
Warm-up as you come in
What is the notation behind these generic queries?

§ What is the probability of this given what I know?

§ What are the probabilities of all the possible outcomes (given what I 
know)?

§ Which outcome is the most likely outcome (given what I know)?
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Announcements
Home Stretch
§ P4 - Due Thursday 4/6
§ HW9 - Due Tues 4/11 (day before Carnival)
§ HW10 - Due Tues 4/25 (last week of school)
§ P5 – Out 4/11, Due Thursday 4/27 (last week of school)
§ Final exam – Thursday 5/4, 5:30-8:30pm
TA Applications! https://www.ugrad.cs.cmu.edu/ta/F23/instructor/
Carnival
§ There will be lecture on 4/11 on HMMs
§ No Recitation Friday 4/14, videos posted

https://www.ugrad.cs.cmu.edu/ta/F23/instructor/


Bayes Nets

Part I: Representation and Independence

Part II: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential complexity, often better)

§ Inference is NP-hard in general

Part III: Approximate Inference
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AI: Representation and Problem Solving
Bayes Nets Inference

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu



Warm-up as you come in
What is the notation behind these generic queries?

§ What is the probability of this given what I know?

§ What are the probabilities of all the possible outcomes (given what I 
know)?

§ Which outcome is the most likely outcome (given what I know)?
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Queries
§ What is the probability of this given what I know?

𝑃 𝑞 𝑒

§ What are the probabilities of all the possible outcomes (given what I know)?
𝑃 𝑄 𝑒

§ Which outcome is the most likely outcome (given what I know)?
argmax!∈# 𝑃 𝑞 𝑒
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Queries
§ What is the probability of this given what I know?

𝑃 𝑞 𝑒 = $(!, ')
$(')

§ What are the probabilities of all the possible outcomes (given what I know)?

𝑃 𝑄 𝑒 = $ #, '
$ '

§ Which outcome is the most likely outcome (given what I know)?

argmax!∈# 𝑃 𝑞 𝑒 = argmax!∈#
$ !, '
$ '
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Queries
§ What is the probability of this given what I know?

𝑃 𝑞 𝑒 = $(!, ')
$(')

=
∑!" ∑!# $ !, *", *#, '

$(')

§ What are the probabilities of all the possible outcomes (given what I know)?

𝑃 𝑄 𝑒 = $ #, '
$ '

=
∑!" ∑!# $ #, *", *#, '

$(')

§ Which outcome is the most likely outcome (given what I know)?

argmax!∈# 𝑃 𝑞 𝑒 = argmax!∈#
$ !, '
$ '

= argmax!∈#
∑!" ∑!# $ !, *", *#, '

$(')
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Poll 1
If we only have the joint table 𝑃 𝑄, 𝐻+, 𝐻,, 𝐸 , how many times do we have to 
compute 𝑃 𝑒 to build 𝑃 𝑄 𝑒 ?

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒
𝑃 𝑒

=
∑*" ∑*# 𝑃 𝑄, ℎ+, ℎ,, 𝑒

𝑃(𝑒)
A) 0
B) 1
C) 10
D) 30
E) 200
F) 600

§ 𝑄 can take on 10 different values
§ 𝐻+ can take on 4 different values
§ 𝐻, can take on 5 different values
§ 𝐸 can take on 3 different values
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Poll 1
If we only have the joint table 𝑃 𝑄, 𝐻+, 𝐻,, 𝐸 , how many times do we have to 
compute 𝑃 𝑒 to build 𝑃 𝑄 𝑒 ?

