Announcements

Assignments before Midterm 2

- HW6 (online)
	- Due Tonight, 3/14 10 pm
- P3: Logic/Classical Planning
	- Due Friday, 3/17 10 pm
- HW7 (written) out tonight, due 3/21 10pm
- HW8 (online) due 3/28 10pm
- P4: Reinforcement Learning
	- § Due Thursday, 4/6 10 pm (after midterm 2)

 $M1dterm 2 3/30$

Happy Pi Day!

Announcements

Midterm 2

- Covers material from 2/17 (recitation) through 3/28
- Logic/Logical Agents, Classical Planning, MDPs, RL, Bayes Nets
- Calculators allowed Lots of computation
	- Device must be only a calculator (no phones, ipads, etc)
- One 8.5"x11" handwritten cheatsheet is also allowed

AI: Representation and Problem Solving

Reinforcement Learning

Instructor: Stephanie Rosenthal Slide credits: CMU AI and http://ai.berkeley.edu What do you remember about MDPs?

 S, A, T ransitions Rewards
 $P(s'|s,a)$ living $R(s,a,s')$ Maximize Expected Reward $Ad\pi(s)\rightarrow\alpha$ Value Iteration Policy Extraction
Policy: Policy Elaluation / Policy Improvement
V* T^{*} Bellman

MDP Notation

Standard expectimax:
$$
V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')
$$

\nBellman equations: $V^*(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^*(s')]$
\nValue iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \forall s$
\nQ-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \forall s, a$
\nPolicy extraction: $(\pi_V(s)) = \arg\max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \forall s$
\nPolicy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s$
\nPolicy improvement: $(\pi_{new}(s)) = \arg\max_{s'} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{\pi_{old}(s')}], \forall s$

Poll 1

Which of the following are used in policy iteration?

A. Value iteration:
\nB. Q-iteration:
\n
$$
V_{k+1}(s) = \frac{\max_{s'} p(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \forall s
$$
\nB. Q-iteration:
\n
$$
\pi_V(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \forall s, a
$$
\nD. Policy evaluation:
\n
$$
\pi_V(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \forall s
$$
\nD. Policy environment:
\n
$$
\pi_{new}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, \pi(s))[R(s, a, s') + \gamma V_k^{\pi}(s')], \forall s
$$
\nE. Policy improvement:
\n
$$
\pi_{new}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{total}(s')], \forall s
$$
\n
$$
\pi_{new}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{total}(s')], \forall s
$$

Poll 2

 S, α, S Rewards may depend on any combination of *state*, *action*, *next state*. Which of the following are valid formulations of the Bellman equations? Hint: what can you pull out or redistribute based on the parameters of R? $A. \; V^*(s) = \max$ $\lim_{a} \frac{\sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')]}{s}$ *B.* $V^*(s) = R(s) + \gamma \max$ $\lim_{a}\sum_{s'}\frac{P(s'|s,a)V^*(s')}{P(s')}$ $C. \; V^*(s) \neq \max$ $\max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^*(s')$ D. $Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s' | s, a) \max_{a'} Q^*(s', a')$

Reinforcement learning

What if we knew we had an MDP but didn't know $P(s'|s, a)$ and $R(s, a, s')$?

Value iteration:
$$
V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')] , \forall s
$$

Q-iteration:
$$
Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')] , \forall s, a
$$

Policy extraction:
$$
\pi_V(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')] , \forall s
$$

Policy evaluation:
$$
V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, n(s)) [R(s, a, s') + \gamma V_k^{\pi}(s')] , \forall s
$$

Policy improvement:
$$
\pi_{new}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_{total}(s')] , \forall s
$$

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK – initial]

Example: Learning to Walk

Example 2004 Fraining [Kohl and Stone, ICRA 2004]

Example 2004 and Stone, ICRA 2004]

Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK – finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] **[2016]** [Video: TODDLER – 40s]

The Crawler!

[You, in Project 4]

Reinforcement Learning

Still assume a Markov decision process (MDP):

- A set of states $s \in S$
- A set of actions (per state) A
- \blacksquare A model T(s,a,s')
- A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

Overheated

New twist: don't know T or R

- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Model-Based Learning

Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
Count outcomes s' for arch s a sub-

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widetilde{T(s, a, s')}$
- Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

■ For example, use value iteration, as before

Example: Model-Based Learning + Poll 3

Example: Expected Age

Goal: Compute expected age of 15-281 students

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Model-free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning
Someone else choses your actions

- Simplified task: policy evaluation
- Input: a fixed policy $\pi(s)$
- You don't know the transitions $T(s,a,s')$
- You don't know the rewards R(s,a,s')
- § Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- § This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- § Average those samples

This is called direct evaluation

Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- § Average those samples

This is called direct evaluation

Example: Direct Evaluation

Algorithm: Average all total/future rewards that start at each state

Problems with Direct Evaluation

What's good about direct evaluation?

- § It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

What bad about it?

- It wastes information about state connections
- Each state must be learned separately
- So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

Key question: how can we do this update to V without knowing T and R?

■ In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]
$$

Idea: Take samples of outcomes s' (by doing the action!) and average

Almost! But we can't rewind time to get sample after sample from state s.

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s):

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$
sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')
$$

Update to V(s):
$$
\overline{A}V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)\underline{\underline{sample}} \leftarrow
$$

Same update: $\bigcup V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(\underline{sample} - V^{\pi}(s)) \quad \text{and} \quad \text{and$

 $\pi(s)$

 $\sqrt{2}$

s

s, $\pi(s)$

s'

Exponential Moving Average

Exponential moving average

- The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
- Makes recent samples more important:

$$
\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}
$$

■ Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning: Poll 4

Active Reinforcement Learning

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages However, if we want to turn values into a (new) policy, we're sunk:

> $\pi(s) = \argmax_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$

Idea: learn Q-values, not values Makes action selection model-free too!

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)

- You don't know the transitions $T(s,a,s')$
- You don't know the rewards $R(s,a,s')$
- You choose the actions now
- Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens…

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values

- Start with $V_0(s) = 0$, which we know is right
- Given V_{k} , calculate the depth k+1 values for all states:

$$
V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
$$

But Q-values are more useful, so compute them instead

- Start with $Q_0(s,a) = 0$, which we know is right
- Given Q_k , calculate the depth k+1 q-values for all q-states:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

Learn Q(s,a) values as you go

- Receive a sample (s,a,s',r)
- **Consider your old estimate:** $Q(s, a)$
- Consider your new sample estimate:

$$
sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')
$$

■ Incorporate the new estimate into a running average:

 $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)$ [sample]

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

■ But can't compute this update without knowing T, R

Instead, compute average as we go

- Receive a sample transition (s,a,r,s')
- This sample suggests

 $Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$
Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]
$$

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

Example: Q-Learning + Poll 5

