Try if you'd like...

https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL_website/

Announcements

Assignments

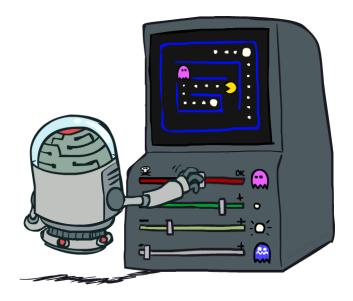
- P3: Logic Plan and Classical Planning due Tomorrow 3/17 10pm
- HW7 (written) due Tuesday 3/21 10pm
- HW8 (online) due Tuesday 3/28 10pm

Coming up

- Midterm 2 $3/3 \odot$
- Review Session TBA
- Topics: Logic, Classical Planning, MDPs, RL, Probability, Bayes Nets up to 3/28
- More info next week

Midsemester and TA Feedback form! See Piazza – 1 participation point

AI: Representation and Problem Solving Reinforcement Learning II



Instructor: Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Reinforcement Learning

We still assume an MDP:

- A set of states s ∈ S
- A set of actions (per state) A
- A model T(s,a,s')
- A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

New twist: don't know T or R, so must try out actions

Big idea: Compute all averages over transition probabilities using sample outcomes

Model-Free Learning

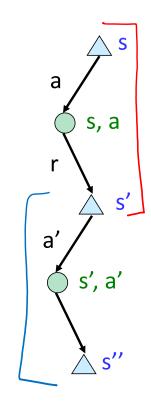
Model-free (temporal difference) learning

Experience world through episodes

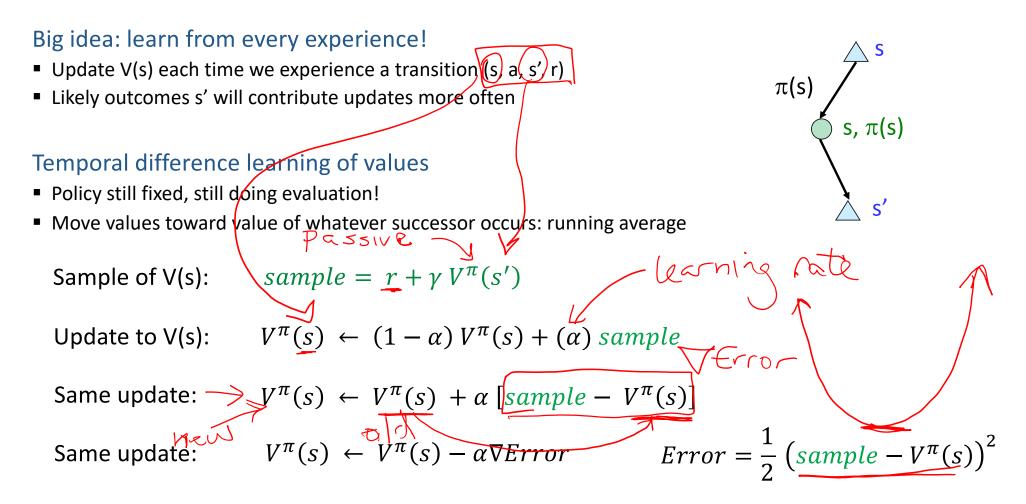
$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- Update estimates each transition (s, a, r, s')

Over time, updates will mimic Bellman updates



Temporal Difference Learning

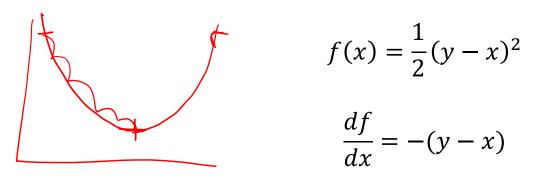


Quick Calculus Quiz $f(x) = \frac{1}{2}(y - x)^2$ What is $\frac{df}{dx}$? $2(\sqrt{-x})$ 2 - X $-(\gamma - \times)$ X - A

Gradient Descent

Goal: find x that minimizes f(x)

1. Start with initial guess, x_0



2. Update x by taking a step in the direction that f(x) is changing fastest (in the negative direction) with respect to x:

 $x \leftarrow x - \alpha \nabla_x f$, where α is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s) and V $V \leftarrow V - \alpha \nabla_V Error \bigvee_{i} (5) Error(V) = \frac{1}{2} (sample - V)^2$

