Try if you'd like...

https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL website/

https://high-level-4.herokuapp.com/experiment
https://rach0012.github.io/humanRL_website/

Announcements

Assignments

= P3: Logic Plan and Classical Planning due Tomorrow 3/17 10pm
= HW?7 (written) due Tuesday 3/21 10pm

= HWS (online) due Tuesday 3/28 10pm
Coming up

= Midterm 2 3/3 ©

= Review Session — TBA

= Topics: Logic, Classical Planning, MDPs, RL, Probability, Bayes Nets up to 3/28
= More info next week

= = nd TA Feedback form! See Piazza — 1 participation point

Al: Representation and Problem Solving

Reinforcement Learning Il

Instructor: Stephanie Rosenthal
Slide credits: CMU Al and http://ai.berkeley.edu

Reinforcement Learning

We still assume an MDP:
= Asetof statess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

Still looking for a policy 7(s)

New twist: don’t know T or R, so must try out actions

Big idea: Compute all averages over transition probabilities using
sample outcomes

Model-Free Learning

Model-free (temporal difference) learning
= Experience world through episodes

(S,CL,?“, S/’al/’,r,/’ S”,CL”,?“”, S//// .

= Update estimates each transition (S, a,r, 8’)

= Over time, updates will mimic Bellman updates

)

Temporal Difference Learning

Big idea: learn from every experience!

S
= Update V(s) each time we experience a transitio
= Likely outcomes s’ will contribute updates more often n(s)
s, Tt(s)
Temporal difference learhing of values
= Policy still fixed, still déing evaluation! A s
= Move values toward value of whatever successor occurs: running average
Pxsswe —N ~
Sample of V(s): sample = r+y V™ (s’) (,QM”\S m
Update to V(s): V() « (1—a)V™(s) + (a) sample
- o

Same update: }V”(s) VP(s) +a Sample — V™(s)

\ 1 2
Same u date{' VT (s) « V” S)—a E = — le — VT
P (s) (s) rToT =2 (sample A/Q))

Quick Calculus Quiz

fl) =2y —x)?

Whatis—;—i? j\g;@/%(j L X
=y @
X

: 1
Gradient Descent f) =2 -2)?

Goal: find x that minimizes f(x) df

1. Start with initial guess, x, dx ——x)

2. Update x by taking a step in the direction that f(x) is changing
fastest (in the negative direction) with respect to x:
X« X here « is the step size or learning rate
~—_
3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s)

andV I Error(V) 1 (e — V)
rror = —samptie —
V <V — aVVError\/ (S> 2 g

Temporal Difference Learning

Big idea: learn from every experience!

S
= Update V(s) each time we experience a transition (s, a, s/, r)
= Likely outcomes s’ will contribute updates more often n(s)
s, Tt(s)
Temporal difference learning of values
= Policy still fixed, still doing evaluation! A s

= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = r+y V(s
Update to V(s): V() « (1—a)V™(s) + (a) sample
Same update: Vt(s) « V™(s) + a[sample — V™(s)]

1
Same update: V™(s) « V™(s) — aVError Error = . (sample — V”(s))2

ShE
Poll 1 SMXM |

D u’p@a{&wm\g\ Vi(s) = V() +alr+y V(s)\— V*(s)]
SR S i Q@/ QB

O
Which converts TD values into a pollcy? /V\ X

/55

A) Value iteration: Vier1(s) = mc?xz P(s'|s,a)[R(s,a,s") +yV,(s")], Vs

B) Q-iteration: Qs(5,@) =) P(s'ls, [R(s, a,5) + y max Qi(s', @], ¥s,a
C) Policy extraction: my(s) = arggnaxz P(s'|s,a)[R(s,a,s") + yV(s")], Vs

