
Warm-up as you walk in

Given these N=10 observations of the world:

What is the approximate value for  
𝑃 −𝑐 | − 𝑎, +𝑏 ?

A. 1/10
B. 5/10
C. 1/4
D. 1/5
E. I’m not sure

+a +b +c 0
+a +b -c 0
+a -b +c 3
+a -b -c 0
-a +b +c 4
-a +b -c 1
-a -b +c 2
-a -b -c 0

Counts
−𝑎,−𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,−𝑐
−𝑎,+𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐



Announcements
Midterm 2
§ Regrade requests due by tomorrow

Assignments
§ P4

§ Due Tonight! (or up until Saturday) 10pm
§ HW9

§ Due Tues 4/11 10pm
§ P5

§ Out 4/11, Due 4/27
§ HW10

§ Out 4/18, Due Tues 4/25 10pm



Announcements
Final Exam
• Cumulative
• Roughly half of final exam on final 1/3 of the course
• The other half of the exam covering other topics

• 3 cheat sheets and calculator allowed

TA next semester!
§ CSD application https://www.ugrad.cs.cmu.edu/ta/F23

https://www.ugrad.cs.cmu.edu/ta/F23


AI: Representation and Problem Solving
Bayes Nets Sampling

Instructor: Stephanie Rosenthal
Slide credits: CMU AI and http://ai.berkeley.edu



Bayes Nets

Part I: Representation

Part II: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential complexity, often better)

§ Inference is NP-hard in general

Part III: Approximate Inference



Inference vs Sampling



Motivation for Approximate Inference



Approximate Inference: Sampling



Warm-up as you walk in

Given these N=10 observations of the world:

What is the approximate value for  
𝑃 −𝑐| − 𝑎, +𝑏 ?

A. 1/10
B. 5/10
C. 1/4
D. 1/5
E. I’m not sure

+a +b +c 0
+a +b -c 0
+a -b +c 3
+a -b -c 0
-a +b +c 4
-a +b -c 1
-a -b +c 2
-a -b -c 0

Counts
−𝑎,−𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,−𝑐
−𝑎,+𝑏,+𝑐
−𝑎,+𝑏,+𝑐
+𝑎,−𝑏,+𝑐
−𝑎,+𝑏,+𝑐



Sampling
How would you sample from a conditional distribution?

𝐴

𝐵

+a 1/2
-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

𝑃(𝐴)

𝑃(𝐵|𝐴)



Sampling

Sampling from given distribution

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ e.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution 
by having each outcome associated 
with a sub-interval of [0,1) with sub-
interval size equal to probability of 
the outcome

Example

§ If random() returns u = 0.83, then 
our sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3



Sampling in Bayes’ Nets

Prior Sampling

Rejection Sampling

Likelihood Weighting

Gibbs Sampling



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…



Prior Sampling

For i=1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

Return (x1, x2, …, xn)



Poll 1

Prior Sampling: What does the value 
! "#,%&,"'

!
approximate?

A. 𝑃(+𝑎, −𝑏, +𝑐)
B. 𝑃 +𝑐 + 𝑎, −𝑏)
C. 𝑃(+𝑐 | − 𝑏)
D. 𝑃(+𝑐)
E. I don’t know
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𝐴

𝐵

𝐶



Poll 1

Prior Sampling: What does the value 
! "#,%&,"'

!
approximate?

A. 𝑃(+𝑎, −𝑏, +𝑐)
B. 𝑃 +𝑐 + 𝑎, −𝑏)
C. 𝑃(+𝑐 | − 𝑏)
D. 𝑃(+𝑐)
E. I don’t know

18

𝐴

𝐵

𝐶



Poll 2
How many {−𝑎, +𝑏, −𝑐} samples out of N=1000
should we expect?

A. 1
B. 50
C. 125
D. 200
E. I have no idea

𝐴

𝐵

𝐶

+a 1/2
-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Poll 2
How many {−𝑎, +𝑏, −𝑐} samples out of N=1000
should we expect?

A. 1
B. 50
C. 125
D. 200
E. I have no idea

𝐴

𝐵

𝐶

+a 1/2
-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Probability of a sample

Given this Bayes Net & CPT,
what is 𝑃 +𝑎,+𝑏, +𝑐 ?