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

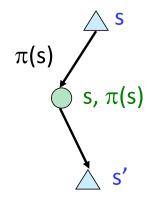
Sample of V(s): $sample = r + \gamma V^{\pi}(s')$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha) sample$$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha [sample - V^{\pi}(s)]$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$

$$Error = \frac{1}{2} \left(sample - V^{\pi}(s) \right)^2$$



Poll 1
TD updates
$$P^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]$$

Which converts TD values into a policy?
(5)
A) Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$
B) Q-iteration: $Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s, a$
C) Policy extraction: $\pi_V(s) = \operatorname{argmax}_{s'} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s$
D) Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$
E) Policy improvement: $\pi_{new}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k^{\pi}(s')], \quad \forall s$
F) pone of the above

MDP/RL Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$
Bellman equations: $V^*(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^*(s')]$ Value iteration: $V^*(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \quad \forall s$ Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$ Policy extraction: $\pi_V(s) = \operatorname{argmax} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \quad \forall s$ Policy evaluation: $V^{\pi}_{k+1}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V^{\pi}_{k}(s')], \quad \forall s$ Policy improvement: $\pi_{new}(s) = \operatorname{argmax} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$ Value (TD) learning: $V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$\underbrace{Q_{k+1}(s,a)}_{\underline{\qquad}} \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

But can't compute this update without knowing T, R

Instead, compute average as we go

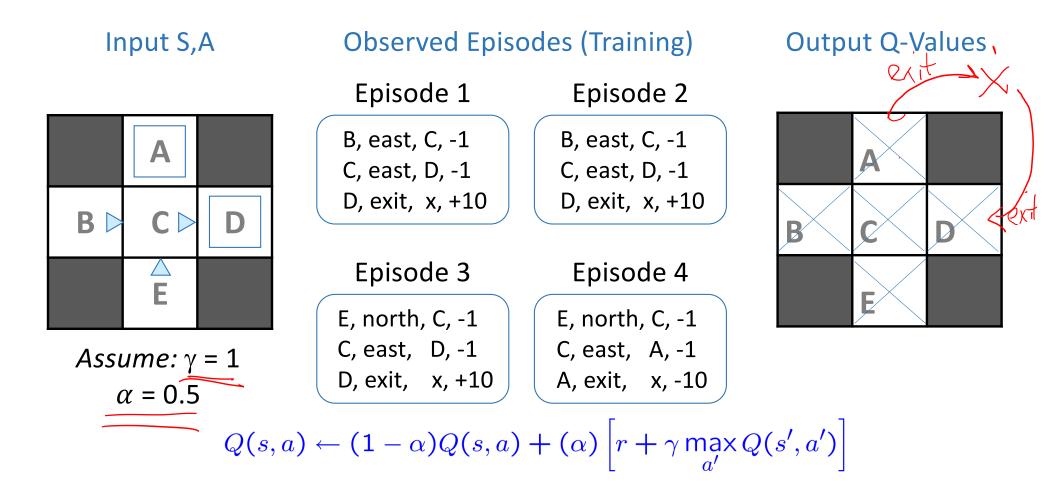
- Receive a sample transition (s,a,r,s')
 This sample suggests

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-lpha)Q(s,a) + (lpha)\left[r + \gamma \max_{a'}Q(s',a')
ight]$$

Q-Learning + Lecture 14 Poll 2



Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal	Technique
Compute V*, Q*, π*	Value / policy iteration
Evaluate a fixed policy π	Policy evaluation

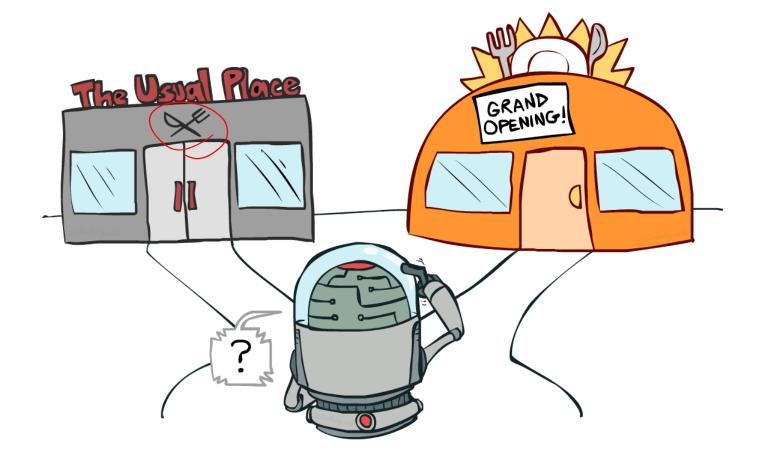
Unknown MDP: Model-Based

(Goal	Technique
	Compute V*, Q*, π^*	VI/PI on approx. MDP
	Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

