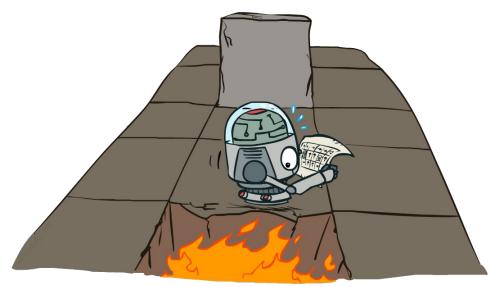
Announcements

Assignments:

- P3: Logic Plan
 - Checkpoint Due Friday 3/3, 10 pm (tomorrow)
 - All Due Friday 3/17, 10pm (after spring break)
- HW6 (online)
 - Due Tues 3/14, 10 pm

AI: Representation and Problem Solving

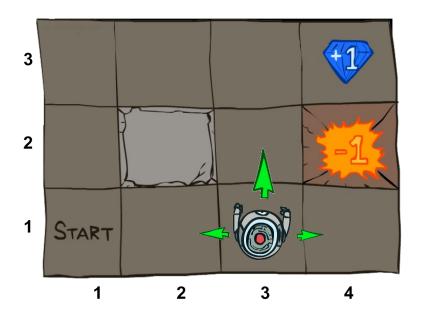
Markov Decision Processes II

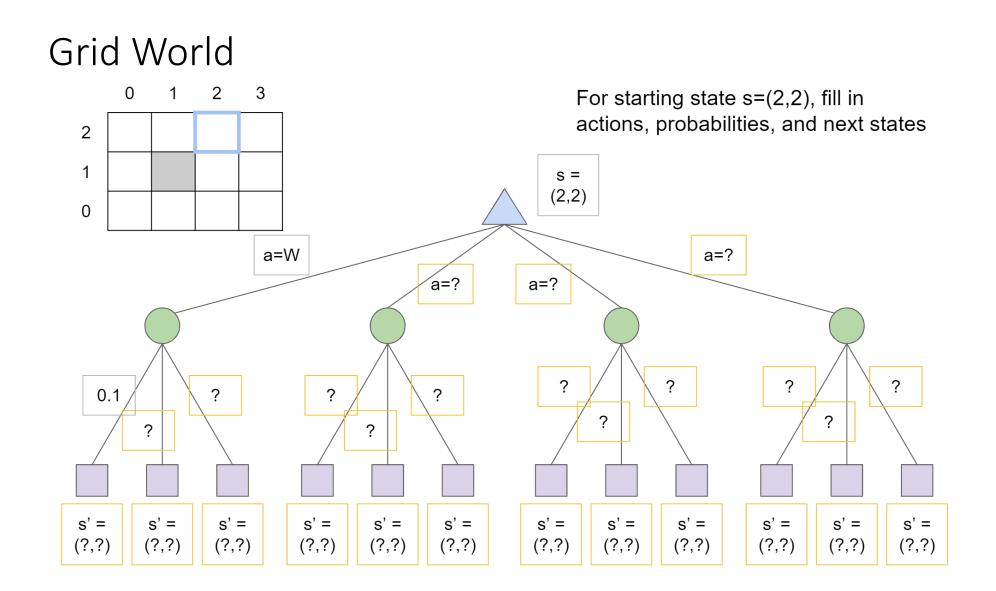


Instructor: Stephanie Rosenthal Slide credits: CMU AI and http://ai.berkeley.edu

Recap: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)





Value Iteration

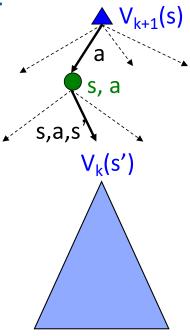
Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do



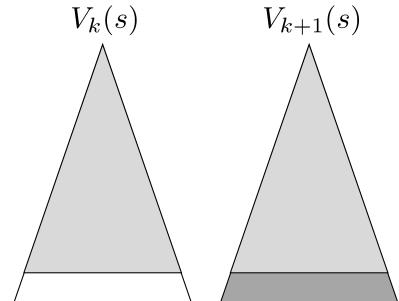
Value Iteration Convergence

How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then $V_{\rm M}$ holds the actual untruncated values

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
- That last layer is at best all R_{MAX}
- It is at worst R_{MIN}
- But everything is discounted by γ^k that far out
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
- So as k increases, the values converge



Values of States

Fundamental operation: compute the (expectimax) value of a state

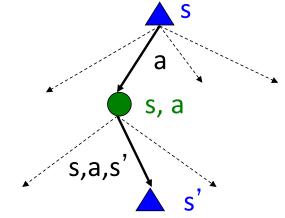
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!

Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



00	Gridworld Display					
	0.00	0.00	0.00	0.00		
	0.00		0.00	0.00		
	^	^	^			
	0.00	0.00	0.00	0.00		
	VALUES AFTER O ITERATIONS					

00	0	Gridworl	d Display		
	• 0.00	• 0.00	0.00 →	1.00	
	• 0.00		∢ 0.00	-1.00	
	•	•	•	0.00	
	VALUES AFTER 1 ITERATIONS				

	Gridworl	d Display	
0.00	0.00 →	0.72 →	1.00
		^	
0.00		0.00	-1.00
		^	
0.00	0.00	0.00	0.00
			-

00	C Cridworld Display				
	0.00 >	0.52 →	0.78)	1.00	
	• 0.00		• 0.43	-1.00	
	•	•	•	0.00	
	VALUES AFTER 3 ITERATIONS				

00	Cridworld Display				
	0.37 →	0.66 →	0.83)	1.00	
	•		• 0.51	-1.00	
	•	0.00 →	• 0.31	∢ 0.00	
	VALUES AFTER 4 ITERATIONS				

Gridworld Display				
0.51 →	0.72 →	0.84)	1.00	
0.27		• 0.55	-1.00	
0.00	0.22 ≯	• 0.37	∢ 0.13	
VALUES AFTER 5 ITERATIONS				

000	Gridworl	d Display		
0.59)	0.73 →	0.85 →	1.00	
0.41		• 0.57	-1.00	
0.21	0.31 →	▲ 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

C C Gridworld Display				
0.62	▶ 0.74 ▶	0.85)	1.00	
		•		
0.50		0.57	-1.00	
		•		
0.34	0.36 →	0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

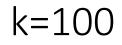
Gridworld Display				
0.63)	0.74 ≯	0.85 →	1.00	
• 0.53		• 0.57	-1.00	
0.42	0.39 →	• 0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

000		Gridwor	ld Display		
0.64	•	0.74 →	0.85 →	1.00	
0.55			• 0.57	-1.00	
0.46		0.40 →	• 0.47	∢ 0.27	
VAI	VALUES AFTER 9 ITERATIONS				

000	Gridworld Display				
0.64)	0.74 ≯	0.85 →	1.00		
• 0.56		• 0.57	-1.00		
0.48	∢ 0.41	0. 47	∢ 0.27		
VALUES AFTER 10 ITERATIONS					

000	C Cridworld Display				
0.64	Ŀ ▶	0.74 →	0.85)	1.00	
0.56	5		• 0.57	-1.00	
0.48	3 4	0.42	▲ 0.47	∢ 0.27	
VAL	VALUES AFTER 11 ITERATIONS				

Gridworld Display				
0.64 →	0.74 →	0.85)	1.00	
0.57		• 0.57	-1.00	
0.49	∢ 0.42	• 0.47	∢ 0.28	
VALUE	VALUES AFTER 12 ITERATIONS			

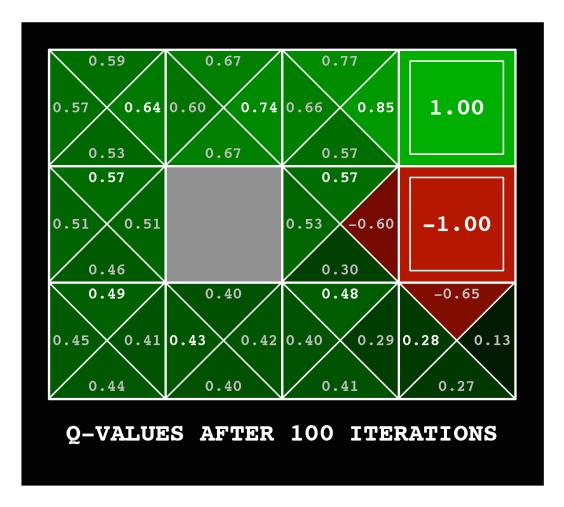


000	Gridworld Display			
0.64)	0.74 →	0.85 →	1.00	
• 0.57		• 0.57	-1.00	
0.4 9	∢ 0.43	▲ 0.48	∢ 0.28	
VALUE	VALUES AFTER 100 ITERATIONS			

