Announcements /V/a 7@ B |
(
Assignments before Midterm 2 yD)D&j O\\/ .
= HWS6 (online)
= Due Tonight, 3/14 10 pm

» P3: Logic/Classical Planning
= Due Friday, 3/17 10 pm

= HW?7 (written) out tonight, due 3/21 10pm
= HWS (online) due 3/28 10pm

= P4: Reinforcement Learning
= Due Thursday, 4/6 10 pm (after midterm 2)

\I\/\\GV‘V&WV\ 2 3/301

Announcements
Midterm 2

= Covers material from 2/17 (recitation) through 3/28

» |ogic/Logical Agents, Classical Planning, MDPs, RL, Bayes Nets

= Calculators allowed - Lots of computation
= Device must be only a calculator (no phones, ipads, etc)

= One 8.5”x11” handwritten cheatsheet is also allowed

Al: Representation and Problem Solving

Reinforcement Learning

— ——

Instructor: Stephanie Rosenthal
Slide credits: CMU Al and http://ai.berkeley.edu

What do you remember about MDPs?

5/ /Jr ,—’—\/r oS '\jﬁé\r\i EQS/%)Q\(A§
P(S//S/% (lv»ti ﬁ(iq/g’>
Masct sizr, M e uord
Ak T(s) =0

\/Q\\uQ]Uo\JC\%\/\ / P@(\é\j EXT/QCJV‘_“'W&/
Py fohiny oo [Ohcq Tmponeme

\/Y \TTF%“ BQUMM\

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bw: V*(s) = m‘?xz P(s'|s,a)[R(s,a,s") + yV*(s')]
S7
Value iteration: Vk\ﬂ(s) = m‘?xz P(s'|s,a)[R(s,a,s") +)/Vi(s’)]) Vs
S7
Q-iteration: Qﬁl(s, a) = z P(s'|s,a)[R(s,a,s") + y max QL(S,’ a)], Vs,a
Policy extraction: argzn:xz P(s'|s,a)[R(s,a,s") +yV(s)], Vs
Policy evaluation: V,",;;(s) = Z P(SS’|S,T[(S))[R(S,T[(S),S’) + Ve (s')], Vs
S7

Policy improvement: = argmaxz P(s'ls,a)[R(s,a,s") +yVTold(s))], Vs
A

Poll 1

Which of the following are used in policy iteration?

A. Value iteration: * Vies1(5) P(s'ls,a)[R(s,a,s") + yVi(sD], Vs
~

B. Q-iteration: Qr+1(s,a) = E P(s'|s,a)[R(s,a,s") + ymax Qx(s',a’)], Vs,a
a
S/

C. Policy extraction: my(s) = arggnaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs

D. Policy evaluation: C\/,iﬁrl(s) = Z P(ss’lls,n(s))[R(s,n(s),s’) + yVE(s)], </‘v’s

Ejolicy improvement: >, (s) = as;gznaxz P(s'|s,a)[R(s,a,s") + yV”fﬂd(s’;]> Vs
F N o CMUJL_ —

—_——

Poll 2 5 o, s

Rewards may depend on any combination of state, action, next state.
/
Which of the following are valid formulations of the Bellman equations?

Hint: what can you pull out or redistribute based on the parameters of R?

L%A. V*(s) = max Y, P(s'|s,a)[R(s,a,s") + yV*(s)]
& = — J
Ls B vi(s) = R(s) + ymax Y P(s'ls, a)V"(s") |

[/>c, V*(s) @g (s,a)+V&,P(5’Is,a)V*(5’ﬂ

Lﬁﬂ- Q*(s,a) %(5, a) +y2s P(s'ls, a) max Q*(S';@
e SRS

Reinforcement learning
What if we knew we had an MDP but didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration: Vier1(s) = maxz PHAsTh) [ReserT) + yVi(s)D], Vs

Q-iteration: Qr+1(s,a) = ZB@@H‘S’) BkermsT) +y max Qi(s’,a)], V¥s,a

Policy extraction: my(s) = arg;naxZB@*I‘S,’a)[M +yV(s')], Vs

Policy evaluation: Viga(s) = Z W[W +yVi(sD], Vs

Policy improvement: Tpew (S) = asrgznaxzm[w +yVToa(s")], Vs
57

Reinforcement Learning

Agent
State: s Actions:
Reward: r Ctions: a
Environment<
Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

S

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk

ﬂ

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

The Crawler!

