
Try if you’d like…
https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL_website/

https://high-level-4.herokuapp.com/experiment
https://rach0012.github.io/humanRL_website/

Announcements
Assignments
§ P3: Logic Plan and Classical Planning due Tomorrow 3/17 10pm
§ HW7 (written) due Tuesday 3/21 10pm
§ HW8 (online) due Tuesday 3/28 10pm
Coming up
§ Midterm 2
§ Review Session – TBA
§ Topics: Logic, Classical Planning, MDPs, RL, Probability, Bayes Nets up to 3/28
§ More info next week

§ Midsemester and TA Feedback form! See Piazza – 1 participation point

AI: Representation and Problem Solving
Reinforcement Learning II

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu

Reinforcement Learning
We still assume an MDP:
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

Still looking for a policy p(s)

New twist: don’t know T or R, so must try out actions

Big idea: Compute all averages over transition probabilities using
sample outcomes

Model-Free Learning

Model-free (temporal difference) learning
§ Experience world through episodes

§ Update estimates each transition

§ Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

𝑉! 𝑠 ← 𝑉!(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉! 𝑠

Temporal Difference Learning
Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉! 𝑠"

𝑉! 𝑠 ← 1 − 𝛼 𝑉! 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉! 𝑠 ← 𝑉! 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1
2

𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉! 𝑠
#

Quick Calculus Quiz
𝑓 𝑥 = 6

7
𝑦 − 𝑥 7

What is
!"
!#

?

Gradient Descent
Goal: find 𝑥 that minimizes 𝑓(𝑥)
1. Start with initial guess, 𝑥!
2. Update 𝑥 by taking a step in the direction that 𝑓(𝑥) is changing

fastest (in the negative direction) with respect to x:
𝑥 ← 𝑥 − 𝛼∇"𝑓, where 𝛼 is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s)
and V

𝑉 ← 𝑉 − 𝛼∇#𝐸𝑟𝑟𝑜𝑟

𝑓 𝑥 =
1
2
𝑦 − 𝑥 #

𝑑𝑓
𝑑𝑥

= −(𝑦 − 𝑥)

𝐸𝑟𝑟𝑜𝑟(𝑉) =
1
2

𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉 #

𝑉! 𝑠 ← 𝑉!(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉! 𝑠

Temporal Difference Learning
Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉! 𝑠"

𝑉! 𝑠 ← 1 − 𝛼 𝑉! 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉! 𝑠 ← 𝑉! 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1
2

𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉! 𝑠
#

Poll 1

Which converts TD values into a policy?

𝑉!"# 𝑠 = max
$
*
%&

𝑃 𝑠& 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉! 𝑠& , ∀ 𝑠

𝑄!"# 𝑠, 𝑎 =*
%&

𝑃 𝑠& 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠& + 𝛾max
$!

𝑄!(𝑠&, 𝑎&)] , ∀ 𝑠, 𝑎

𝜋' 𝑠 = argmax
$

*
%&

𝑃 𝑠& 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉 𝑠&] , ∀ 𝑠

𝑉!"#(𝑠 =*
%&

𝑃 𝑠& 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠& + 𝛾𝑉!(𝑠&] , ∀ 𝑠

𝜋)*+ 𝑠 = argmax
$

*
%&

𝑃 𝑠& 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠& + 𝛾𝑉("#$ 𝑠& , ∀ 𝑠

A) Value iteration:

B) Q-iteration:

C) Policy extraction:

E) Policy improvement:

D) Policy evaluation:

TD update: 𝑉(𝑠 = 𝑉((𝑠) + 𝛼 𝑟 + 𝛾 𝑉(𝑠& − 𝑉(𝑠

F) None of the above

MDP/RL Notation
𝑉 𝑠 = max

%
*
&'

𝑃 𝑠' 𝑠, 𝑎)𝑉(𝑠')

𝑉∗ 𝑠 = max
%

*
&'

𝑃 𝑠' 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠' + 𝛾𝑉∗ 𝑠'

𝑉)*+ 𝑠 = max
%

*
&'

𝑃 𝑠' 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠' + 𝛾𝑉) 𝑠' , ∀ 𝑠

𝑄)*+ 𝑠, 𝑎 = *
&'

𝑃 𝑠' 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠' + 𝛾max
%!

𝑄)(𝑠', 𝑎')] , ∀ 𝑠, 𝑎

𝜋, 𝑠 = argmax
%

*
&'

𝑃 𝑠' 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠' + 𝛾𝑉 𝑠'] , ∀ 𝑠

𝑉)*+- 𝑠 = *
&'

𝑃 𝑠' 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠' + 𝛾𝑉)- 𝑠'] , ∀ 𝑠

𝜋./0 𝑠 = argmax
%

*
&'

𝑃 𝑠' 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠' + 𝛾𝑉-"#$ 𝑠' , ∀ 𝑠

𝑉- 𝑠 = 𝑉-(𝑠) + 𝛼 𝑟 + 𝛾 𝑉- 𝑠' − 𝑉- 𝑠

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
%!

