
Announcements

Assignments:
§ P3: Logic Plan  

§ Checkpoint Due Friday 3/3, 10 pm (tomorrow)
§ All Due Friday 3/17, 10pm (after spring break)

§ HW6 (online)
§ Due Tues 3/14, 10 pm



AI: Representation and Problem Solving
Markov Decision Processes II

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu



Recap: Grid World
§ A maze-like problem

§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as 
planned
§ 80% of the time, the action North takes the agent North 
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have 

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)



Grid World



Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a
Vk+1(s)

s, a

s,a,sʼ
Vk(s’)



Value Iteration Convergence

How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM
holds the actual untruncated values

Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge



Values of States
Fundamental operation: compute the (expectimax) value of a state
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax computed!

Recursive definition of value:
a

s

s, a

s,a,sʼ
sʼ



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld Values V*



Gridworld: Q*



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values

These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over

a

s

s, a

s,a,sʼ
sʼ



Value Iteration

Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just a fixed point solution method
§ … though the Vk vectors are also interpretable as time-limited values

a

s

s, a

s,a,sʼ



MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Standard expectimax:



Solved MDP! Now what?
What are we going to do with these values?? 

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎



Poll 1
If you need to extract a policy, would you rather have
A) Values, B) Q-values?



Policy Extraction



Policy Extraction - Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?
§ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values
Let’s imagine we have the optimal q-values:

How should we act?
§ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!



Poll 2
Practice Policy Extraction

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥1 [𝑅 𝑠, 𝑎, 𝑠2 + 𝛾𝑉 𝑠2 ]

What is the policy for B?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(E, Exit, T) = 1

10        3           7         5         1

Deterministic Actions: East and West
Gamma: 0.5



Value Iteration Notes
Value iteration repeats the Bellman updates:

Things to notice when running value iteration:
§ It’s slow – O(|S|2|A|) per iteration
§ The “max” at each state rarely changes
§ The optimal policy appears before the values converge (but we 

don’t know that the policy is optimal until the values converge)

a

s

s, a

s,a,sʼ
sʼ



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration



Two Methods for Solving MDPs 
Value iteration + policy extraction
§ Step 1: Value iteration: calculate values for all states by running one 

ply of the Bellman equations using values from previous iteration 
until convergence

§ Step 2: Policy extraction: compute policy by running one ply of the 
Bellman equations using values from value iteration

Policy iteration
§ Step 1: Policy evaluation: calculate values for some fixed policy (not 

optimal values!) until convergence
§ Step 2: Policy improvement: update policy by running one ply of the 

Bellman equations using values from policy evaluation
§ Repeat steps until policy converges



Policy Evaluation



Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy p(s), then the tree would be simpler               
– only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,sʼ
sʼ

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Do the optimal action Do what p says to do



Policy Evaluation - Utilities for a Fixed Policy

Another basic operation: compute the utility of a state 
s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s 

and following p

Recursive relation (one-step look-ahead / Bellman 
equation):

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Evaluation
How do we calculate the V’s for a fixed policy p?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Efficiency: O(|S|2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with your favorite linear system solver

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ



Policy Iteration
Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate values for some fixed policy (not 

optimal values!) until convergence
§ Step 2: Policy improvement: update policy by running one ply of the 

Bellman equations using values from policy evaluation
§ Repeat steps until policy converges

This is policy iteration
§ It’s still optimal!
§ Can converge faster under some conditions



Policy Iteration:

Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:



In-Class Activity
Practice Policy Evaluation

A) What are the converged values 𝑉∗4 under 𝜋 to the right?

B) What are the converged values 𝑉∗4 under 𝜋 below (same transition 
rules)?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(E, Exit, T) = 1

Exit    West   West   East    Exit

Deterministic Actions: East and West
Gamma: 0.5

Exit    East   West   East    Exit

A B C D E



In-Class Activity 2
Practice Policy Improvement

C) Based on your answer to A, what is the new policy?

D) Based on your answer to B, what is the new policy?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(E, Exit, T) = 1

Exit    West   West   East    Exit

Deterministic Actions: East and West
Gamma: 0.5

Exit    East   West   East    Exit

A B C D E



Two Methods for Solving MDPs 
Value iteration + policy extraction
§ Step 1: Value iteration: 
𝑉!"# 𝑠 = max

$
∑%&𝑃 𝑠& 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉! 𝑠& , ∀ 𝑠 until convergence

§ Step 2: Policy extraction:
𝜋' 𝑠 = argmax

$
∑%&𝑃 𝑠& 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉 𝑠& ] , ∀ 𝑠

Policy iteration
§ Step 1: Policy evaluation: 
𝑉!"#( 𝑠 = ∑%&𝑃 𝑠& 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠& + 𝛾𝑉!( 𝑠& ] , ∀ 𝑠 until convergence
§ Step 2: Policy improvement:
𝜋)*+ 𝑠 = argmax

$
∑%&𝑃 𝑠& 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉(!"# 𝑠& , ∀ 𝑠

§ Repeat steps until policy converges



Comparison
Both value iteration and policy iteration compute the same thing                     
(all optimal values)

In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
§ We do several passes that update values with fixed policy (each pass is fast because we 

consider only one action, not all of them; however we do many passes)
§ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
§ The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)



Summary: MDP Algorithms
So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
§ They basically are – they are all variations of Bellman updates
§ They all use one-step lookahead expectimax fragments
§ They differ only in whether we plug in a fixed policy or max over actions



MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋( 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠# ] , ∀ 𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠# ] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:
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MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)
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𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:



MDP Notation

Standard expectimax: 𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋( 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠# ] , ∀ 𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠# ] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:



Next Time: Reinforcement Learning!



Double Bandits

Slide: ai.berkeley.edu



Double-Bandit MDP

Actions: Blue, Red
States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount
100 time steps

Both states have 
the same value

Slide: ai.berkeley.edu



Offline Planning

Solving MDPs is offline planning
§ You determine all quantities through computation
§ You need to know the details of the MDP
§ You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75  $2

0.25 
$0

Slide: ai.berkeley.edu



Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

Slide: ai.berkeley.edu



Online Planning
Rules changed!  Red’s win chance is different.

W L
$1

1.0

$1

1.0

??   $0

?? 
$2

??   $2

?? 
$0

Slide: ai.berkeley.edu



Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

Slide: ai.berkeley.edu



What Just Happened?

That wasn’t planning, it was learning!
§ Specifically, reinforcement learning
§ There was an MDP, but you couldn’t solve it with just computation
§ You needed to actually act to figure it out

Important ideas in reinforcement learning that came up
§ Exploration: you have to try unknown actions to get information
§ Exploitation: eventually, you have to use what you know
§ Regret: even if you learn intelligently, you make mistakes
§ Sampling: because of chance, you have to try things repeatedly
§ Difficulty: learning can be much harder than solving a known MDP

Slide: ai.berkeley.edu