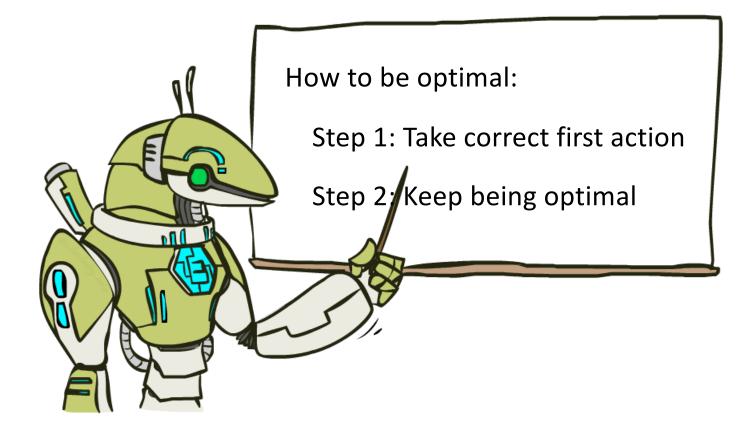
Gridworld Values V*

0.64 ♪	0.74 ▶	0.85 ≯	1.00
0.57		0.57	-1.00
0.49	◀ 0.43	0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Gridworld: Q*



The Bellman Equations



The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values S

s, a

s,a,s

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

S

s, a

s,a,s

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method

In though the V_k vectors are also interpretable as time-limited values

MDP Notation

Standard expectimax:

Bellman equations:

Value iteration:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

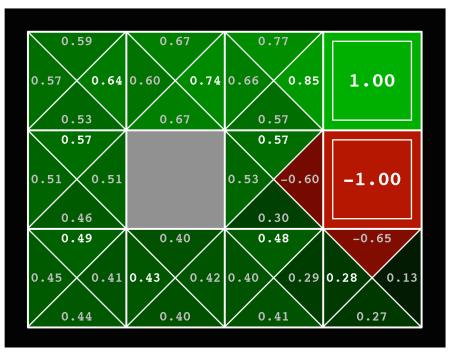
$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{*}(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_{k}(s')], \quad \forall s$$

Solved MDP! Now what?

What are we going to do with these values??

0.64 ▶	0.74 ▶	0.85 →	1.00
• 0.57		0.57	-1.00
0.49	∢ 0.43	0 .48	∢ 0.28

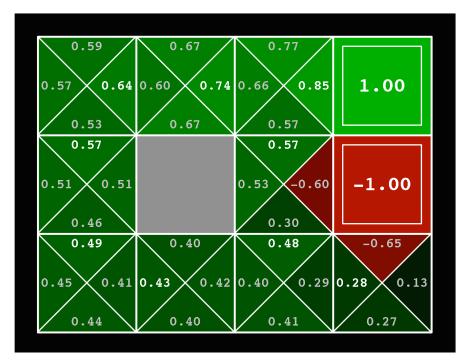


Poll 1

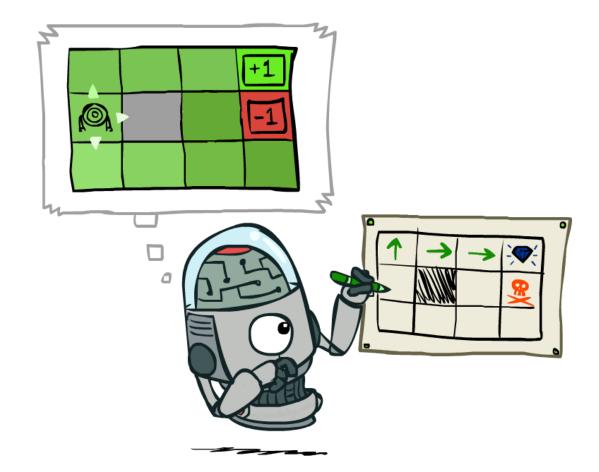
If you need to extract a policy, would you rather have

A) Values, B) Q-values?

0.64 →	0.74 ▶	0.85)	1.00
0. 57		0 .57	-1.00
0.37		0.37	-1.00
▲ 0.49	◀ 0.43	▲ 0.48	∢ 0.28



Policy Extraction



Policy Extraction - Computing Actions from Values

Let's imagine we have the optimal values V*(s)

How should we act?

