Try if you'd like...

https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL_website/

Announcements

Assignments

- P3: Logic Plan and Classical Planning due Tomorrow 3/17 10pm
- HW7 (written) due Tuesday 3/21 10pm
- HW8 (online) due Tuesday 3/28 10pm

Coming up

- Midterm 2
- Review Session TBA
- Topics: Logic, Classical Planning, MDPs, RL, Probability, Bayes Nets up to 3/28
- More info next week
- Midsemester and TA Feedback form! See Piazza 1 participation point

Al: Representation and Problem Solving

Reinforcement Learning II

Instructor: Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Reinforcement Learning

We still assume an MDP:

- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a,s')
- A reward function R(s,a,s')

Still looking for a policy $\pi(s)$

New twist: don't know T or R, so must try out actions

Big idea: Compute all averages over transition probabilities using sample outcomes

Model-Free Learning

Model-free (temporal difference) learning

Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- ullet Update estimates each transition (s,a,r,s')
- Over time, updates will mimic Bellman updates

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = r + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha) sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[sample - V^{\pi}(s)\right]$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[sample - V^{\pi}(s)\right]$$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$ $Error = \frac{1}{2} \left(sample - V^{\pi}(s)\right)^2$

Quick Calculus Quiz

$$f(x) = \frac{1}{2}(y - x)^2$$

What is
$$\frac{df}{dx}$$
?

Gradient Descent

$$f(x) = \frac{1}{2}(y - x)^2$$

Goal: find x that minimizes f(x)

$$\frac{df}{dx} = -(y - x)$$

- 1. Start with initial guess, x_0
- 2. Update x by taking a step in the direction that f(x) is changing fastest (in the negative direction) with respect to x:

 $x \leftarrow x - \alpha \nabla_x f$, where α is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s) and V

$$V \leftarrow V - \alpha \nabla_V Error$$

$$Error(V) = \frac{1}{2} (sample - V)^2$$

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = r + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha) sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[sample - V^{\pi}(s)\right]$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[sample - V^{\pi}(s)\right]$$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$ $Error = \frac{1}{2} \left(sample - V^{\pi}(s)\right)^2$

Poll 1

TD update:
$$V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]$$

Which converts TD values into a policy?

A) Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

B) Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

C) Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

D) Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

E) Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

F) None of the above

MDP/RL Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction:
$$\pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Value (TD) learning:
$$V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]$$

Q-learning:
$$Q(s,a) = Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

But can't compute this update without knowing T, R

Instead, compute average as we go

- Receive a sample transition (s,a,r,s')
- This sample suggests

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Q-Learning + Lecture 14 Poll 2

Input S,A

Observed Episodes (Training)

Output Q-Values

Assume: $\gamma = 1$ α = 0.5

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a')\right]$$

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π TD/Value Learning

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
- Problems with random actions?

How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

■ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/(n+1)$$

Regular Q-Update: $Q(s,a) = Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right]$

Modified Q-Update: $Q(s, a) = Q(s, a) + \alpha \left[r + \gamma \max_{a'} f(Q(s', a'), N(s', a')) - Q(s, a)\right]$

■ Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!

- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Instead, we want to generalize:

- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is a fundamental idea in machine learning, and we'll see it over and over again

[demo - RL pacman]

Feature-Based Representations

Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
- Example features:

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V_w(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

$$Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + ... + w_n f_n(s,a)$$

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:

$$Q(s,a) \leftarrow Q(s,a) + \alpha [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Instead, we update the weights to try to reduce the error at s, a:

•
$$w_i \leftarrow ?$$

Detour: Minimizing Error and Least Squares

Linear Approximation: Regression

Prediction:

$$\widehat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Quick Calculus Quiz

$$Error(w) = \frac{1}{2} (y - wf(x))^2$$

What is
$$\frac{dError}{dw}$$
?

Last time

$$Error(x) = \frac{1}{2}(y - x)^2$$

$$\frac{dError}{dx} = -(y - x)$$

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
 "target" "prediction"

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Example: $Q(s, a) = 2f_1(s, a) + 3f_2(s, a)$

$$f_1(s, a) = 4, f_2(s, a) = 1, r_{sampled} = 3$$

 $w_2 \leftarrow$

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:

$$Q(s,a) \leftarrow Q(s,a) + \alpha[(R(s,a,s') + \gamma \max_{a'} Q(s',a')) - Q(s,a)]$$

Instead, we update the weights to try to reduce the error at s, a:

•
$$w_i \leftarrow w_i + \alpha * f_i(s, a) * [(R(s, a, s') + \gamma \max_{a'} Q(s', a')) - Q(s, a)]$$

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition} &= (s, a, r, s') \\ & \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \quad & \text{Approximate Q's} \end{aligned}$$

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

Formal justification: online least squares

Example: Q-Pacman

$$Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$

$$Q(s, \text{NORTH}) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$ $\alpha = 0.004$
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

Example: Q-Pacman

$$Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a)$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

difference = -501
$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$
 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Recent Reinforcement Learning Milestones

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:

- Plays approximately at parity with world champion
- Led to radical changes in the way humans play backgammon

Deep Q-Networks

sample = $r + \gamma \max_{a'} Q_w(s',a')$ $Q_w(s,a)$: Neural network

Deep Mind, 2015

Used a deep learning network to represent Q:

■ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Images: Open AI, Atari

OpenAl Gym

2016+

Benchmark problems for learning agents https://gym.openai.com/envs

continuous control.

Make a 3D two-legged robot walk.

FetchPush-v0 Push a block to a goal position.

HandManipulateBlock-v0 Orient a block using a robot hand.

Breakout-ram-v0 Maximize score in the game Breakout, with RAM as input

Carnival-v0 Maximize score in the game Carnival, with screen images as input

Images: Open Al

AlphaGo, AlphaZero

Deep Mind, 2016+

Autonomous Vehicles?