D) Policy evaluation: V7, (s) = Z P(s'ls, m(s)[R(s, m(s),s") + yVE(s)], Vs

E) Policy improvement: ., (s) = argmaxz P(s'|s,a)[R(s,a,s") +yV™old(s")], Vs
a

@one of the above

MDP/RL Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V*(s) = maxz P(s'ls,a)[R(s,a,s") + yV*(s")]
a =
Value iteration: Vierr(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s)], Vs
a
S/
Q-iteration: Qr+1(s,a) = Z P(s'ls,a)[R(s,a,s") + y max Q,(s',a")], Vs,a
a
S/
Policy extraction: 7, (s) = argmaxz P(s'ls,)[R(s,a,s") +yV(s)], Vs
a
S/
Policy evaluation: VE ,(s) = Z P(s'|s,m(s))[R(s,m(s),s") +yVF(s")], Vs
S/
Policy improvement: Tpew (8) = argmaxz P(s’|s,a)[R(s,a,s’) + yV™oa(s")], Vs
a
S/
Value (TD) learning: VT(s) = V(s) +alr+y V(s — V7(s)]

Q-learning: Q(s,a) = Q(s,a) +a[r+ymaxQ(s',a") — Q(s,a)]

Q-Learning

We'd like to do Q-value updates to each Q-state:
Qut1(s,0) « L T(s,0,5) | R(s,a,5) + 7 maxQy(s',a)
- S/ a

= But can’t compute this update without knowing T, R

Instead, compute average as we go
= Receive a sample transition (s,a,r,s’) , ;
= This sample suggests \/(S>

Qs,0) = 7 +|max Q(s,a)
a
= But we want to average over results from (s,a) " (Why?)
= So keep a running average

Qs,0) — (1=)Q(s,0) + (@) |r + 7 max Qs a)

Q-Learning + Lecture 14 Poll 2

Input S,A Observed Episodes (Training) Output Q-Values,
: : QA
Episode 1 Episode 2 X
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
Assume: y = 1 C,east, D, -1 C, east, A, -1
o = 0/5§‘ D, exit, x,+10 A, exit, x,-10

Qs,0) « (1 —)Q(s,a) + () |r +ymax Q(s',a)

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

This is called off-policy learning

—

Caveats:
" You have to explore enough
" You have to eventually make the learning rate

small enough O< \\/ ——

R
= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

teNe—

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based Unknown MDP: Model-Free
/Goal Technique N Goal Technique A
Compute V*, Q*, n* VI/PIl on approx. MDP Compute V*, Q*, * Q-learning

\Evaluate a fixed policy ®t PE on approx. MDP J \ Evaluate a fixed policy 1 TD/Value Learning

J

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration
= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

" Problems with random actions?

How to Explore?

Several schemes for forcing exploration
= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

" Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution:/lower € over time

= Another solution: exploration functions
[oration MRS

Exploration Functions

When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function
= Takes a value estimate u and a visit count n, and

Regular Q-Update: Q(s,a) = Q(s,a) + ar+ ymax Q(s’,a’) —Q(s,a)]
Modified Q-Update: Q(s,a) = Q(s,a) + a [r + ymax)f(Q_(u_ N(s’, a’)j Q(s,a)]

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn about
every single state!

* Too many states to visit them all in training
= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states
from experience

= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and

we’ll see it over and over again

[demo — RL pacman]

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)

= Features are functions from states to real numbers

_(often 0/1) that capture important properties of the
state

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

= Example features:

Linear Value Functions

Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

" Vv (8) = wifi(s) + wyofo(s) + oo+ wyfu(s)

= Q,,(s,a) :LY}-(\EL@ +w,fo(s,a) + ...+ w,f,(s,a)

/\/

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:

>0 (@) « 0(5,@) + a[R(s,0,5) +y max Q(s",a") = Q(s, @]

Instead, we update the weights to try to reduce the error at s, a:

®<5/% = ?g@(sjqﬁ

Detour: Minimizing Error and Least Squares

Linear Approximation

40

20

f1(z)

Prediction:
g = wg + w1 f1(x)

. Regression

Prediction:

¥; = wo + wy f1(x) + wofo(x)

Optimization: Least Squares

total error = Z (v @ = ; (?Ji@k:wkfk(xi))z MQRGJ

_ Error or “residual”
Observation y

Prediction ?/j\

° f1(x))