Goal	Technique
Compute V*, Q*, π^*	Q-learning
Evaluate a fixed policy π	TD/Value Learning

Exploration vs. Exploitation



How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ϵ , act randomly
 - With (large) probability 1- ε , act on current policy
- Problems with random actions?

How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ϵ , act randomly
 - With (large) probability 1-ε, act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: ower ε over time
 - Another solution: exploration functions

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) \neq u \neq k/(n + 1)$

Regular Q-Update: $Q(s,a) = Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

Modified Q-Update: $Q(s,a) = Q(s,a) + \alpha \left[r + \gamma \max_{a'} f(Q(s',a'), N(s',a')) - Q(s,a)\right]$

• Note: this propagates the "bonus" back to states that lead to unknown states as well!

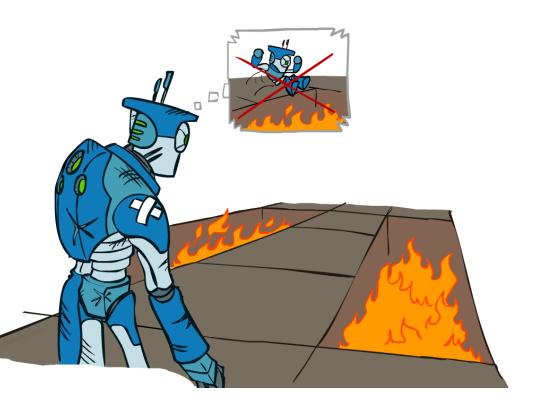
Regret

Even if you learn the optimal policy, you still make mistakes along the way!

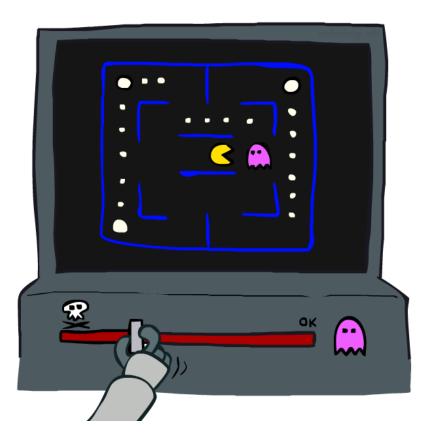
Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

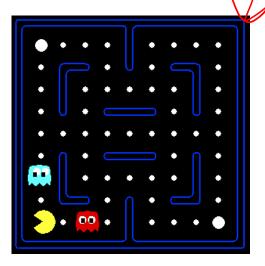


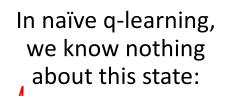
Approximate Q-Learning

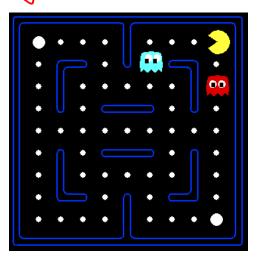


Example: Pacman

Let's say we discover through experience that this state is bad:







Or even this one!

Generalizing Across States

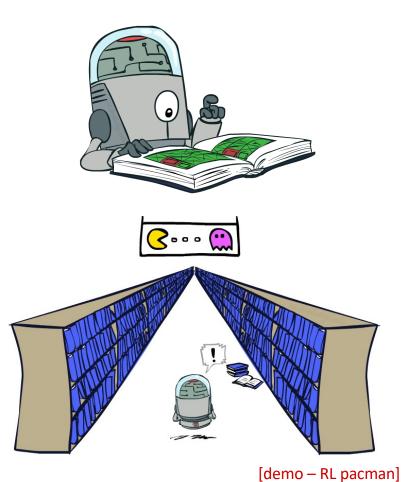
Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!

- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Instead, we want to generalize:

- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is a <u>fundamental idea in machine learning</u>, and we'll see it over and over again

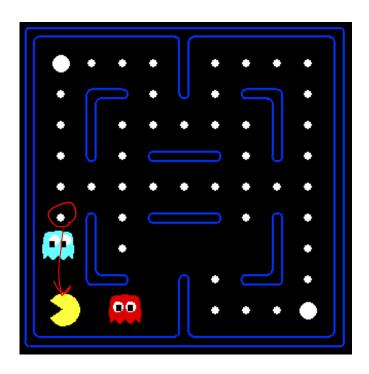


Feature-Based Representations

Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
- Example features:

$F_1 F_2 F_3 F_4 F_5$



Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

•
$$V_w(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

•
$$Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Advantage: our experience is summed up in a few powerful numbers

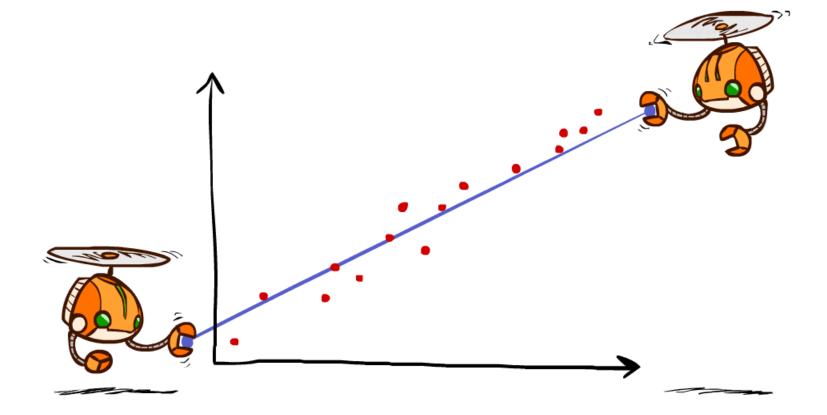
Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

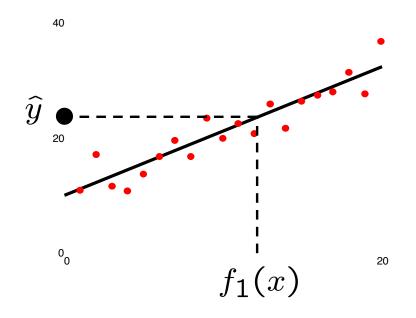
Original Q learning rule tries to reduce prediction error at s, a: $Q(s,a) \leftarrow Q(s,a) + \alpha [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

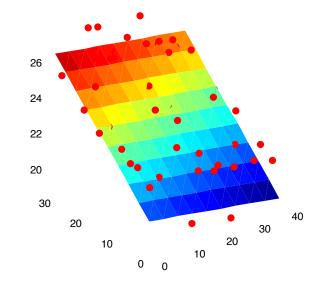
Instead, we update the weights to try to reduce the error at s, a: • $w_i \leftarrow ?$ $((5, n)) = \sum_{i=1}^{n} \omega_i f_i(5, n)$

Detour: Minimizing Error and Least Squares



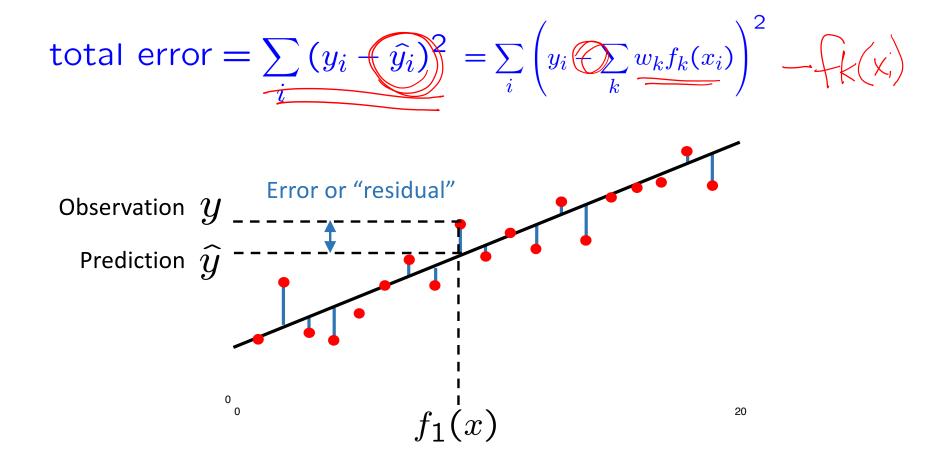
Linear Approximation: Regression





Prediction: $\hat{y} = w_0 + w_1 f_1(x)$ Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Optimization: Least Squares