𝑄 𝑠', 𝑎' − 𝑄 𝑠, 𝑎]

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

Value (TD) learning:

Q-Learning

We’d like to do Q-value updates to each Q-state:

§ But can’t compute this update without knowing T, R

Instead, compute average as we go
§ Receive a sample transition (s,a,r,s’)
§ This sample suggests

§ But we want to average over results from (s,a) (Why?)
§ So keep a running average

Q-Learning + Lecture 14 Poll 2

Input S,A

Assume: g = 1
𝛼 = 0.5

Observed Episodes (Training) Output Q-Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

This is called off-policy learning

Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate

small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)

The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p TD/Value Learning

Exploration vs. Exploitation

How to Explore?
Several schemes for forcing exploration
§ Simplest: random actions (e-greedy)
§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Problems with random actions?

How to Explore?
Several schemes for forcing exploration
§ Simplest: random actions (e-greedy)
§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Problems with random actions?
§ You do eventually explore the space, but keep

thrashing around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions

Exploration Functions
When to explore?
§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

Exploration function
§ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.
𝑓 𝑢, 𝑛 = 𝑢 + 𝑘/(𝑛 + 1)

§ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update: 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 [𝑟 + 𝛾max
=!

𝑓(𝑄 𝑠", 𝑎" , 𝑁 𝑠", 𝑎") − 𝑄 𝑠, 𝑎]

Regular Q-Update: 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 [𝑟 + 𝛾max
=!

𝑄 𝑠", 𝑎" − 𝑄 𝑠, 𝑎]

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!
Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards
Minimizing regret goes beyond learning to
be optimal – it requires optimally learning
to be optimal
Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about
every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

Instead, we want to generalize:
§ Learn about some small number of training states

from experience
§ Generalize that experience to new, similar situations
§ This is a fundamental idea in machine learning, and

we’ll see it over and over again

[demo – RL pacman]

Feature-Based Representations
Solution: describe a state using a vector of
features (properties)
§ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

§ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

§ Example features:

Linear Value Functions

Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

§ 𝑉H 𝑠 = 𝑤6𝑓6 𝑠 + 𝑤7𝑓7 𝑠 + …+𝑤I𝑓I(𝑠)

§ 𝑄H 𝑠, 𝑎 = 𝑤6𝑓6 𝑠, 𝑎 + 𝑤7𝑓7 𝑠, 𝑎 + …+𝑤I𝑓I(𝑠, 𝑎)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
§ 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 𝑠, 𝑎, 𝑠= + 𝛾 max

>!
𝑄 𝑠=, 𝑎= − 𝑄 𝑠, 𝑎]

Instead, we update the weights to try to reduce the error at s, a:
§ 𝑤? ← ?

Detour: Minimizing Error and Least Squares

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Quick Calculus Quiz

𝐸𝑟𝑟𝑜𝑟(𝑤) = 6
7
𝑦 −𝑤𝑓 𝑥 7

What is
!$%%&%
!'

?

Last time

𝐸𝑟𝑟𝑜𝑟 𝑥 =
1
2
𝑦 − 𝑥 #

𝑑𝐸𝑟𝑟𝑜𝑟
𝑑𝑥

= −(𝑦 − 𝑥)

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

Minimizing Error

Example: 𝑄 𝑠, 𝑎 = 2𝑓> 𝑠, 𝑎 + 3𝑓#(𝑠, 𝑎)

𝑓> 𝑠, 𝑎 = 4, 𝑓# 𝑠, 𝑎 = 1, 𝑟?=@ABCD = 3
𝑤# ←

Imagine we had only one point x, with features f(x), target value y, and weights w:

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
§ 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[(𝑅 𝑠, 𝑎, 𝑠= + 𝛾 max

>!
𝑄 𝑠=, 𝑎=) − 𝑄 𝑠, 𝑎]

Instead, we update the weights to try to reduce the error at s, a:
§ w@ ← 𝑤? + 𝛼 ∗ 𝑓? 𝑠, 𝑎 ∗ [(𝑅 𝑠, 𝑎, 𝑠= + 𝛾 max

>!
𝑄 𝑠=, 𝑎=) − 𝑄 𝑠, 𝑎]

Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
§ Adjust weights of active features
§ E.g., if something unexpectedly bad happens, blame the features that

were on: disprefer all states with that state’s features
Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

𝛼 = 0.004

Example: Q-Pacman

Recent Reinforcement Learning Milestones

TDGammon
1992 by Gerald Tesauro, IBM
4-ply lookahead using V(s) trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each
Input: contents of each location plus several handcrafted features
Experimental results:
§ Plays approximately at parity with world champion
§ Led to radical changes in the way humans play backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Deep Q-Networks
Deep Mind, 2015
Used a deep learning network to represent Q:
§ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

39
Image: Deep Mind

sample = r + γ maxa’ Qw (s’,a’)
Qw(s,a): Neural network

40

Im
ag

es
: O

pe
n

AI
, A

ta
ri

OpenAI Gym
2016+
Benchmark problems for learning agents
https://gym.openai.com/envs

Images: Open AI

AlphaGo, AlphaZero
Deep Mind, 2016+

Autonomous Vehicles?