It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values

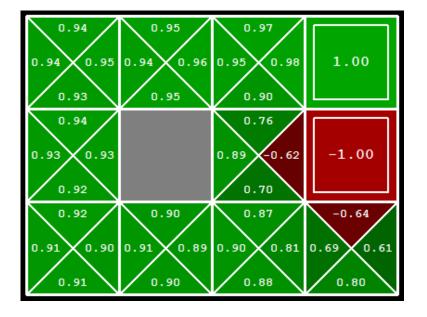
Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

How should we act?

Completely trivial to decide!

 $\pi^*(s) = \arg\max_a Q^*(s,a)$

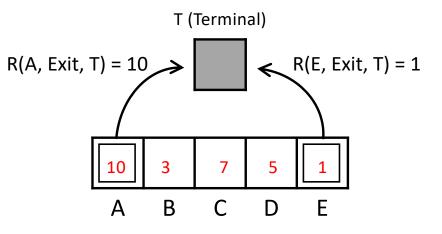


Important lesson: actions are easier to select from q-values than values!

Poll 2 Practice Policy Extraction

 $\pi(s) = argmax_a \left[R(s, a, s') + \gamma V(s') \right]$

What is the policy for B?



Deterministic Actions: East and West Gamma: 0.5

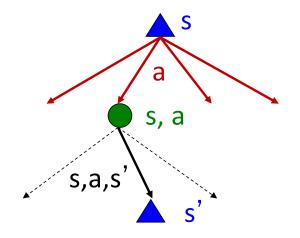
Value Iteration Notes

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Things to notice when running value iteration:

- It's slow O(|S|²|A|) per iteration
- The "max" at each state rarely changes
- The optimal policy appears before the values converge (but we don't know that the policy is optimal until the values converge)



Gridworld Display				
0.59)	0.73 →	0.85 →	1.00	
0.41		• 0.57	-1.00	
0.21	0.31 →	▲ 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

Gridworld Display				
0.62)	0.74 ≯	0.85)	1.00	
^		^		
0.50		0.57	-1.00	
^		^		
0.34	0.36 →	0.45	∢ 0.24	
VALUI	VALUES AFTER 7 ITERATIONS			

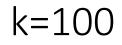
000	○ ○ Gridworld Display				
0.63)	0.74 ≯	0.85 →	1.00		
• 0.53		• 0.57	-1.00		
• 0.42	0.39 ≯	• 0.46	∢ 0.26		
VALUES AFTER 8 ITERATIONS					

000	Gridworld Display				
0.64	•	0.74 →	0.85 →	1.00	
0.55			• 0.57	-1.00	
0.46		0.40 →	• 0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS					

000	Gridworld Display				
0.64)	0.74 ≯	0.85 →	1.00		
• 0.56		• 0.57	-1.00		
0.48	∢ 0.41	• 0.47	∢ 0.27		
VALUES AFTER 10 ITERATIONS					

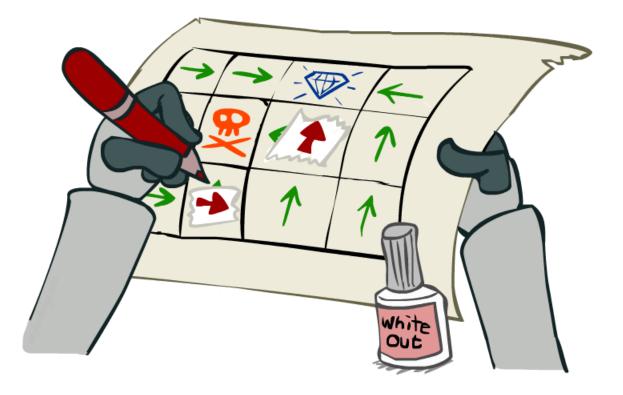
000	○ ○ Gridworld Display				
0.64	▶ 0.74 ▶	0.85)	1.00		
• 0.56		• 0.57	-1.00		
0. 48	∢ 0.42	▲ 0.47	∢ 0.27		
VALUES AFTER 11 ITERATIONS					

000	Gridworld Display				
0.64 →	0.74 →	0.85)	1.00		
0.57		• 0.57	-1.00		
0.49	∢ 0.42	• 0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS					



