Announcements

Assignments

- HW7 Due tonight!
- HW8 Due Tues 3/28, 10 pm
- P4: MDPs/RL Due Thursday 4/6, 10 pm out
- Check the <u>Final Exam Schedule</u> for conflicts by next week 3/31

Coming up

- Midterm 2 Review Tues. 3/28 6-8pm in GHC Rashid
- Midterm 2 3/30 (covers Logic, Classical Planning, MDPs, RL, Bayes)
 - 80 minutes in class, same general rules as before
 - Single function calculators or graphing calculators (no phones, iPads, etc)
 - 1 8.5"x11" handwritten pen/pencil/paper cheatsheet, not written digitally and printed

AI: Representation and Problem Solving

Bayes Nets

Instructor: Stephanie Rosenthal Slide credits: CMU AI and http://ai.berkeley.edu

Omega Pizzeria!

What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms

. . . .

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Probability Notation

Notation and conventions in this course

$$P(B = +b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(A = a, B = +b, C)$$

$$P(+b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(a, +b, C)$$

Partitions

For each random variable

- Discrete outcomes
- Disjoint outcomes
- Accounts for entire event space
- Not always binary

Discrete Random Variables (and their domains) $A \in \{a_1, a_2, a_3\}$ $B \in \{+b, -b\}$ $C \in \{+c, -c\}$

Event space

(and their domains) Marginal distribution $A \in \{a_1, a_2, a_3\}$ $B \in \{+b, -b\}$ $C \in \{+c, -c\}$ $\begin{pmatrix} b \\ c \end{pmatrix}$ 912 P(B)P(C)

Discrete Random Variables

Discrete Probability Distributions

Joint distribution P(A, B, C)

Discrete Random Variables (and their domains) $A \in \{a_1, a_2, a_3\}$ $B \in \{+b, -b\}$ $C \in \{+c, -c\}$ IZ V T S

Discrete Probability Distributions (and their domains) Joint distribution $M \in \{m_1, m_2\}$ 2 $S \in \{s_1, s_2\}$ 42 P(M, S, R)×7 $R \in \{r_1,r_2\}$ +m <u>+</u> 5 20 +m 5 2,0 +m 5 70 5 5

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Discrete Random Variables

Conditional distribution

 $P(M,S|r_2)$

Discrete Random Variables (and their domains) $M \in \{m_1, m_2\}$ $S \in \{s_1, s_2\}$ $R \in \{r_1, r_2\}$ 15 +M + m - m - m | -5 2/6 +5 1/6 -5 1/6

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Conditional distribution

 $P(M, S \mid r_2)$

Discrete Random Variables (and their domains) $M \in \{m_1, m_2\}$ $S \in \{s_1, s_2\}$ $R \in \{r_1, r_2\}$

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Conditional distribution

 $P(\underline{A},\underline{B} \mid + c)$

Discrete Random Variables (and their domains) $A \in \{a_1, a_2, a_3\}$ $B \in \{+b, -b\}$ $C \in \{+c, -c\}$

Conditional distribution

 $P(A, B \mid -c)$

Discrete Random Variables (and their domains) $A \in \{a_1, a_2, a_3\}$ $B \in \{+b, -b\}$ $C \in \{+c, -c\}$

Which of the following probability tables sum to one?

Which of the following probability tables sum to one? Select all that apply.

i. P(A | b) *ii*. P(A,b,C) *iii*. P(A,C | b) *iv*. P(a,b | c) *v*. P(a | B,C) *vi*. P(c | A)

Also (less meaningful):
$$P(y) = P(y|x)P(x) / P(x|y)^{(x^2)}$$

 $P(y|x) / P(x|y) = P(y)/P(x)$

$$(x^2)$$

How many valid equations can we compose using:

P(x), P(y), P(x,y), P(x|y), P(y|x) and =, \times , \div

A) 2 B) 4

- C) 7
- · - - -

D) >7

E) Other

First one:
$$P(x|y) = P(x,y)/P(y)$$

 $P(y|x) = P(x,y)/P(x)$
 $P(x,y) = P(y|x) P(x)$
 $P(x,y) = P(x|y) P(y)$
 $P(y|x)P(x) = P(x|y)P(y)$
 $P(y|x)P(x) = P(x|y)P(y)/P(x)$
 $P(x|y) = P(x|y)P(x)/P(x)$

At most one use per probability term e.g. Not P(x) = P(x)