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒
𝑃 𝑒

=
∑*" ∑*# 𝑃 𝑄, ℎ+, ℎ,, 𝑒

𝑃(𝑒)
A) 0
B) 1
C) 10
D) 30
E) 200
F) 600

§ 𝑄 can take on 10 different values
§ 𝐻+ can take on 4 different values
§ 𝐻, can take on 5 different values
§ 𝐸 can take on 3 different values
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Poll 2
If we only have the joint table 𝑃 𝑄, 𝐻+, 𝐻,, 𝐸 , how many times do we have to 
compute 𝑃 𝑒 to compute the following?

argmax!∈# 𝑃 𝑞 𝑒 =
𝑃 𝑞, 𝑒
𝑃 𝑒

=
∑*" ∑*# 𝑃 𝑞, ℎ+, ℎ,, 𝑒

𝑃(𝑒)
A) 0
B) 1
C) 10
D) 30
E) 200
F) 600

§ 𝑄 can take on 10 different values
§ 𝐻+ can take on 4 different values
§ 𝐻, can take on 5 different values
§ 𝐸 can take on 3 different values
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Poll 2
If we only have the joint table 𝑃 𝑄, 𝐻+, 𝐻,, 𝐸 , how many times do we have to 
compute 𝑃 𝑒 to compute the following?

argmax!∈# 𝑃 𝑞 𝑒 =
𝑃 𝑞, 𝑒
𝑃 𝑒

=
∑*" ∑*# 𝑃 𝑞, ℎ+, ℎ,, 𝑒

𝑃(𝑒)
A) 0
B) 1
C) 10
D) 30
E) 200
F) 600

§ 𝑄 can take on 10 different values
§ 𝐻+ can take on 4 different values
§ 𝐻, can take on 5 different values
§ 𝐸 can take on 3 different values
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Normalization

Sometimes we don’t care about exact probability; and we skip 𝑃(𝑒)

𝑃 𝑄 𝑒 =
∑!" ∑!# $ #, *", *#, '

$(')

𝑃 𝑄 𝑒 = +
-
∑*" ∑*# 𝑃 𝑄, ℎ+, ℎ,, 𝑒

𝑃 𝑄 𝑒 = 𝛼 ∑*" ∑*# 𝑃 𝑄, ℎ+, ℎ,, 𝑒

𝑃 𝑄 𝑒 ∝ ∑*" ∑*# 𝑃 𝑄, ℎ+, ℎ,, 𝑒
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Example: Speech Recognition
“artificial ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅”

Find most probable next word given “artificial” and the audio for second word.

Bayes Nets in the Wild
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Example: Speech Recognition
“artificial ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅”

Find most probable next word given “artificial” and the audio for second word.

Which second word gives the 
highest probability?

𝑃 𝐥𝐢𝐦𝐛 arti*icial, audio)

𝑃 𝐢𝐧𝐭𝐞𝐥𝐥𝐢𝐠𝐞𝐧𝐜𝐞 arti*icial, audio)

𝑃 𝐟𝐥𝐚𝐯𝐨𝐫𝐢𝐧𝐠 arti*icial, audio)

Break down problem
n-gram probability * audio probability

𝑃 𝐥𝐢𝐦𝐛 arti*icial) * 𝑃(audio ∣ 𝐥𝐢𝐦𝐛)

𝑃 𝐢𝐧𝐭𝐞𝐥𝐥𝐢𝐠𝐞𝐧𝐜𝐞 arti*icial) *𝑃(audio ∣ 𝐢𝐧𝐭𝐞𝐥𝐥𝐢𝐠𝐞𝐧𝐜𝐞)

𝑃 𝐟𝐥𝐚𝐯𝐨𝐫𝐢𝐧𝐠 arti*icial) *𝑃(audio ∣ 𝐟𝐥𝐚𝐯𝐨𝐫𝐢𝐧𝐠)

Bayes Nets in the Wild
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Bayes Nets in the Wild

𝑠𝑒𝑐𝑜𝑛𝑑∗ = argmax𝒔𝒆𝒄𝒐𝒏𝒅 𝑃 𝒔𝒆𝒄𝒐𝒏𝒅 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙, 𝑎𝑢𝑑𝑖𝑜)

= argmax𝒔𝒆𝒄𝒐𝒏𝒅
+(𝒔𝒆𝒄𝒐𝒏𝒅,./012131.4,.5617)

+(./012131.4,.5617)