Last time

Quick Calculus Quiz

Error(x) = l(y — x)?
1 2 2
Error(w) = E(y —wf(x))

dError
dx

=—-—x)
dError

What is

dw

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(x))
k
0 e(;l’or(w) = — (y — Zwkfk(gj)) fm(gj)
W p

[’wm — wm + « (y - Zwkfk(fﬁ)) fm(x) 7
- k

Approximate g update explained:

win — wm + o |r+yMaxQ(s',a") — Q(s,a)| fm(s,a)

“target” “prediction”

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Z’wk:fk(f’?)>
k
0 e(;ror(w) = — (fy — Zwkfk(gj)) fm(gj)
W p

Wi — Wm + o (y - Z’wkfk;(ib‘)) fm(x)
k

Example: Q(s,a) = 2f;(s,a) + 3f,(s,a)

fi(s,a) =4, f5(s,a) =1, Tsampled = 3
Wy

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
* Q(s,a) <« Q(s,a) + a[(R(s,a,s") + y max Q(s',a")) — Q(s,a)]
a

Instead, we update the weights to try to reduce the error at s, a:
= w; < w; +axfi(s,a) *[(R(s,a,s) + ymax Q(s’,a’)) — Q(s,a)]
a

Approximate Q-Learning

Q@) = wifi(s) Fuafa(s,)t tunfuls)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(87 CL)
Q(s,a) «— Q(s,a) + o [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Qs

difference = {’r + v max Q(s',a")
a

Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

Formal justification: online least squares

Example: Q-Pacman

Q(Sa CL) — 4°OfDOT(S7 a’) — 1°OfGST(87 CL)
N a

a = NORTH /
r = —500

/ -

fDOT(S, NORTH) = 0.5

fasT(s, NORTH) = 1.0

Q(s,NORTH) = +1
T+7maxQ(S/7a’) = —-500+4+20 a = 0.004
a

w; «— w; + o [difference] f;(s, a)

Example: Q-Pacman

Q(S7 CL) — 4°OfDOT(S7 a’) — 1°OfGST<87 CL)
N a

a = NORTH /
r = —500

/ -

Q(s,NORTH) = +1 Q(s,)=0
r + y max Q(s',ad") = -500+ 0

difference = —501 :> wpor <= 4.0+ «[=501]0.5
wasT <— —1.0 + « [—501] 1.0

Q(87 CL) — 3°OfDOT(87 CL) — 3°OfGST(87 CL)

fDOT(S, NORTH) = 0.5

fasT(s, NORTH) = 1.0

Recent Reinforcement Learning Milestones

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
= Plays approximately at parity with world champion R ey
= Led to radical changes in the way humans play backgammon

sample = r +y max_, Q,, (s’,a’)

Deep Q-NEtWOrkS Q,(s,a): Neural network
Deep Mind, 2015

Used a deep learning network to represent Q:
= Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convglution Convvolution Fully cgnnected Fully cgnnected
| | | ‘ (No input]
/ .‘
/ - o\ \
== fm 4
[/ a \
[/ a \ O\
[/ o |/ \
[/ \
8 // \
8 ,““i//
g/

/e
El-e
=

m m
drgoghn_ ¢

doooooo 0o
B _— _—
~—

oooon __gogo

AINIR|E LV Y -) [5
+l+Q+0+0+0+-0+0+ N~ & ¥ > 1B

(SN NuNulu ==,
("N E-NEE-Is]
a4

OpenAl Gym
2016+

Benchmark problems for learning agents
https://gym.openai.com/envs

Breakout-ram-v0
Maximize scoreint

|

= Ant-v2
Make a 3D four-legged robot
walk

Acrobot-v1
Swing up a two-link robot

Episode 2

MountainCarContinuous-v0
Drive up a big hill w
continuous contro

Humanoid-v2
Make a 3D two-legged robot
walk

HandManipulateBlock-v0
Orient a block using a robot

hand

AlphaGo, AlphaZero
Deep Mind, 2016+

Google DeepMind

Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

