Announcements

Assignments:

- P3: Logic Plan
 - Checkpoint Due Friday 3/3, 10 pm (tomorrow)
 - All Due Friday 3/17, 10pm (after spring break)
- HW6 (online)
 - Due Tues 3/14, 10 pm

Al: Representation and Problem Solving Markov Decision Processes II

Instructor: Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Recap: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

Grid World

Value Iteration

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
 eat until convergence

Repeat until convergence

Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

Value Iteration Convergence

How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
- That last layer is at best all R_{MAX}
- It is at worst R_{MIN}
- But everything is discounted by y^k that far out
- So V_k and V_{k+1} are at most y^k max |R| different
- So as k increases, the values converge

Values of States

Fundamental operation: compute the (expectimax) value of a state

- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!

Recursive definition of value:

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

k = 10

k = 11

Gridworld Values V*

Gridworld: Q*

The Bellman Equations

The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method

■ ... though the V_k vectors are also interpretable as time-limited values

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')]$$
 Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Solved MDP! Now what?

What are we going to do with these values??

 $V^*(s)$

 $Q^*(s,a)$

Poll 1

If you need to extract a policy, would you rather have A) Values, B) Q-values?

Policy Extraction

Policy Extraction - Computing Actions from Values

Let's imagine we have the optimal values V*(s)

How should we act?

It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \underbrace{ \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] }$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

How should we act?

Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Important lesson: actions are easier to select from q-values than values!

Poll 2

Practice Policy Extraction

$$\pi(s) = \operatorname{argmax}_{a} \left[R(s, a, s') + \underline{\gamma V(s')} \right]$$

What is the policy for B?

T (Terminal)

Gamma: 0.5

$$E: 0+.5(7)$$
argmax
 $W: 0+.5(10)$

Value Iteration Notes

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Things to notice when running value iteration:

- It's slow O(|S|²|A|) per iteration
- The "max" at each state rarely changes
- The optimal policy appears before the values converge (but we don't know that the policy is optimal until the values converge)

k=8

k=9

k = 10

k = 11

k=12

k=100

Policy Iteration

Two Methods for Solving MDPs

Value iteration + policy extraction

- Step 1: Value iteration: calculate values for all states by running one ply of the Bellman equations using values from previous iteration until convergence
- Step 2: Policy extraction: compute policy by running one ply of the Bellman equations using values from value iteration

Policy iteration

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
 - Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state

... though the tree's value would depend on which policy we fixed

Policy Evaluation - Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π :

 $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Example: Policy Evaluation

Always Go Right

Always Go Forward

Policy Evaluation

How do we calculate the V's for a fixed policy π ?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Efficiency: $O(|S|^2)$ per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

Solve with your favorite linear system solver

Policy Iteration

Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

This is policy iteration

- It's still optimal!
- Can converge faster under some conditions

Policy Iteration:

Evaluation: For fixed current policy π , find values with policy evaluation:

Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \underline{\pi_i(s)}, s') \left[R(s, \underline{\pi_i(s)}, s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction

One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, \underline{a}, s') \left[R(s, \underline{a}, s') + \gamma V^{\pi_i}(s') \right]$$

A) What are the converged values ${V^*}^\pi$ under π to the right?

B) What are the converged values ${V^*}^\pi$ under π below (same transition

rules)?

In-Class Activity 2

Practice Policy Improvement

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \underbrace{\gamma V^{\pi_i}(s')}_{\text{max}} \right]$$

Deterministic Actions: East and West

Gamma: 0.5

- C) Based on your answer to A, what is the new policy?
- D) Based on your answer to B, what is the new policy?

Two Methods for Solving MDPs

Value iteration + policy extraction

Step 1: Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \ \forall s \ \text{until convergence}$$

Step 2: Policy extraction:

$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \ \forall \ s$$

Policy iteration

Step 1: Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \forall s \text{ until convergence}$$

Step 2: Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \ \forall \ s$$

Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update values with fixed policy (each pass is fast because we consider only one action, not all of them; however we do many passes)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\underline{\pi_V(s)} = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_{V}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s'$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Next Time: Reinforcement Learning!

Double Bandits

Double-Bandit MDP

Actions: Blue, Red

States: Win, Lose

0.25 \$0

Slide: ai.berkeley.edu

No discount 100 time steps Both states have the same value

Offline Planning

Solving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

No discount
100 time steps
Both states have
the same value

		Value	
	Play Red	150	
	Play Blue	100	
_			

Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Online Planning

Rules changed! Red's win chance is different.

Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

That wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

Important ideas in reinforcement learning that came up

- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

