
Announcements
Assignments before Midterm 2
§ HW6 (online)

§ Due Tonight, 3/14 10 pm
§ P3: Logic/Classical Planning

§ Due Friday, 3/17 10 pm
§ HW7 (written) out tonight, due 3/21 10pm
§ HW8 (online) due 3/28 10pm
§ P4: Reinforcement Learning

§ Due Thursday, 4/6 10 pm (after midterm 2)

Announcements
Midterm 2

§ Covers material from 2/17 (recitation) through 3/28
§ Logic/Logical Agents, Classical Planning, MDPs, RL, Bayes Nets
§ Calculators allowed - Lots of computation
§ Device must be only a calculator (no phones, ipads, etc)

§ One 8.5”x11” handwritten cheatsheet is also allowed

AI: Representation and Problem Solving
Reinforcement Learning

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu

What do you remember about MDPs?

MDP Notation

𝑉 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉∗ 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉∗ 𝑠#

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Poll 1
Which of the following are used in policy iteration?

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

A. Value iteration:

B. Q-iteration:

C. Policy extraction:

E. Policy improvement:

D. Policy evaluation:

Poll 2
Rewards may depend on any combination of state, action, next state.
Which of the following are valid formulations of the Bellman equations?
Hint: what can you pull out or redistribute based on the parameters of R?

A. 𝑉∗ 𝑠 = max
"

∑#$𝑃 𝑠$ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠$ + 𝛾𝑉∗ 𝑠$

B. 𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾max
"

∑#$𝑃 𝑠$ 𝑠, 𝑎 𝑉∗ 𝑠$

C. 𝑉∗ 𝑠 = max
"
[𝑅 𝑠, 𝑎 + 𝛾 ∑#$𝑃 𝑠$ 𝑠, 𝑎 𝑉∗ 𝑠$

D. 𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ∑#$𝑃 𝑠$ 𝑠, 𝑎 max
"!

𝑄∗(𝑠$, 𝑎$)

Reinforcement learning
What if we knew we had an MDP but didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

𝑉%&' 𝑠 = max
!
'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉% 𝑠# , ∀ 𝑠

𝑄%&' 𝑠, 𝑎 ='
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄%(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋(𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉%&') 𝑠 ='
"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉%) 𝑠#] , ∀ 𝑠

𝜋*+, 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉)"#$ 𝑠# , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Reinforcement Learning

Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must (learn to) act so as to maximize expected rewards
§ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

The Crawler!

[You, in Project 4]

Reinforcement Learning

Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

Still looking for a policy p(s)

New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning
Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Normalize to give an estimate of
§ Discover each when we experience (s, a, s’)

Step 2: Solve the learned MDP
§ For example, use value iteration, as before

Learning an Empirical Model

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

Example: Model-Based Learning + Poll 3

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) =
T(C, east, D) =
T(C, east, A) =
…

R(s,a,s’).
R(B, east, C) =
R(C, east, D) =
R(D, exit, x) =

…

Example: Expected Age
Goal: Compute expected age of 15-281 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-free Learning
Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation
§ Input: a fixed policy p(s)
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ Goal: learn the state values

In this case:
§ Learner is “along for the ride”
§ No choice about what actions to take
§ Just execute the policy and learn from experience
§ This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

Goal: Compute values for each state under p

Idea: Average together observed sample values
§ Act according to p
§ Every time you visit a state, write down what the sum of

discounted rewards turned out to be
§ Average those samples

This is called direct evaluation

Direct Evaluation

Goal: Compute values for each state under p

Idea: Average together observed sample values
§ Act according to p
§ Every time you visit a state, write down what the sum of

discounted rewards turned out to be
§ Average those samples

This is called direct evaluation

Pieces Available Take 1 Take 2
2 0% 100%

3 2% 0%

4 75% 2%

5 4% 68%

6 5% 6%

7 60% 5%

Example: Direct Evaluation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

Algorithm: Average all total/future rewards that start at each state

A:

B:

C:

D:

E:

Problems with Direct Evaluation

What’s good about direct evaluation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T, R
§ It eventually computes the correct average values,

using just sample transitions

What bad about it?
§ It wastes information about state connections
§ Each state must be learned separately
§ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
§ Each round, replace V with a one-step-look-ahead layer over V

§ This approach fully exploited the connections between the states
§ Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?
§ In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Sample-Based Policy Evaluation?
We want to improve our estimate of V by computing these averages:

Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'

s, p(s),s’
s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

Temporal Difference Learning
Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Temporal Difference Learning
Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

Exponential moving average
§ The running interpolation update:

§ Makes recent samples more important:

§ Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning: Poll 4

Assume: g = 1,
α = 0.2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

i 0 8

0

0

ii iii 8

0

C, east, D, -2

A

B C D

E

States

Active Reinforcement Learning

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages
However, if we want to turn values into a (new) policy, we’re sunk:

Idea: learn Q-values, not values
Makes action selection model-free too!

a

s

s, a

s,a,sʼ
sʼ

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You choose the actions now
§ Goal: learn the optimal policy / values

In this case:
§ Learner makes choices!
§ Fundamental tradeoff: exploration vs. exploitation
§ This is NOT offline planning! You actually take actions in the world and find out

what happens…

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
§ Start with V0(s) = 0, which we know is right
§ Given Vk, calculate the depth k+1 values for all states:

But Q-values are more useful, so compute them instead
§ Start with Q0(s,a) = 0, which we know is right
§ Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning
Q-Learning: sample-based Q-value iteration

Learn Q(s,a) values as you go
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:

Q-Learning

We’d like to do Q-value updates to each Q-state:

§ But can’t compute this update without knowing T, R

Instead, compute average as we go
§ Receive a sample transition (s,a,r,s’)
§ This sample suggests

§ But we want to average over results from (s,a) (Why?)
§ So keep a running average

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you’re
acting suboptimally!

This is called off-policy learning

Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate

small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)

Example: Q-Learning + Poll 5

Input Policy p

Assume: g = 1
𝛼 = 0.5

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