= argmax𝒔𝒆𝒄𝒐𝒏𝒅 𝑃(𝒔𝒆𝒄𝒐𝒏𝒅, 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙, 𝑎𝑢𝑑𝑖𝑜)
= argmax𝒔𝒆𝒄𝒐𝒏𝒅 𝑃 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑃 𝒔𝒆𝒄𝒐𝒏𝒅 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑃(𝑎𝑢𝑑𝑖𝑜 ∣ 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙, 𝒔𝒆𝒄𝒐𝒏𝒅)
= argmax𝒔𝒆𝒄𝒐𝒏𝒅 𝑃 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑃 𝒔𝒆𝒄𝒐𝒏𝒅 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑃(𝑎𝑢𝑑𝑖𝑜 ∣ 𝒔𝒆𝒄𝒐𝒏𝒅)
= argmax𝒔𝒆𝒄𝒐𝒏𝒅 𝑃 𝒔𝒆𝒄𝒐𝒏𝒅 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑃 𝑎𝑢𝑑𝑖𝑜 𝒔𝒆𝒄𝒐𝒏𝒅

n-gram probability * audio probability
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§ Examples:

§ Posterior marginal probability
§ P(Q|e1,..,ek) 
§ e.g., what disease might I have?

§ Most likely explanation:
§ argmaxq,r,s P(Q=q,R=r,S=s|e1,..,ek)
§ e.g., what was just said?

Inference
Inference: calculating some useful 
quantity from a probability model 
(joint probability distribution)

17



Answer Any Query from Bayes Net

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Next: Answer Any Query from Bayes Net

Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Example: Alarm Network
Variables
§ B: Burglary
§ A: Alarm goes off
§ M: Mary calls
§ J: John calls
§ E: Earthquake!
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Joint distribution factorization example

Generic chain rule
§ 𝑃 𝑋!…𝑋" = ∏# 𝑃 𝑋# 𝑋!…𝑋#$!)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝐵 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐵, 𝐸, 𝐴 𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐴 𝑃(𝑀|𝐴)

Bayes nets
§ 𝑃 𝑋!…𝑋" = ∏# 𝑃 𝑋# 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋#))

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

Example: Alarm Network
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99
22

𝑃 +𝑏, −𝑒, −𝑎, −𝑗, −𝑚 =



Inference by Enumeration in Bayes Net

Inference by enumeration:
§ Any probability of interest can be computed by summing entries 

from the joint distribution
§ Entries from the joint distribution can be obtained from a BN by 

multiplying the corresponding conditional probabilities

P(B | j, m) =  α P(B, j, m) 
=  α åe,a P(B, e, a, j, m) 
=  α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)

So inference in Bayes nets means computing sums of 
products of numbers: sounds easy!!
Problem: sums of exponentially many products!

B E

A

MJ
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Can we do better?

N
%

N
&

𝑃 𝐵 𝑃 𝑒 𝑃 𝑎 𝐵, 𝑒 𝑃 𝑗 𝑎 𝑃 𝑚 𝑎)

§ Lots of repeated subexpressions!

= 𝑃 𝐵 𝑃(+𝑒) 𝑃 +𝑎 𝐵,+𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 +𝑎 𝐵,−𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(+𝑒) 𝑃 −𝑎 𝐵,+𝑒 𝑃 𝑗 −𝑎 𝑃(𝑚 | − 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 −𝑎 𝐵,−𝑒 𝑃 𝑗 −𝑎 𝑃 𝑚 − 𝑎
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Can we do better?
Consider
§ 𝑥!𝑦!𝑧! + 𝑥!𝑦!𝑧" + 𝑥!𝑦"𝑧! + 𝑥!𝑦"𝑧" + 𝑥"𝑦!𝑧! + 𝑥"𝑦!𝑧" + 𝑥"𝑦"𝑧! + 𝑥"𝑦"𝑧"
§ 16 multiplies, 7 adds
§ Lots of repeated subexpressions!