000	Gridworld Display				
0.64)	0.74 →	0.85 →	1.00		
• 0.57		• 0.57	-1.00		
0.4 9	∢ 0.43	▲ 0.48	∢ 0.28		
VALUES AFTER 100 ITERATIONS					

Policy Iteration



Two Methods for Solving MDPs

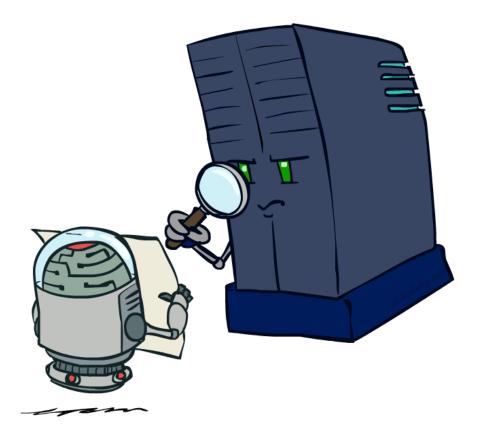
Value iteration + policy extraction

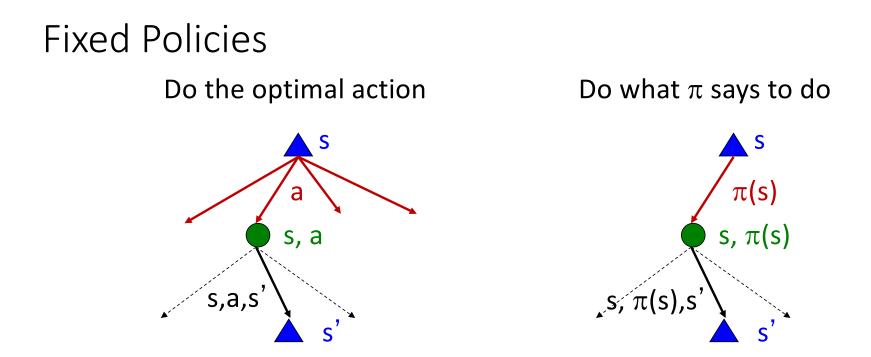
- Step 1: Value iteration: calculate values for all states by running one ply of the Bellman equations using values from previous iteration until convergence
- Step 2: Policy extraction: compute policy by running one ply of the Bellman equations using values from value iteration

Policy iteration

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

Policy Evaluation





Expectimax trees max over all actions to compute the optimal values

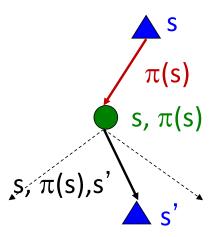
If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state

In though the tree's value would depend on which policy we fixed

Policy Evaluation - Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π : V^{π}(s) = expected total discounted rewards starting in s and following π



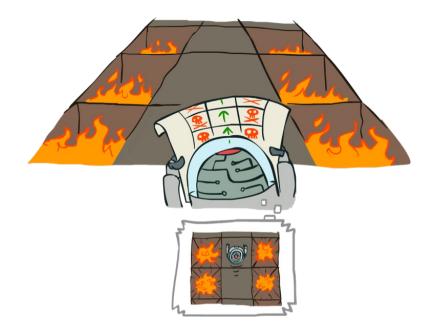
Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	70.20	-10.00
-10.00	4 8.74	-10.00
-10.00	3 3.30	-10.00

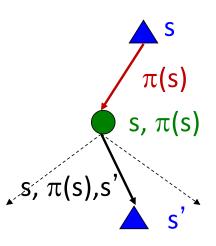
Policy Evaluation

How do we calculate the V's for a fixed policy π ?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$



Efficiency: O(|S|²) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear systemSolve with your favorite linear system solver

Policy Iteration

Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

This is policy iteration

- It's still optimal!
- Can converge faster under some conditions

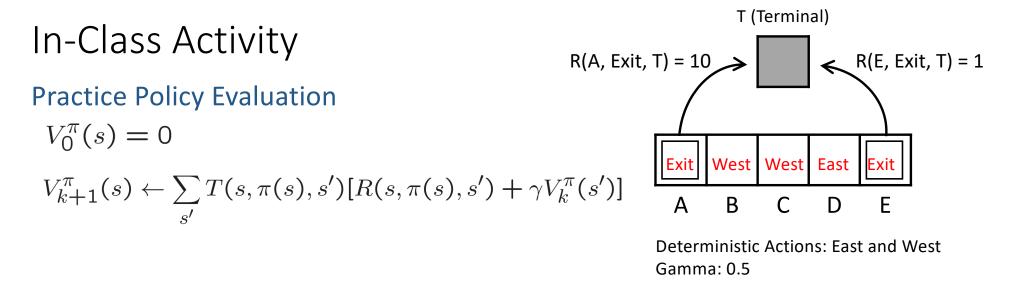
Policy Iteration:

Evaluation: For fixed current policy π, find values with policy evaluation:Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

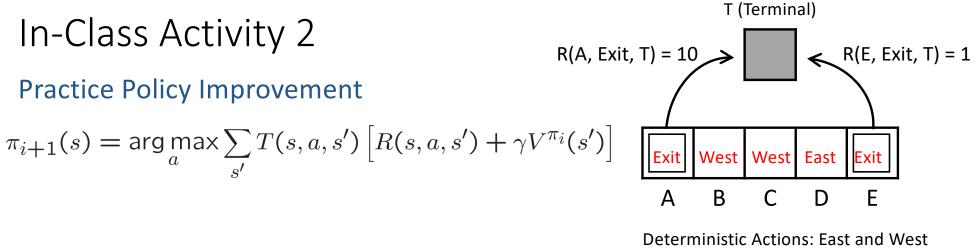
Improvement: For fixed values, get a better policy using **policy extraction**One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$



A) What are the converged values $V^{*\pi}$ under π to the right?

B) What are the converged values $V^{*\pi}$ under π below (same transition rules)? Exit East West East Exit A B C D E



Gamma: 0.5

C) Based on your answer to A, what is the new policy?

D) Based on your answer to B, what is the new policy?

Exit	East	West	East	Exit
А	В	С	D	Е

Two Methods for Solving MDPs

Value iteration + policy extraction

Step 1: Value iteration:

 $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \forall s \text{ until convergence}$ • Step 2: Policy extraction:

$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \forall s$$

Policy iteration

Step 1: Policy evaluation:

 $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s \text{ until convergence}$

Step 2: Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \forall s$$

Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update values with fixed policy (each pass is fast because we consider only one action, not all of them; however we do many passes)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

$$\begin{array}{ll} \text{Standard expectimax:} & V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s') \\ \text{Bellman equations:} & V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')] \\ \text{Value iteration:} & V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \\ \text{Q-iteration:} & Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a \\ \text{Policy extraction:} & \pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s \\ \text{Policy evaluation:} & V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ \text{Policy improvement:} & \pi_{new}(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \\ \end{array}$$

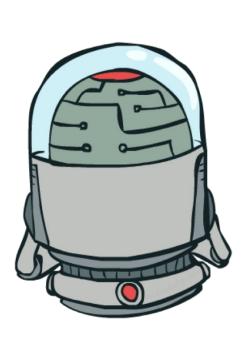
$$\begin{aligned} \text{Standard expectimax:} \quad V(s) &= \max_{a} \sum_{s'} P(s'|s, a) V(s') \\ \text{Bellman equations:} \quad V^*(s) &= \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')] \\ \text{Value iteration:} \quad V_{k+1}(s) &= \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \quad \forall s \\ \text{Q-iteration:} \quad Q_{k+1}(s, a) &= \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \\ \text{Policy extraction:} \quad \pi_V(s) &= \arg_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s \\ \text{Policy evaluation:} \quad V_{k+1}^{\pi}(s) &= \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ \text{Policy improvement:} \quad \pi_{new}(s) &= \arg_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \end{aligned}$$