[You, in Project 4]

Reinforcement Learning

Still assume a Markov decision process (MDP):
= Asetofstatess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

S, |
‘ '
A 4 Vaala n
Warm 03 3
ﬂ =

Still looking for a policy mt(s) e Overheate

New twist: don’t know T or R

—————

= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

r“

Offlme Solution ((Onlme Learnlng\

Model-Based Learning

Model-Based Learning

Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a [i

. . . /

= Normalize to give an estimate of 1'(s,a,s’)
. = / .

= Discover each R(s,a,s’) when we experience (s, a, s’)

0e <

—

(

Step 2: Solve the learned MDP
" For example, use value iteration, as before

Learning an Empirical Model ,
g P SO\M‘DLC <s,a/g,r>

Input Policy &t Observed Epispdes (Training) Learned Model
‘QXHL

Episode 1 Episode 2 T(s,a,s)

R
| B, east, C/-1 D B, east, C, (1) T(B! &/C> =%z =0
\%C, east, D, -1 C, east, D, -1
b, exit, x, +10 D, exit, x, +10

Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 /2 <“5 < /Q):- ~ l
C,east, D, -1 C, east, A, -1

Assume:y =1 D, exit, x, +10 A, exit, x,-10

Example: Model-Based Learning + Poll 3

Input Policy &t Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s)

B, east, C, -1 (B, east, C - T(B, east,.C) = /
t D) ==
@\p D, @(géggst i

D, exit, x, +10 k D, exit, x, +10

Episode 3 Episode 4 R(s a,s’)

E, north, C, - E, north, C, -1 R(B, eas
, east) D; 1 | KRG R(%f?s

: Rt ’ R D exit, x)
D, exit, x,+10 A, exit, x,-10

Assume:y =1

Example: Expected Age

Goal: Compute expected age of 15-281 students

(Known P(A) W
L E[A]=) P(a)-a =035x20+... J

Without P(A), instead collect samples [a4, a,, ... ap]

_—
Unknown P(A): “Model Based” Unknown P(/é: “Model Free"\
—
Why does this ? Pla) = num (a) Why does this
work? Because N BlA] ~ i Za' < work? Because
eventually you . - N - ‘ samples appear
learn the right E[A] ~ Z P(a)-a with the right
model. a j k frequencies.

Model-free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning
\> S SWie O g Q[ia C\/\p‘(}%&; (/ég(qu(\’ov\g
Simplified task: policy evaluation
" [nput: a fixed policy nt(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= Goal: learn the state values

In this case:

= Learner is“along for the ride”

= No choice about what actions to take
= Just execute the policy and learn from experience

= This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

Goal: Compute values for each state under «t

Idea: Average together observed sample values
= Act accordingto

= Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples

This is called direct evaluation

Direct Evaluation

Goal: Compute values for each state under «t

Idea: Average together observed sample values
= Act accordingto

= Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples EEEE TR

2 0% 100%

This is called direct evaluation 3 2% 0%
4 75% 2%
5 4% 68%
6 5% 6%
7 60% 5%

Example: Direct Evaluation

Input Policy &t Observed Episodes (Training)
Episode 1 Episode 2

Kg,ieast, C -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1

FLeast, D, -1
D, exit, x, +10

Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume: Y = 1 D, exit, x,+10 A, exit, x,-10

Algorithm: Average all total/future rewards that start at each state

Output Values

A:’Wb

%/a+ﬁ+ﬁ+—w
2/
(0 +10+10
D g =0
¥t —1Z

Problems with Direct Evaluation

What’s good about direct evaluation?
= |t’s easy to understand
= |t doesn’t require any knowledge of T, R

= |t eventually computes the correct average values,
using just sample transitions

What bad about it?