Rewrite as
§ (𝑥! + 𝑥")(𝑦! + 𝑦")(𝑧! + 𝑧")
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Inference Overview
Given random variables 𝑄,𝐻, 𝐸 (query, hidden, evidence)
We know how to do inference on a joint distribution

𝑃 𝑞 𝑒 = 𝛼 𝑃 𝑞, 𝑒
= 𝛼 ∑'∈{'! ,'"}𝑃(𝑞, ℎ, 𝑒)

We know Bayes nets can break down joint in to CPT factors
𝑃 𝑞 𝑒 = 𝛼 ∑'∈{'! ,'"}𝑃 ℎ 𝑃 𝑞 ℎ 𝑃(𝑒|𝑞)

= 𝛼 [𝑃 ℎ! 𝑃 𝑞 ℎ! 𝑃 𝑒 𝑞 + 𝑃 ℎ" 𝑃 𝑞 ℎ" 𝑃 𝑒 𝑞 ]
But we can be more efficient

𝑃 𝑞 𝑒 = 𝛼 𝑃(𝑒|𝑞) ∑'∈{'! ,'"}𝑃 ℎ 𝑃 𝑞 ℎ
= 𝛼 𝑃 𝑒 𝑞 [𝑃 ℎ! 𝑃 𝑞 ℎ! + 𝑃 ℎ" 𝑃 𝑞 ℎ" ]
= 𝛼 𝑃 𝑒 𝑞 𝑃(𝑞)

Now just extend to larger Bayes nets and a variety of queries

𝐻 𝑄 𝐸

En
um

er
at

io
n

Va
ria

bl
e 

El
im

in
at

io
n
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Factor Tables
𝑃 +𝑏,−𝑒, −𝑎,−𝑗, −𝑚 = 𝑃 +𝑏 ∗ 𝑃 −𝑒 ∗ 𝑃 −𝑎 +𝑏,−𝑒 ∗ 𝑃 −𝑗 −𝑎 ∗ 𝑃 −𝑚 −𝑎

= 0.001 ∗ 0.998 ∗ 0.06 ∗ 0.95 ∗ 0.99

27

𝑃 +𝑏,−𝑒, −𝑎,−𝑗, −𝑚 = 𝑃 −𝑒 ∗ 𝑃 −𝑎 +𝑏,−𝑒 ∗ 𝑃 +𝑏 𝑃 −𝑗 −𝑎 ∗ 𝑃 −𝑚 −𝑎
= 0.998 ∗ 0.06 ∗ 0.0095 ∗ 0.99



Example: Alarm Network
𝑃 +𝑏,−𝑒, −𝑎,−𝑗, −𝑚 = 𝑃 +𝑏 ∗ 𝑃 −𝑒 ∗ 𝑃 −𝑎 +𝑏,−𝑒 ∗ 𝑃 −𝑗 −𝑎 ∗ 𝑃 −𝑚 −𝑎

= 0.001 ∗ 0.998 ∗ 0.06 ∗ 0.95 ∗ 0.99

𝑃 +𝑏,−𝑒, −𝑎,−𝑗, −𝑚 = 𝑃 −𝑒 ∗ 𝑃 −𝑎 +𝑏,−𝑒 ∗ 𝑃 +𝑏 ∗ 𝑃 −𝑗 −𝑎 ∗ 𝑃 −𝑚 −𝑎
= 0.998 ∗ 0.06 ∗ 0.001 ∗ 0.95 ∗ 0.99

𝑃 +𝑏,−𝑒, −𝑎,−𝑗, −𝑚 = 𝑃 −𝑒 ∗ 𝑃 −𝑎 +𝑏,−𝑒 ∗ 𝑃 +𝑏 𝑃 −𝑗 −𝑎 ∗ 𝑃 −𝑚 −𝑎
= 0.998 ∗ 0.06 ∗ 0.0095 ∗ 0.99

§ Multiplication order can change (commutativity)

§ Multiplication pairs don’t have to make sense (associativity)
28



Variable elimination: The basic ideas
Move summations inwards as far as possible

= 𝛼(
f

(
g

𝑃 𝑗 𝑎 𝑃 𝑒 𝑃 𝑚 𝑎 𝑃 𝑎 𝐵, 𝑒 𝑃(𝐵)

𝑃 𝐵 𝑗,𝑚 = 𝛼(
f

(
g

𝑃 𝐵, 𝑒, 𝑎, 𝑗,𝑚
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Variable elimination: The basic ideas
Move summations inwards as far as possible, inner sum is easier to compute

= 𝛼(
f

(
g

𝑃 𝑗 𝑎 𝑃 𝑒 𝑃 𝑚 𝑎 𝑃 𝑎 𝐵, 𝑒 𝑃(𝐵)

𝑃 𝐵 𝑗,𝑚 = 𝛼(
f

(
g

𝑃 𝐵, 𝑒, 𝑎, 𝑗,𝑚

= 𝛼 (
f

𝑃 𝐵 (
g

𝑃 𝑒 𝑃 𝑎 𝐵, 𝑒𝑃 𝑗 𝑎 𝑃(𝑚|𝑎)
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Variable Elimination
§ Query: P(Q1 ,.., Qm |E1=e1,.., Ek=ek) 

Start with initial factors:
§ Local CPTs (but instantiated by evidence)

While there are still hidden variables (not 
Qi or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

Join all remaining factors and normalize
31



Example

Query P(B | j,m) 

32

= 𝛼(
f

(
g

𝑃 𝑗 𝑎 𝑃 𝑒 𝑃 𝑚 𝑎 𝑃 𝑎 𝐵, 𝑒 𝑃(𝐵)

= 𝛼𝑃(𝐵)(
f

𝑃 𝑒 (
g

𝑃 𝑗 𝑎 𝑃 𝑚 𝑎 𝑃 𝑎 𝐵, 𝑒

Push summations inwards such that products that do not depend on 
the variable are pulled out of the sum.



Example

Choose A (inner most sum)

Query P(B | j,m) 

Create a table t1 = P(A|B,e)P(j|A)P(m|A)
How many entries does each table for each value of A have?

33

= 𝛼𝑃(𝐵)(
f

𝑃 𝑒 (
g

𝑃 𝑗 𝑎 𝑃 𝑚 𝑎 𝑃 𝑎 𝐵, 𝑒

= 𝛼𝑃(𝐵)(
f

𝑃 𝑒 (
g

𝑡h(𝐴, 𝐵, 𝑒, 𝑗,𝑚)



Example

Choose A (inner most sum)

Query P(B | j,m) 

Sum over A in the table to create a factor f1 = ∑. 𝑡(𝐴, 𝐵, 𝑒, 𝑗, 𝑚)
How many entries does this new factor table have?

34

= 𝛼𝑃(𝐵)(
f

𝑃 𝑒 (
g

𝑡(𝐴, 𝐵, 𝑒, 𝑗,𝑚)

= 𝛼𝑃(𝐵)(
f

𝑃 𝑒 𝑓h(𝐵, 𝑒, 𝑗,𝑚)



Example

Choose E (inner most sum)

35

= 𝛼𝑃(𝐵)(
f

𝑃 𝑒 𝑓h(𝐵, 𝑒, 𝑗,𝑚)

Create a table t2 = P(e) f1(B,e,j,m)
How many entries does each table for each value of E have?

= 𝛼𝑃(𝐵)(
f

𝑡i(𝐵, 𝑒, 𝑗,𝑚)



Example

Choose E (inner most sum)

Sum over E in the table to create a factor f2 = ∑' 𝑡,(𝐵, 𝐸, 𝑗, 𝑚)
How many entries does this new factor table have?
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= 𝛼𝑃(𝐵)(
f

𝑡i(𝐵, 𝐸, 𝑗,𝑚)

= 𝛼𝑃(𝐵)𝑓i(𝐵, 𝑗,𝑚)



Example

Multiply remaining probability to create joint probability P(B,j,m)

How many entries does this probability table have?
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= 𝛼𝑃(𝐵)𝑓i(𝐵, 𝑗,𝑚)

Don’t forget the normalization to compute the conditional probability!

𝛼 =
1
𝑍 =

1
𝑃 𝑗,𝑚 = 𝑃 𝐵 𝑗,𝑚 = 𝛼𝑃(𝐵, 𝑗,𝑚)



Order matters

§ Elimination Order: C, B, A, Z
§ P(D) =  α åz,a,b,c P(D|z) P(z) P(a|z) P(b|z) P(c|z)
§ =  α åz P(D|z) P(z) åa P(a|z) åb P(b|z) åc P(c|z)
§ Largest factor has 2 variables (D,Z)

§ Elimination Order: Z, C, B, A
§ P(D) =  α åa,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 
§ =  α åa åb åc åz P(a|z) P(b|z) P(c|z) P(D|z) P(z)
§ Largest factor has 4 variables (A,B,C,D)    (or 5 if you count pre-summation over Z)

§ In general, with n leaves, factor of size 2n

D

Z

A B C
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New Example

Query P(E | m) 
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= 𝛼(
j

(
g

(
k

𝑃 𝑗 𝑎 𝑃 𝐸 𝑃 𝑚 𝑎 𝑃 𝑎 𝑏, 𝐸 𝑃(𝑏)

Push summations inwards such that products that do not depend on 
the variable are pulled out of the sum.

= 𝛼𝑃 𝐸 (
j

𝑃(𝐵)(
g

𝑃 𝑚 𝑎 𝑃 𝑎 𝑏, 𝐸 (
k

𝑃 𝑗 𝑎



VE: Computational and Space Complexity
The computational and space complexity of variable elimination is 
determined by the largest factor (and it’s space that kills you)

The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., previous slide’s example 2n vs. 2

Does there always exist an ordering that only results in small factors?
§ No!
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VE: Computational and Space Complexity
Inference in Bayes’ nets is NP-hard.
No known efficient probabilistic inference in general.



Bayes Nets

Part I: Representation and Independence

Part II: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential complexity, often better)

§ Inference is NP-hard in general

Part III: Approximate Inference
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Additional Variable Elimination Slides
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Variable elimination: The basic ideas
Move summations inwards as far as possible
§ P(B | j, m) =  α åeåaP(B) P(e) P(a|B,e) P(j|a) P(m|a)

=  α P(B) åe P(e) åa P(a|B,e) P(j|a) P(m|a)

Do the calculation from the inside out
§ I.e., sum over a first, then sum over e
§ Problem: P(a|B,e) isn’t a single number, it’s a bunch of different 

numbers depending on the values of B and e
§ Solution: use arrays of numbers (of various dimensions) with 

appropriate operations on them; these are called factors
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Operation 1: Pointwise product

First basic operation: pointwise product of factors 
(similar to a database join, not matrix multiply!)
§ New factor has union of variables of the two original factors
§ Each entry is the product of the corresponding entries from the 

original factors

Example: P(A) x P(J|A) =  P(A,J)

P(J|A)
P(A)

P(A,J)
A \ J true false

true

false

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x = 0.09 0.01

0.045 0.855

45



Example: Making larger factors

Example: P(J|A)  x  P(M|A)  =  P(J,M|A)

P(J|A)
A \ J true false

true 0.99 0.01

false 0.145 0.855

x =

P(M|A)
A \ M true false

true 0.97 0.03

false 0.019 0.891 A=true

A=false

P(J,M|A)
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Example: Making larger factors

Example: f1(U,V)  x  f2(V,W) x  f3(W,X)  =  f4(U,V,W,X)

Sizes: [10,10]  x  [10,10] x  [10,10] =  [10,10,10,10] 

I.e., 300 numbers blows up to 10,000 numbers!

Factor blowup can make VE very expensive
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Operation 2: Summing out a variable

Second basic operation: summing out
(or eliminating) a variable from a factor
§ Shrinks a factor to a smaller one
Example: åj  P(A,J) = P(A,j) + P(A,¬j) = P(A) 

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J
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Summing out from a product of factors

Project the factors each way first, then sum the products
§ Example: åa P(a|B,e) P(j|a) P(m|a)

= P(a|B,e) P(j|a) P(m|a) + P(¬a|B,e) P(j|¬a) P(m|¬a)
= P(a,j,m|B,e) + P(¬a,j,m|B,e)
= P(j,m|B,e)
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