Must be different e.g. Cannot also use P(x,y)/P(y) = P(x|y)

Probability Tools Summary

Our toolbox

- 1. Definition of conditional probability
- 2. Product Rule

3. Bayes' theorem

nal probability $P(A|B) = \frac{P(A,B)}{P(B)}$ P(A,B) = P(A|B)P(B) $P(C)P(A|B,C)P(B|A) = \frac{P(A|B)P(B)}{P(A)}$

 \rightarrow 4. Chain Rule C,B,A P(A)P(B|A)P(C|A,B)

$$P(X_{1},...,X_{N}) = \prod_{n=1}^{N} P(X_{n} \mid X_{1},...,X_{n-1})$$

What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

N. RIN STRATY	$\langle \rangle$			
P(Weather)?	Season	Temp	Weather	P(S, T, W)
5.65 Journal 1	summer	hot	sun	0.30
r 165	summer	hot	rain	0.05
ZIP(wintert, W)	summer	cold	sun	0.10
P(Weather winter)?	summer	cold	rain	0.05
VUIT Con (manine) ((con conned)	winter	hot	sun	0.10
<u>s</u> ob P(winter)	winter	hot	rain	0.05
C .5 /	winter	cold	sun	0.15
P(Meather winter bot)?	winter	cold	rain	0.20

P(weather | winter, not):

P(Weather)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather | winter)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Additional Probability Tools

Marginalization (law of total probability) (summing out)

Joint distributions are the best!

Joint

Two tools to go from joint to query

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Law of total probability (marginalization, summing out)

$$P(A) = \sum_{b} P(A, b)$$

$$P(Y \mid U, V) = \sum_{x} \sum_{z} P(x, Y, z \mid U, V)$$

Two tools to go from joint to query Joint: $P(H_1, H_2, Q, E)$ Query: P(Q | e)

1. Definition of conditional probability

$$P(Q|e) = \frac{P(Q,e)}{\underline{P(e)}}$$

2. Law of total probability (marginalization, summing out)

$$P(Q, e) = \sum_{h_1} \sum_{h_2} P(h_1, h_2, Q, e)$$

$$\frac{P(e)}{d} = \sum_{q} \sum_{h_1} \sum_{h_2} P(h_1, h_2, q, e)$$

P(Weather | winter)?

P(Weather)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Joint distributions are the best!

Joint

Problems with joints

- We aren't given the joint table
 - Usually some set of conditional probability tables

Two tools to construct joint distribution

1. Product rule

$$P(A,B) = P(A | B)P(B)$$

$$P(A,B) = P(B | A)P(A)$$

2. Chain rule

$$P(X_1, X_2, ..., X_n) = \prod_i P(X_i \mid X_1, ..., X_{i-1})$$

P(A, B, C) = P(A)P(B | A)P(C | A, B) for ordering A, B, C

P(A, B, C) = P(A)P(C | A)P(B | A, C) for ordering A, C, BP(A, B, C) = P(C)P(B | C)P(A | C, B) for ordering C, B, A

Binary random variables

 $G = 3 \times 2$

- Fire
- Smoke
- Alarm

P(F, 5, A)

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

How many different ways can we write the chain rule?

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Process to go from (specific) conditional probability tables to query

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule
- 2. Answer query from joint
 - 1. Definition of conditional probability
 - 2. Law of total probability (marginalization, summing out)

Answer Any Query from Condition Probability Tables

Bayes' rule as an example Given: P(E|Q), P(Q) Query: P(Q | e)

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule P(E,Q) = P(E|Q)P(Q)
- 2. Answer query from joint
 - 1. Definition of conditional probability

$$P(Q \mid e) = \frac{P(e,Q)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q \mid e) = \frac{P(e,Q)}{\sum_{q} P(e,q)}$$

Encode joint distributions as product of conditional distributions on each variable

$$\longrightarrow P(X_1, \dots, X_N) = \prod_i P(X_i | Parents(X_i))$$

Build Bayes Net Using Chain Rule

Binary random variables

- Fire
- Smoke
- Alarm P(F)P(S|F)P(A|S,F)

Bar

Question

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Given the Bayes net, write the joint distribution?

Answer Any Query from Bayes Net

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

Problems

- Huge
 - *n* variables with *d* values
 - *dⁿ* entries
- We aren't given the right tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Do We Need the Full Chain Rule?

Binary random variables

- Fire
- Smoke
- Alarm

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

