𝑅 𝑠, 𝑎, 𝑠" + 𝑉$ 𝑠"

§ Actions: B, C, D: East, West
§ Actions: A, E: Exit
§ Transitions: deterministic
§ Rewards only for transitioning to terminal state

Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉$%& 𝑠 = max
!

𝑅 𝑠, 𝑎, 𝑠" + 𝑉$ 𝑠"

§ Actions: B, C, D: East, West
§ Actions: A, E: Exit
§ Transitions: deterministic
§ Rewards only for transitioning to terminal state

Utilities of Sequences

Utilities of Sequences
What preferences should an agent have over reward sequences?

More or less?

Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

It’s reasonable to maximize the sum of rewards
It’s also reasonable to prefer rewards now to rewards later
One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

How to discount?
§ Each time we descend a level, we

multiply in the discount once

Why discount?
§ Sooner rewards probably do have

higher utility than later rewards
§ Also helps our algorithms converge

Poll 2
If an agent predicts they will get 2 reward now, 4 at the next step, and 8 the
step after that, what is the expected value of the current state if 𝛾 = 0.5?

A. 3
B. 6
C. 7
D. 14

Bonus: What is the value of U[8,4,2] with 𝛾 = 0.5?

Discounting
§ Actions: B, C, D: East, West
§ Actions: A, E: Exit
§ Transitions: deterministic
§ Rewards only for transitioning to terminal state
𝑉$%& 𝑠 = max

!
𝑅 𝑠, 𝑎, 𝑠" + 𝛾 𝑉$ 𝑠"

For g = 1, what is the optimal policy?

For g = 0.1, what is the optimal policy?

For which g are West and East equally good when in state D?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(E, Exit, T) = 1

Infinite Utilities?!

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)
§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)

In–Class Activity
Practice Value iteration in our Trivia Game MDP example

Poll: What is the policy after 3 iterations?

Recap: Defining MDPs

Markov decision processes:
§ Set of states S
§ Start state s0
§ Set of actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility = sum of (discounted) rewards

a

s

s, a

s,a,sʼ
sʼ

Solving MDPs

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States
Fundamental operation: compute the (expectimax) value of a state
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax computed!

Recursive definition of value:
a

s

s, a

s,a,sʼ
sʼ

Racing Search Tree

Racing Search Tree

We’re doing way too much work
with expectimax!

Problem: States are repeated
§ Idea: Only compute needed quantities

once

Problem: Tree goes on forever
§ Idea: Do a depth-limited computation,

but with increasing depths until
change is small

§ Note: deep parts of the tree eventually
don’t matter if γ < 1

Time-Limited Values

Key idea: time-limited values

Define Vk(s) to be the optimal value of s if the game ends in k
more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

Computing Time-Limited Values

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Convergence

How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