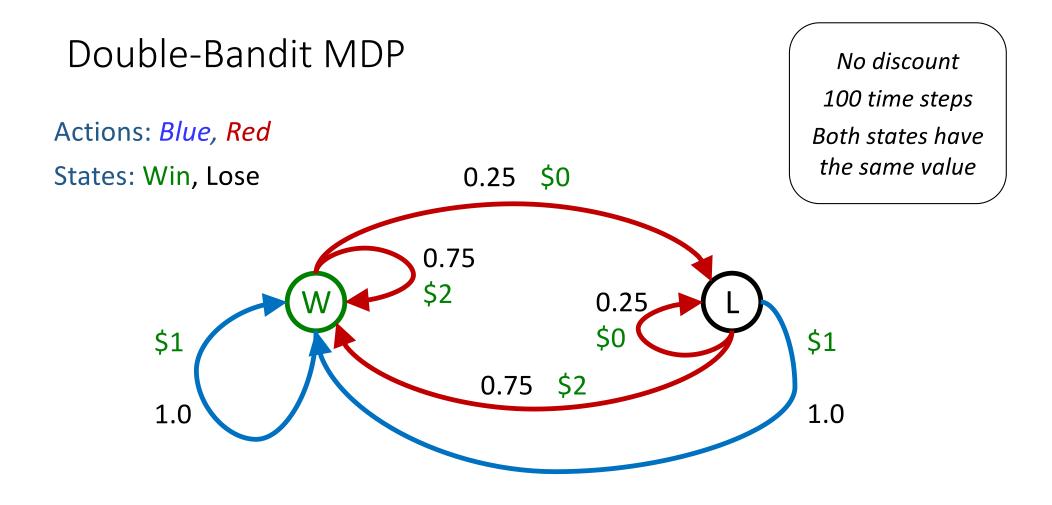
$$\begin{array}{ll} \text{Standard expectimax:} & V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s') \\ \text{Bellman equations:} & V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')] \\ \text{Value iteration:} & V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \\ \text{Q-iteration:} & Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a \\ \text{Policy extraction:} & \pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s \\ \text{Policy evaluation:} & V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ \text{Policy improvement:} & \pi_{new}(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \\ \end{array}$$

$$\begin{aligned} & \text{Standard expectimax:} \quad V(s) = \max_{a} \sum_{s'} P(s'|s, a) V(s') \\ & \text{Bellman equations:} \quad V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')] \\ & \text{Value iteration:} \quad V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \quad \forall s \\ & \text{Q-iteration:} \quad Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a \\ & \text{Policy extraction:} \quad \pi_V(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s \\ & \text{Policy evaluation:} \quad V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ & \text{Policy improvement:} \quad \pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \end{aligned}$$

Next Time: Reinforcement Learning!

Double Bandits

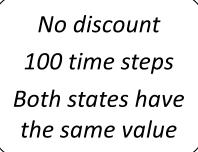


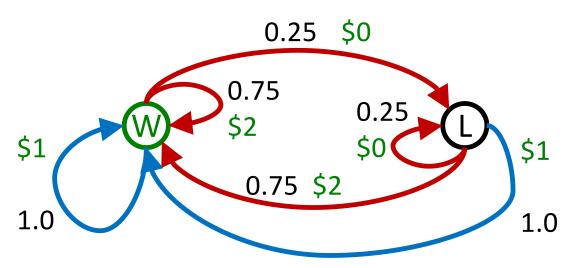


Offline Planning

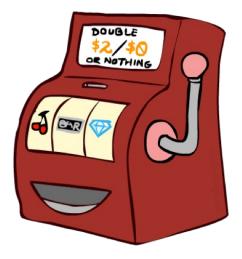
Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!





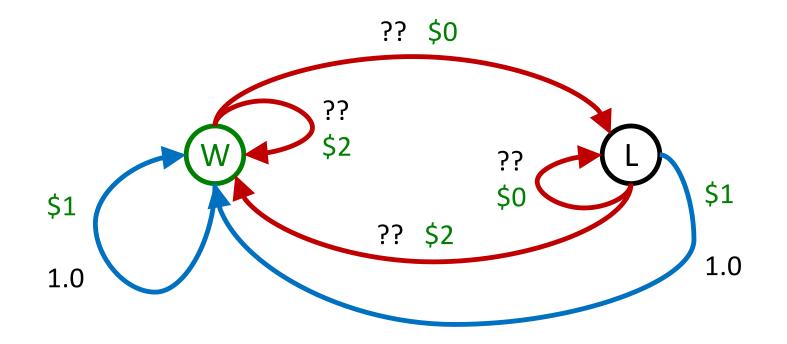
Let's Play!



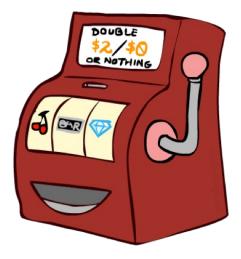
\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

Rules changed! Red's win chance is different.



Let's Play!



\$0\$0\$0\$2\$0\$0\$0\$0\$0

What Just Happened?

That wasn't planning, it was learning!

Specifically, reinforcement learning

- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP