Announcements

Assignments:

= P3: Logic Plan
= Checkpoint Due Friday 3/3, 10 pm (tomorrow)
= All Due Friday 3/17, 10pm (after spring break)
= HWS6 (online)
= Due Tues 3/14, 10 pm

Al: Representation and Problem Solving

Markov Decision Processes Il

Instructor: Stephanie Rosenthal

Slide credits: CMU Al and http://ai.berkeley.edu

Recap: Grid World

= A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as
planned
= 80% of the time, the action North takes the agent North
= 10% of the time, North takes the agent West; 10% East

= |fthereis a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Bigrewards come at the end (good or bad)

Grid World

o 1 2 3 For starting state s=(2,2), fill in
5 actions, probabilities, and next states

Value Iteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vi 1(5) & maxy_T(s,a, ') R(s,a,s") 4+~ Vi(s)]

S

Repeat until convergence »

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Value lteration Convergence

How do we know the V| vectors are going to converge?

Vi(s) Vit1(s)
Case 1: If the tree has maximum depth M, then V,
holds the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,; can be viewed as depth k+1
expectimax results in nearly identical search trees

» The difference is that on the bottom layer, V,,; has actual
rewards while V, has zeros

= That last layer is at best all Ryax / \ /

= |tis at worst Ry

= But everything is discounted by y* that far out
= So V, and V,,; are at most yk max|R| different
= So as k increases, the values converge

Values of States

Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
= This is just what expectimax computed!

Recursive definition of value: o

V*(s) = maxQ* (s, a)

Q*(s,a) =) T(s,a, s") [R(s, a,s’) + ’yV*(s’)]

S

V*(s) = mC?XZT(s, a,s’) {R(S,a, s + ny*(s')}

S

k

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

A

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

5

Gridworld Display

}

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

6

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

v

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

3

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

9

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

Gridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

Cridworld Display

VALUES AFTER

12 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Gridworld Values V*

VALUES AFTER 100 ITERATIONS

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

—

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s,a)
Q*(s,a) = > T(s,a, s {R(s, a,s’) + 7\/*(5’)}

V*(s) = mC?XZT(s, a,s’) [R(s, a,s) + ’}/V*(S,)}

S

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value Iteration

Bellman equations characterize the optimal values:

V*(s) = mO?XZT(S, a,s’) [R(s, a,s) + ’yV*(s')}

S

Value iteration computes them:

Viet1(s) mC?XZT(s, a,s’) [R(s,a, s + 7Vk(s/)}

S

Value iteration is just a fixed point solution method
= .. though the V| vectors are also interpretable as time-limited values

MDP Notation

Standard expectimax: V(s) = mc?xz: P(s'|s,a)V(s")
S/

Bellman equations: V*(s) = m‘?xz P(s'|s,a)[R(s,a,s") +yV*(s)]
S/

Value iteration: Vie+1(s) = max E P(s'|s,a)[R(s,a,s") + yVi(s')], Vs
a
S/

Solved MDP! Now what?

Policy Extraction

Policy Extraction - Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= |[t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = argmax 3" T(s,a,) [R(s,a, ') + 7V*(s")]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

How should we act? Egm
= Completely trivial to decide! M.

SCRTUSTRCR |

Important lesson: actions are easier to select from g-values than values!

Let’s imagine we have the optimal g-values:

T (Terminal)

Poll 2

R(A, Exit, T) = 10 R(E, Exit, T) = 1
Practice Policy Extraction /> \

10 3 7 5 1

A B C D E

n(s) = argmax, [R(s,a,s") + yV(s')]

Deterministic Actions: East and West

What is the policy for B? Gamma: 0.5

Value Iteration Notes

Value iteration repeats the Bellman updates:

Vip1(s) < max}_T(s,a,s) [R(s,a,') 4+ Vi(s)]

S

Things to notice when running value iteration:

/,«"’ y
- S,d,S

= [t'sslow—O(|S|%|A]) per iteration < A s’\

= The “max” at each state rarely changes

= The optimal policy appears before the values converge (but we
don’t know that the policy is optimal until the values converge)

k

6

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

v

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

3

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k

9

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

Gridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

Cridworld Display

VALUES AFTER

12 ITERATIONS

Noise = 0.2
Discount =0.9
Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

Two Methods for Solving MDPs

Value iteration + policy extraction

= Step 1: Value iteration: calculate values for all states by running one
ply of the Bellman equations using values from previous iteration
until convergence

= Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration

Policy iteration

= Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

= Step 2: Policy improvement: update policy by running one ply of the
Bellman equations using values from policy evaluation
= Repeat steps until policy converges

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-’s,a,s

//,
A

\\A
A S

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy 7t(s), then the tree would be simpler
— only one action per state

= ... though the tree’s value would depend on which policy we fixed

Policy Evaluation - Utilities for a Fixed Policy

Another basic operation: compute the utility of a state

s under a fixed (generally non-optimal) policy >
m(s)
Define the utility of a state s, under a fixed policy m: b A m(s)
V™(s) = expected total discounted rewards starting in s O \
and following ©t S T(s),s ‘,‘\ “
A s

Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)R(s,m(s),s) + V(5]

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vig1(s) < > T(s,m(s),s)[R(s,7(s),s") + 1V (s")]

S

Efficiency: O(|S|?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with your favorite linear system solver

Policy Iteration

Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

= Step 2: Policy improvement: update policy by running one ply of the
Bellman equations using values from policy evaluation
= Repeat steps until policy converges

This is policy iteration
" |t’s still optimall!
= Can converge faster under some conditions

Policy Iteration:

Evaluation: For fixed current policy =, find values with policy evaluation:
" [terate until values converge:

Vit (s) < > T(s,mi(s),8") |R(s,mi(s),8") +v V(5]

Improvement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

mi+1(s) = arg maxZT(s, a,s) {R(s, a,s’) + 'yVW”?(s’)]

S

T (Terminal)

In-Class Activity

R(A, Exit, T) = 10 R(E, Exit, T) = 1
Practice Policy Evaluation / \

VE(s) =0

Vkﬂ+1(s) — ZT(S, 7w(s),s)[R(s,m(s),s") + ’kaW(s’)]

S

Exit| | West | West| East |[Exit

A B C D E

Deterministic Actions: East and West
Gamma: 0.5

A) What are the converged values V*™ under to the right?

