
Announcements
Assignments
§ HW8 - Due 3/28, 10 pm
§ P4: MDP/RL - Due Thurs 11/17, 10 pm

Midterm 2
§ One week!!! in lecture
§ See Piazza post for details
§ Review session 6-8pm Tuesday 3/28 in Rashid Auditorium
§ In scope: Bayes nets representation and independence (today)



AI: Representation and Problem Solving
Bayes Nets: Independence

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu



Answer Any Query from Condition Probability Tables

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Answer Any Query from Condition Probability Tables

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝑃 𝑋!, … , 𝑋" =&
#

𝑃 𝑋# 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋#))



Bayesʼ Nets: Big Picture

Two problems with using full joint distribution tables as 
our probabilistic models:
§ Unless there are only a few variables, the joint is WAY 

too big to represent explicitly
§ Hard to learn (estimate) anything empirically about 

more than a few variables at a time

Bayes nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
§ A type of probabilistic graphical models
§ We describe how variables locally interact
§ Local interactions chain together to give global, 

indirect interactions



Bayes Nets for Medical Diagnosis

https://www.microsoft.com/en-us/research/people/dabelgra/

Developmental Profiles of Eczema, Wheeze, and Rhinitis:
Two Population-Based Birth Cohort Studies
Danielle Belgrave, et al. PLOS Medicine, 2014
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748

https://www.microsoft.com/en-us/research/people/dabelgra/
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748


Bayes Nets for Medical Diagnosis

Jamilloux, Yvan, Nicolas Romain-Scelle, Muriel Rabilloud, Coralie Morel,                                                   
Laurent Kodjikian, Delphine Maucort-Boulch, Philip Bielefeld, and Pascal Sève. 2021.                    
"Development and Validation of a Bayesian Network for Supporting the Etiological Diagnosis of Uveitis" 
Journal of Clinical Medicine 10, no. 15: 3398.



Bayes Nets for Medical Diagnosis



Graphical Model Notation

Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)
§ Observed does not mean 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒! 

Observed just means that we will have the 
value for that variable

Edges
§ Indicate “direct influence” between variables
§ Absence of edges: encode conditional 

independence

For now: imagine that arrows mean direct 
causation (in general, they donʼt!)



One node per random variable
Directed-Acyclic-Graph
One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋!, … , 𝑋" =&
#

𝑃 𝑋# 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋#))

Joint Probability
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Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶

𝑃 𝐴, 𝐵, 𝐶
= ,

!∈#

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶



Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶

𝑃 𝐵|𝐶, 𝐷 =
𝑃 𝐵, 𝐶, 𝐷
𝑃(𝐶, 𝐷)

=
∑$∈% 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶
∑%∑& 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶



Independence



Two variables X and Y are independent if

"x,y P(x, y) = P(x) P(y)

§ This says that their joint distribution factors into a product of two simpler 
distributions

§ Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:

"x,y P(x | y) = P(x)   or     "x,y P(y | x) = P(y)

Example: two dice rolls Roll1 and Roll2
§ P(Roll1=5, Roll2=5)     =   P(Roll1=5) P(Roll2=5)  =  1/6 x 1/6  =  1/36
§ P(Roll2=5 | Roll1=5)   =   P(Roll2=5)

Independence



Example: Independence
n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n



Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃 𝑇,𝑊

𝑃(𝑇)

𝑃(𝑊)

Are T and W independent?



Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃 𝑇,𝑊 𝑃 𝑇 𝑃(𝑊)

𝑃(𝑇)

𝑃(𝑊)

Are T and W independent?
No



Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
§ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I donʼt have a cavity:
§ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
§ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily



Conditional Independence
Absolute (unconditional) independence very rare (why?)

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

X is conditionally independent of Y given Z
if and only if: 

"x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if
"x,y,z P(x, y | z) = P(x | z) P(y | z)



Independence Rules

§ Independence

If A and B are independent, then:

§ Conditional independence

If A and B are conditionally

independent given C, then:

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵)
𝑃 𝐴 ∣ 𝐵 = 𝑃 𝐴
𝑃 𝐵 ∣ 𝐴 = 𝑃 𝐵

𝑃 𝐴, 𝐵 ∣ 𝐶 = 𝑃 𝐴 ∣ 𝐶 𝑃(𝐵 ∣ 𝐶)
𝑃 𝐴 ∣ 𝐵, 𝐶 = 𝑃 𝐴 ∣ 𝐶
𝑃 𝐵 ∣ 𝐴, 𝐶 = 𝑃 𝐵 ∣ 𝐶



Conditional Independence and Bayes Nets
Fire, Smoke, Alarm
§ Causal story to create Bayes net

§ Assumptions

§ Joint distribution



Conditional Independence and Bayes Nets
What about this domain:

§ Traffic
§ Umbrella
§ Raining



Conditional Independence and the Chain Rule

Chain rule:
P(x1, x2,…, xn) = Õi P(xi | x1,…, xi-1)

Trivial decomposition:
P(Rain, Traffic, Umbrella) =

With assumption of conditional independence:
P(Rain, Traffic, Umbrella) =

Bayes nets / graphical models help us express 
conditional independence assumptions



Conditional Independence and the Chain Rule

Chain rule:
P(x1, x2,…, xn) = Õi P(xi | x1,…, xi-1)

Trivial decomposition:
P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:
P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes nets / graphical models help us express 
conditional independence assumptions



Example: Coin Flips
N independent coin flips

No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic
Variables:
§ R: It rains
§ T: There is traffic

Model 1: independence

Why is an agent using model 2 better?

R

T

R

T

Model 2: rain causes traffic



Let’s build a causal Bayes net!
Variables
§ T: Traffic
§ R: It rains
§ L: Low pressure
§ D: Roof drips
§ B: Ballgame
§ C: Cavity

Example: Traffic II



Example: Alarm Network
Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!



Semantics Example

Joint distribution factorization example

Generic chain rule
§ 𝑃 𝑋!…𝑋$ = ∏# 𝑃 𝑋# 𝑋!…𝑋#%!)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝐵 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐵, 𝐸, 𝐴 𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐴 𝑃(𝑀|𝐴)

Bayes nets
§ 𝑃 𝑋!…𝑋$ = ∏# 𝑃 𝑋# 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋#))

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Poll 2
Match the product of CPTs to the Bayes net.

I.

II.

III.

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴|𝐵, 𝐶 𝑃 𝐵 𝑃(𝐶)



For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶



For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }



Causal Chains

This configuration is a “causal chain”

X: Low pressure   Y: Rain              Z: Traffic

Guaranteed X independent of Z ?
No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Low pressure always causes rain
§ Rain always causes traffic
§ High pressure always causes no rain
§ No rain always causes no traffic

§ In numbers:
P( +y | +x ) = 1 P( +z | +y ) = 1 
P(  -y | -x  ) = 1 P(  -z | -y ) = 1



Causal Chains

This configuration is a “causal chain” § Guaranteed X independent of Z given Y?

§ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

This configuration is a “common cause” § Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Project due always causes both forums busy 
and lab full 

§ In numbers:
P( +x | +y ) = 1 P( -x | -y ) = 1,
P( +z | +y ) = 1 P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Cause

This configuration is a “common cause” § Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Effect
Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ Still need to prove they must be (try it!)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame



Bayes Net Independence



Answering Independence Questions
§ Is A independent from E?

§ Is A independent from E given C?

§ Is A independent from C given E?

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 𝐵 𝐶 𝐷 𝐸



Reachability

Recipe: shade evidence nodes, look for 
paths in the resulting graph

Attempt 1: if two nodes are connected by 
an undirected path not blocked by a 
shaded node, they are conditionally 
independent

Almost works, but not quite
§ Where does it break?
§ Answer: the v-structure at T doesn’t count as a 

link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

Question: Are X and Y conditionally independent given 
evidence variables {Z}?
§ Yes, if X and Y “d-separated” by Z
§ Consider all (undirected) paths from X to Y
§ No active paths = independence!

A path is active if each triple is active:
§ Causal chain A ® B ® C where B is unobserved (either direction)
§ Common cause A ¬ B ® C where B is unobserved
§ Common effect (aka v-structure)

A ® B ¬ C where B or one of its descendents is observed

All it takes to block a path is a single inactive segment

Active Paths Inactive Paths



Bayes Ball

Question: Are X and Y conditionally independent given 
evidence variables {Z}?

Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite 
Information in Belief Networks and Influence Diagrams)." Proceedings of the Fourteenth 
conference on Uncertainty in Artificial Intelligence. 1998.

Active Paths Inactive Paths



Bayes Ball

Question: Are X and Y conditionally independent given 
evidence variables {Z}?

1. Shade in Z
2. Drop a ball at X
3. The ball can pass through any active path and is 

blocked by any inactive path (ball can move either 
direction on an edge)

4. If the ball reaches Y, then X and Y are NOT 
conditionally independent given Z

Active Paths Inactive Paths



Bayes Ball

Active Paths Inactive Paths



Poll 3
Is 𝑋' independent from 𝑋( given 𝑋)?



Poll 3
Is 𝑋' independent from 𝑋( given 𝑋)?
No, the Bayes ball can travel through 𝑋* and 𝑋+.



Poll 4
Is 𝑋) independent from 𝑋* given 𝑋' and 𝑋(?



Poll 4
Is 𝑋) independent from 𝑋* given 𝑋' and 𝑋(?
No, the Bayes ball can travel through 𝑋+ and 𝑋(.



Conditional Independence Semantics

Every variable is conditionally independent of its non-descendants given its parents

X

P2
P1

C2C1

ZW

P3

A

GC2

GP3



Markov blanket
A variable’s Markov blanket consists of parents, children, children’s other parents
Every variable is conditionally independent of all other variables given its Markov blanket

X

P2
P1

C2C1

ZW

P3

A

GC2

GP3

B
C



Answer Any Query from Joint Distribution
Joint distributions are the best!

Problems with joints
§ We aren’t given the joint table

§ Usually some set of 
conditional probability tables

§ Huge
§ 𝑛 variables with 𝑑 values
§ 𝑑, entries

Joint

Query

𝑃 𝑎 𝑒)



Answer Any Query from Bayes Net

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Next: Answer Any Query from Bayes Net

Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)


