Announcements

Assignments

- HW7 Due tonight!
- HW8 Due Tues 3/28, 10 pm
- P4: MDPs/RL Due Thursday 4/6, 10 pm
- Check the Final Exam Schedule for conflicts by next week 3/31

Coming up

- Midterm 2 Review Tues. 3/28 6-8pm in GHC Rashid
- Midterm 2 3/30 (covers Logic, Classical Planning MDPs, RL, Bayes)
 - 80 minutes in class, same general rules as before
 - Single function calculators or graphing calculators (no phones, iPads, etc)
 - 1 8.5"x11" handwritten pen/pencil/paper cheatsheet, not written digitally and printed

AI: Representation and Problem Solving

Bayes Nets

Instructor: Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

Omega Pizzeria!

What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms

Probability Notation

Notation and conventions in this course

$$P(B = +b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(A = a, B = +b, C)$$

$$P(+b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(a, +b, C)$$

- Random variables:
 - Capitalized
 - Represents all potential outcomes
 - e.g. *C*
- Outcomes (values):
 - lower case
 - e.g. +b, a_1 , a_2 , a_3
- Variables for values:
 - lower case
 - E.g. *a*

Probability Notation

Notation and conventions in this course

$$P(B = +b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(A = a, B = +b, C)$$

$$P(+b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(a, +b, C)$$

Partitions

For each random variable

- Discrete outcomes
- Disjoint outcomes
- Accounts for entire event space
- Not always binary

Discrete Random Variables

(and their domains)

$$A \in \{a_1, a_2, a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

Event space

Discrete Random Variables (and their domains)

$$A\in\{a_1,a_2,a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

P(B)

Joint distribution

Discrete Random Variables (and their domains)

$$A\in\{a_1,a_2,a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

Joint distribution

P(M,S,R)

Discrete Random Variables (and their domains)

$$M \in \{m_1, m_2\}$$

 $S \in \{s_1, s_2\}$
 $R \in \{r_1, r_2\}$

Conditional distribution

$$P(M, S \mid r_2)$$

Discrete Random Variables (and their domains)

$$M \in \{m_1, m_2\}$$

 $S \in \{s_1, s_2\}$
 $R \in \{r_1, r_2\}$

Conditional distribution

$$P(M,S \mid r_2)$$

Discrete Random Variables (and their domains)

$$M \in \{m_1, m_2\}$$

 $S \in \{s_1, s_2\}$
 $R \in \{r_1, r_2\}$

Conditional distribution

$$P(A,B \mid +c)$$

Discrete Random Variables (and their domains)

$$A \in \{a_1, a_2, a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

Conditional distribution

$$P(A,B \mid -c)$$

Discrete Random Variables (and their domains)

$$A\in\{a_1,a_2,a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

Which of the following probability tables sum to one? Select all that apply.

- i. $P(A \mid b)$
- ii. P(A, b, C)
- iii. $P(A,C \mid b)$
- iv. $P(a,c \mid b)$
- $V. P(a \mid B, C)$
- vi. $P(c \mid A)$

Which of the following probability tables sum to one? Select all that apply.

```
    i. P(A | b)
    ii. P(A,b,C)
    iii. P(A,C | b)
    iv. P(a,b | c)
    v. P(a | B,C)
    vi. P(c | A)
```

How many valid equations can we compose using:

$$P(x)$$
, $P(y)$, $P(x,y)$, $P(x|y)$, $P(y|x)$ and $=$, \times , \div

First one: P(x|y) = P(x,y)/P(y)

- A) 2
- B) 4
- C) 7
- D) > 7
- E) Other

At most one use per probability term

e.g. Not P(x) = P(x)

Must be different

e.g. Cannot also use

P(x,y)/P(y) = P(x|y)

Also (less meaningful):
$$P(y) = P(y|x)P(x) / P(x|y)^{(x^2)}$$

$$P(y|x) / P(x|y) = P(y)/P(x)$$

$$(x^2)$$

How many valid equations can we compose using:

$$P(x)$$
, $P(y)$, $P(x,y)$, $P(x|y)$, $P(y|x)$ and $=$, \times , \div

First one:
$$P(x|y) = P(x,y)/P(y)$$

 $P(y|x) = P(x,y)/P(x)$
A) 2
 $P(x,y) = P(y|x)P(x)$
B) 4
C) 7
 $P(x,y) = P(x|y)P(y)$
 $P(y|x)P(x) = P(x|y)P(y)$
E) Other $P(x|y) = P(x|y)P(y)/P(x)$
 $P(x|y) = P(x|y)P(x)/P(x)$