B) What are the converged values V*™ under = below (same transition
rules)?

Exit | East | West | East |Exit

A B C D E

T (Terminal)

In-Class Activity 2

R(A, Exit, T) = 10 R(E, Exit, T) =1
Practice Policy Improvement / \

mit1(s) = argmax Y T(s, a,') [R(s,a,8) + V7 (s)]

S

Exit| | West | West| East |[Exit

A B C D E

Deterministic Actions: East and West
Gamma: 0.5

C) Based on your answer to A, what is the new policy?

D) Based on your answer to B, what is the new policy?

Exit | East | West | East |Exit

A B C D E

Two Methods for Solving MDPs

Value iteration + policy extraction
= Step 1: Value iteration:
Vies1(s) = max Yo P(s'|s,a)[R(s,a,s") + yVi(s")], Vs until convergence
= Step 2: Policy extraction:
my(s) = argmax)., P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a

Policy iteration
= Step 1: Policy evaluation:
VEL1(s) =2 P(s'|s, m(s))[R(s,m(s),s") + yVi(s')], Vs until convergence
= Step 2: Policy improvement:
Tnew(S) = argmax Y., P(s'|s,a)[R(s,a,s’) + yV™old(s")], Vs
a

= Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update values with fixed policy (each pass is fast because we
consider only one action, not all of them; however we do many passes)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

=" Compute optimal values: use value iteration or policy iteration

= Compute values for a particular policy: use policy evaluation

» Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

*" They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:
Policy evaluation:

Policy improvement:

V(s) = mélxz P(s'|s,)V (s")

Vi(s) = mng,Z P(s'ls,)[R (s, a,s") + yV*(s")]

Vier1 () = m‘?;lz P(s'ls,)[R(s,a,s") + yVi(s)], Vs
Qrss(s, @) = ZS;’(S’IS, DIR(s,a,5") +y max Qu(s',a')], ¥s,a
7y (s) = arg;n;z P(s'ls, D)[R(s,a,s") + YV (sD], Vs
VEa(s) =) P(s'ls, T(DIR(s m(s), s) +YVEGD], Vs

Tnew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs
a
S/

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:
Policy evaluation:

Policy improvement:

V(s) = mc?xi P(s'|s, a)V (s")

Ve(s) = m‘?xSlZ P(s'ls,)[R(s,as") + yV*(s")]

Viesa (5) = ménjz P(s'ls,)[R(s,a,s") + yVe(sD], Vs
Qrsr(s,a) = 251;(5%, DIR(s,a,5") +ymax Q(s',a)], ¥s,a
7y (s) = arg;n:xz P(s'|s,)[R(s,a,s) +yV(s)], Vs
VEA() =) PG/l m(DIRG 7(),) +YVEGD], Vs

Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™ld(s")], Vs
a
S/

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:
Policy evaluation:

Policy improvement:

V(s) = mélxz P(s'|s,)V (s")

Vi(s) = mng,Z P(s'ls,)[R (s, a,s") + yV*(s")]

Vier1 () = m‘?;lz P(s'ls,)[R(s,a,s") + yVi(s)], Vs
Qrss(s, @) = ZS;’(S’IS, DIR(s,a,5") +y max Qu(s',a')], ¥s,a
7y (s) = arg;n;z P(s'ls, D)[R(s,a,s") + YV (sD], Vs
VEa(s) =) P(s'ls, T(DIR(s m(s), s) +YVEGD], Vs

Tnew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs
a
S/

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:
Policy evaluation:

Policy improvement:

V(s) = mélxz P(s'|s,)V (s")

Vi(s) = mng,Z P(s'ls,)[R (s, a,s") + yV*(s")]

Viers () = mgiz P(s'ls,)[R(s,a,s") +yVi(s)], Vs
Qrss(s, @) = ZS;’(S’IS, DIR(s,a,5") +y max Qu(s',a')], ¥s,a
7, (s) = arg;n:XZ P(s'ls, D)[R(s,a,s") + YV (sD], Vs

Vi (s) =) P(s'ls, T(DIR(s m(s), s) + V(D] Vs

Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs
a
S/

Next Time: Reinforcement Learning!

Double Bandits

Double-Bandit MDP g No discount A

100 time steps
Actions: Blue, Red Both states have

States: Win, Lose the same value

Offline Planning

No discount

Solving MIDPs is offline planning
= You determine all quantities through computation Both states have

" You need to know the details of the MDP the same value
N /
= You do not actually play the game!

4 N

Value

100 time steps

Play Red 150

Play Blue 100

Let’s Play!

S2 S2 SO S2 S2
$2 $2 S0 SO SO

Online Planning

Rules changed! Red’s win chance is different.

?? S0

Let’s Play!

S0 SO SO $2 SO
$2 S0 SO SO SO

What Just Happened?

That wasn’t planning, it was learning!
= Specifically, reinforcement learning
= There was an MDP, but you couldn’t solve it with just computation
*" You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

= Exploration: you have to try unknown actions to get information

= Exploitation: eventually, you have to use what you know

= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly
Difficulty: learning can be much harder than solving a known MDP