Quick Calculus Quiz

$$Error(w) = \frac{1}{2} (y - wf(x))^{2}$$

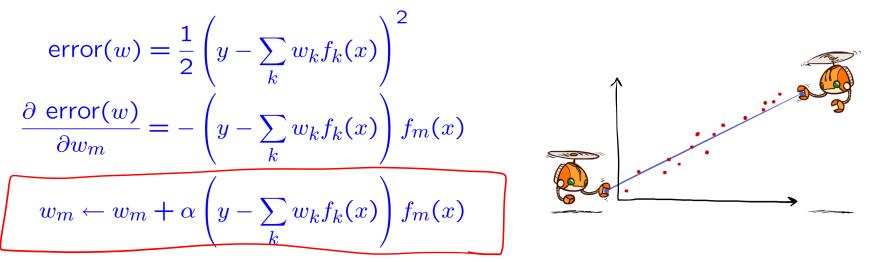
Last time $Error(x) = \frac{1}{2}(y - x)^2$

$$\frac{dError}{dx} = -(y - x)$$

What is $\frac{dError}{dw}$?

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:



Approximate q update explained:

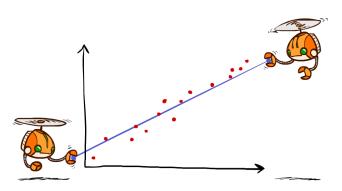
$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target" "prediction"

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



Example: $Q(s, a) = 2f_1(s, a) + 3f_2(s, a)$

$$f_1(s,a) = 4, f_2(s,a) = 1, r_{sampled} = 3$$

$$w_2 \leftarrow$$

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:

• $Q(s,a) \leftarrow Q(s,a) + \alpha[(R(s,a,s') + \gamma \max_{a'} Q(s',a')) - Q(s,a)]$

Instead, we update the weights to try to reduce the error at s, a:

• $w_i \leftarrow w_i + \alpha * f_i(s, a) * [(R(s, a, s') + \gamma \max_{a'} Q(s', a')) - Q(s, a)]$

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

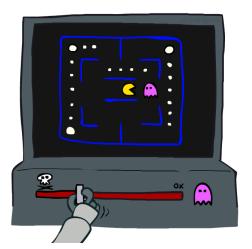
Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition} = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) & \text{Approximate Q's} \end{aligned}$$

Intuitive interpretation:

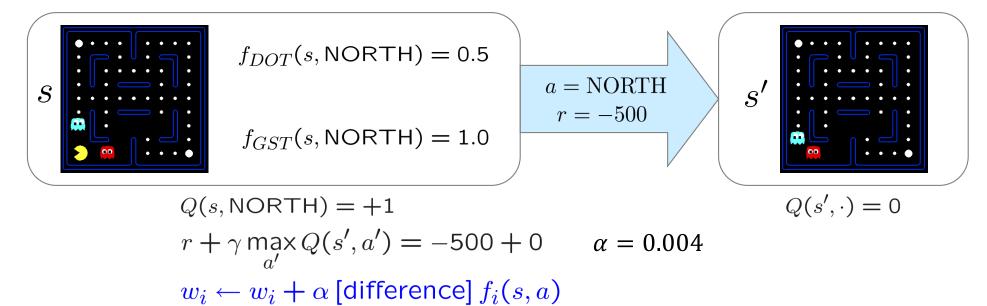
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