At most one use per probability term e.g. Not P(x) = P(x)

Must be different e.g. Cannot also use P(x,y)/P(y) = P(x|y)

Probability Tools Summary

Our toolbox

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Product Rule

$$P(A,B) = P(A|B)P(B)$$

3. Bayes' theorem

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

4. Chain Rule

$$P(X_1, ..., X_N) = \prod_{n=1}^{N} P(X_n \mid X_1, ..., X_{n-1})$$

What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms

You can answer all of these questions:

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather)?

Coason	Tomp	Weather	D/C T \\/\
Season	Temp	weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather | winter)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Additional Probability Tools

Marginalization (law of total probability) (summing out)

$$P(A) = \sum_{b} \sum_{c} P(A, b, c)$$

Normalization

$$P(B \mid a) = \frac{P(a, B)}{P(a)}$$

$$P(B \mid a) \propto P(a, B)$$

$$P(B \mid a) = \frac{1}{z}P(a, B)$$

$$z = P(a) = \sum_{b} P(a, b)$$

Joint distributions are the best!

Two tools to go from joint to query

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Law of total probability (marginalization, summing out)

$$P(A) = \sum_{b} P(A, b)$$

$$P(Y \mid U, V) = \sum_{x} \sum_{z} P(x, Y, z \mid U, V)$$

Two tools to go from joint to query

Joint: $P(H_1, H_2, Q, E)$

Query: $P(Q \mid e)$

1. Definition of conditional probability

$$P(Q|e) = \frac{P(Q,e)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q,e) = \sum_{h_1} \sum_{h_2} P(h_1, h_2, Q, e)$$

$$P(e) = \sum_{q} \sum_{h_1} \sum_{h_2} P(h_1, h_2, q, e)$$

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Joint distributions are the best!

Problems with joints

- We aren't given the joint table
 - Usually some set of conditional probability tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Two tools to construct joint distribution

1. Product rule

$$P(A,B) = P(A \mid B)P(B)$$

$$P(A,B) = P(B \mid A)P(A)$$

2. Chain rule

$$P(X_1, X_2, ..., X_n) = \prod_i P(X_i \mid X_1, ..., X_{i-1})$$

$$P(A, B, C) = P(A)P(B \mid A)P(C \mid A, B)$$
 for ordering A, B, C

$$P(A, B, C) = P(A)P(C \mid A)P(B \mid A, C)$$
 for ordering A, C, B

$$P(A, B, C) = P(C)P(B \mid C)P(A \mid C, B)$$
 for ordering C, B, A

Binary random variables

- Fire
- Smoke
- Alarm

Variables

■ B: Burglary

■ A: Alarm goes off

■ M: Mary calls

■ J: John calls

■ E: Earthquake!

How many different ways can we write the chain rule?

A. 1

B. 5

C. 5 *choose* 5

D. 5!

 $E. 5^5$

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Process to go from (specific) conditional probability tables to query

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule
- 2. Answer query from joint
 - 1. Definition of conditional probability
 - 2. Law of total probability (marginalization, summing out)

Answer Any Query from Condition Probability Tables

Bayes' rule as an example

Given:
$$P(E|Q)$$
, $P(Q)$ Query: $P(Q | e)$

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule

$$P(E,Q) = P(E|Q)P(Q)$$

- 2. Answer query from joint
 - 1. Definition of conditional probability

$$P(Q \mid e) = \frac{P(e,Q)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q \mid e) = \frac{P(e,Q)}{\sum_{q} P(e,q)}$$

Bayesian Networks

Bayes net

One node per random variable

DAG

One CPT per node: P(node | *Parents*(node))

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

Build Bayes Net Using Chain Rule

Binary random variables

- Fire
- Smoke
- Alarm

Question

Variables

■ B: Burglary

■ A: Alarm goes off

■ M: Mary calls

■ J: John calls

■ E: Earthquake!

Given the Bayes net, write the joint distribution?

Answer Any Query from Bayes Net

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

Problems

- Huge
 - n variables with d
 values
 - d^n entries
- We aren't given the right tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Do We Need the Full Chain Rule?

Binary random variables

- Fire
- Smoke
- Alarm

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A) P(D|C) P(E|C)

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$