= |t wastes information about state connections
= Each state must be learned separately

= So, it takes a long time to learn

Output Values

If Band E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
= Each round, replace V with a one-step-look-ahead layer over V

r
Va(s)=0) s, 7t(s)

Vicp1(s) Z\ﬂ(s (s),s") R(S 7T(S) s) -I-@ S5 TE(S) 3 A
S

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

7(s)

Key question: how can we do this update to V without knowing T and R?
= [n other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

Vi 1(s) < Y T(s,m(s),s)[R(s,w(s),s") + V()]

|dea: Take samples of outcomes s’ (by doing the action!) and average

——sample; =

sample, =

m(8)]€n) VWi (s, (sn)

1
Vkﬂ—l—l (s) < ﬁ Z sample; Al osﬁut we csxnt

1 ind time’to get sample
R after sample from state s.

Temporal Difference Learning

——

Temporal Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience a transitiow

= Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~yV™(s")

Update to V(s):

Temporal Difference Learning ,

Big idea: learn from every experience! — =,
= Update V(s) each time we experience a transition (s, a, s/, r)

= Likely outcomes s’ will contribute updates more often n(s)

s, Tt(s) —~
Temporal difference learning of values
= Policy still fixed, still doing evaluation! A s

= Move values toward value of whatever successor occurs: running average

(\)Q/\
R(s,m(s),s) +~vV7(s")

—_—

Update to V(s): "<7V7T(s) +— (1-a)VT™(s) + (oz)sgm\le <
A

Sample of V(s): sample =

Same update:

VT(s) < V™(s) + a(sample — V™ (s)) %mcj\@\%

Exponential Moving Average

Exponential moving average
" The running interpolation update: Tn=(01—-0a) Tn_1+a z,

= Makes recent samples more important:
T+ (1-0) Tu 1+ 1 -0) Tpa+...

1+ 1—a)+(1—-a)?+...

» Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages /\/\/\/\
,\/\/\/\/\/\/\/\/\/\/

Ty =

Example: Temporal Difference Learning: Poll 4

States

Assume:y =1,

a=0.2

V(D 3
V(>70 < D\Obss,ep/ed Tran5|t5|or;ts S~
/>[B, east, C, -2 } G, east, D, -2
:]
oL | 0| 8
0

s
—— sample m—l— V(s
— YT(s) (1(@{ (sz(f éﬁm@gze)

Active Reinforcement Learning

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s’) [R(s, a,s’) + ’)/V(S,)]

|dea: learn Q-values, not values

Makes action selection model-free too!

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)
" You don’t know the transitions T(s,a,s’)
" You don’t know the rewards R(s,a,s’)

" You choose the actions now

= Goal: learn the optimal policy / values

In this case:
= Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and find out
what happens...

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
= Start with Vy(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Viet1(8) < mC?XZT(s,a, s {R(s,a,, s + ’ka(S/)}

But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Qy, calculate the depth k+1 g-values for all g-states:

Qt1(s:0) & L T(s,0,5) | R(s,a,5) + 7 maxQy(s',a)

S

Q-Learning
Q-Learning: sample-based Q-value iteration

Qta(s,0) L T(s,0,5) |R(s,0,5) + 7 maxQy(s',a')
s/ a
Learn Q(s,a) values as you go

= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:
sample = R(s,a,s’) +~ max Q(s',a")
a

" I[ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-Learning

We'd like to do Q-value updates to each Q-state:
Qut1(s:0) < L T(s,0,5) | R(s,a,5) + 7 maxQy(s',a)
s’ a

= But can’t compute this update without knowing T, R

Instead, compute average as we go
= Receive a sample transition (s,a,r,s’)
= This sample suggests

Q(s,a) = r+ymaxQ(s,d)
a
= But we want to average over results from (s,a) (Why?)
= So keep a running average

Qs,a) — (1= a)Q(s.0) + (@) |r + 7 maxQ(s',a)

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're
acting suboptimally!

This is called off-policy learning

Caveats:

= You have to explore enough

" You have to eventually make the learning rate
small enough -

= ... but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

Example: Q-Learning + Poll 5

Input Policy &t Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
Assume: y = 1 C,east, D, -1 C, east, A, -1
D, exit, x,+10 A, exit, x,-10

a=0.5

Qs,0) = (1 -)Q(s,a) + (a) |r +yMaxQ(s',a)|