Formal justification: online least squares



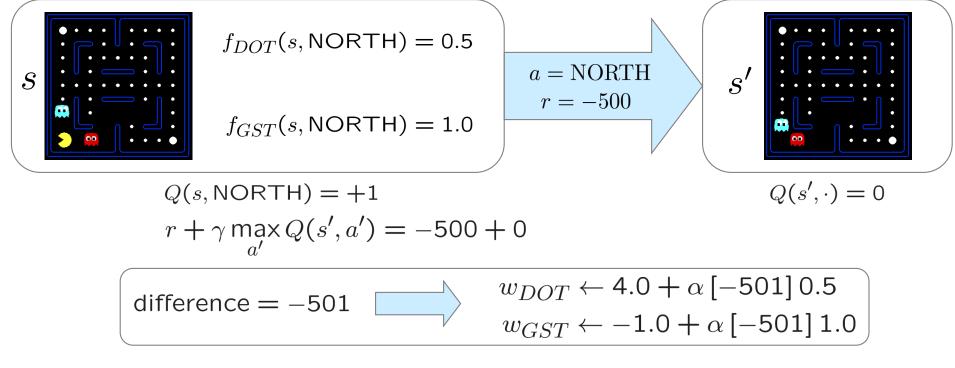
Example: Q-Pacman

$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$



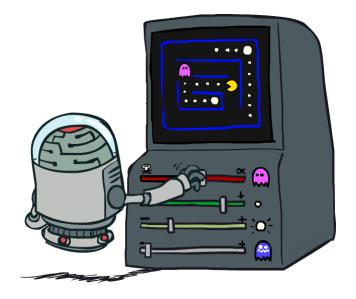
Example: Q-Pacman

$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$



 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

Recent Reinforcement Learning Milestones

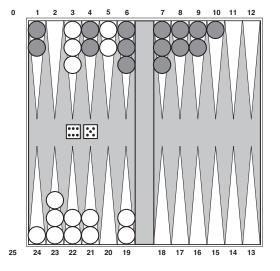


TDGammon

- 1992 by Gerald Tesauro, IBM
- 4-ply lookahead using V(s) trained from 1,500,000 games of self-play
- 3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features Experimental results:

- Plays approximately at parity with world champion
- Led to radical changes in the way humans play backgammon



Deep Q-Networks

sample = $r + \gamma \max_{a'} Q_w(s',a')$ Q_w(s,a): Neural network

Deep Mind, 2015

Used a deep learning network to represent Q:

- Input is last 4 images (84x84 pixel values) plus score
- 49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

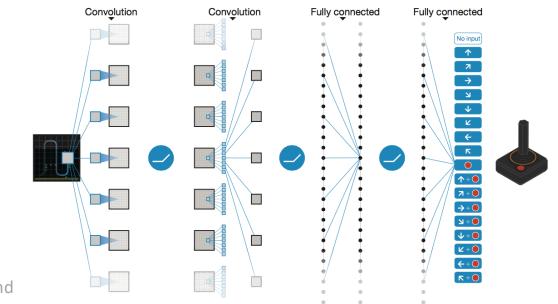
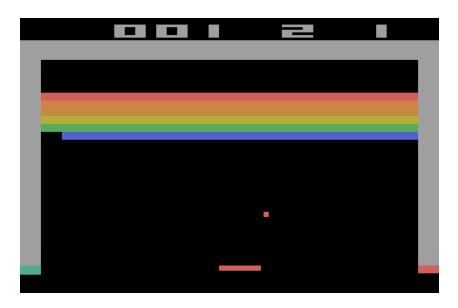
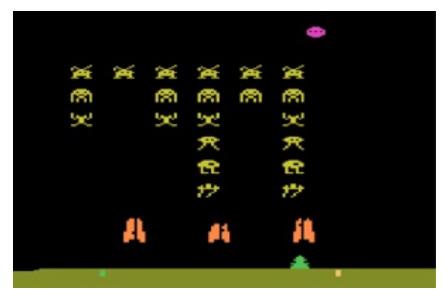


Image: Deep Mind

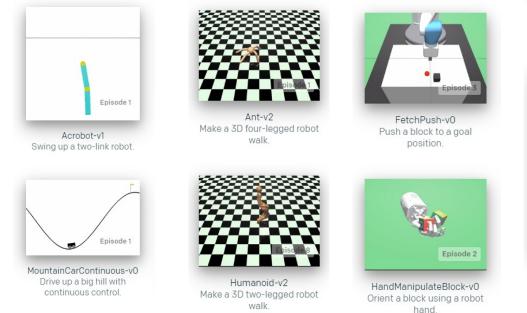




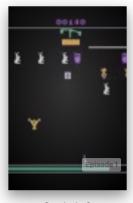
OpenAl Gym

2016+

Benchmark problems for learning agents https://gym.openai.com/envs



Breakout-ram-v0 Maximize score in the game Breakout, with RAM as input



Carnival-v0 Maximize score in the game Carnival, with screen images as input

Images: Open Al

AlphaGo, AlphaZero

Deep Mind, 2016+

Autonomous Vehicles?