Algorithm: Multiply probability of 
each node given parents:

𝐴

𝐵

𝐶

+a 1/2
-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)

§ w = 1.0
§ for i=1, 2, …, n

§ Set w = w * P(xi | Parents(Xi))
§ return w



Prior Sampling
This process generates samples with probability:

…i.e. the BN’s joint probability

Let the number of samples of an event be

Then

𝑆!"(𝑥#…𝑥$) = the probability that a sample (𝑥#…𝑥$) is drawn using Prior Sampling  



Example
We’ll get a bunch of samples from the BN:

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

If we want to know P(W)
§ We have counts <+w:4, -w:1>
§ Normalize to get P(W) = <+w:0.8, -w:0.2>
§ This will get closer to the true distribution with more samples
§ Can estimate anything else, too
§ What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?
§ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C



Practice Prior Sampling
Use a random number generator to pick a number between 0 and 100, 
divide random number by 100 to get a probability

Check the relevant probability distribution to determine what value is 
selected. 

Continue selecting values for each variable until you have a single 
sample

Record the sample, repeat the process for 9 more samples



Rejection Sampling



+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

Let’s say we want P(C)
§ No point keeping all samples around
§ Just tally counts of C as we go

Let’s say we want P(C| +s)
§ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=+s
§ This is called rejection sampling
§ It is also consistent for conditional 

probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
IN: evidence instantiation
For i=1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ If xi not consistent with evidence
§ Reject: Return, and no sample is generated in this cycle

Return (x1, x2, …, xn)



Poll 3

What queries can we (approximately) answer 
with rejection sampling samples (evidence: +𝑐)?

A. 𝑃(+𝑎, −𝑏, +𝑐)
B. 𝑃(+𝑎, −𝑏 | + 𝑐)
C. Both
D. Neither
E. I have no idea
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𝐴

𝐵

𝐶
+a +b +c 4
+a +b -c
+a -b +c 3
+a -b -c
-a +b +c 2
-a +b -c
-a -b +c 1
-a -b -c

Counts 𝑁(𝐴, 𝐵, 𝐶)



Poll 3

What queries can we (approximately) answer 
with rejection sampling samples (evidence: +𝑐)?

A. 𝑃(+𝑎, −𝑏, +𝑐)
B. 𝑃(+𝑎, −𝑏 | + 𝑐)
C. Both
D. Neither
E. I have no idea

29

𝐴

𝐵

𝐶
+a +b +c 4
+a +b -c
+a -b +c 3
+a -b -c
-a +b +c 2
-a +b -c
-a -b +c 1
-a -b -c

Counts 𝑁(𝐴, 𝐵, 𝐶)

← If we also have total   
number of attempts



Practice Rejection Sampling
Use a random number generator to pick a number between 0 and 100, 
divide random number by 100 to get a probability

Check the relevant probability distribution to determine what value is 
selected. 

REJECT ENTIRE SAMPLE IF VALUE IS INCONSISTENT WITH EVIDENCE

Continue selecting values for each variable until you have a single sample

Record the sample, repeat the process for 9 more samples



Likelihood Weighting



§ Idea: fix evidence variables and sample the 
rest
§ Problem: sample distribution not consistent!
§ Solution: weight by probability of evidence 

given parents

Likelihood Weighting

Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P(Shape|blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
IN: evidence instantiation
w = 1.0
for i=1, 2, …, n
§ if Xi is an evidence variable
§ Xi = observation xi for Xi

§ Set w = w * P(xi | Parents(Xi))
§ else
§ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting

Input: evidence instantiation

w = 1.0
for i=1, 2, …, n

§ Set w = w * P(xi | Parents(Xi))

return w

No evidence:
Prior Sampling

Some evidence:
Likelihood Weighted Sampling

All evidence:
Likelihood Weighted

Input: no evidence

for i=1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn)

Input: evidence instantiation

w = 1.0
for i=1, 2, …, n

if Xi is an evidence variable
§ Xi = observation xi for Xi

§ Set w = w * P(xi | Parents(Xi))

else
§ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Remember Poll 2
How many {−𝑎, +𝑏, −𝑐} samples out of N=1000
should we expect?

A. 1
B. 50
C. 125
D. 200
E. I have no idea

𝐴

𝐵

𝐶

+a 1/2
-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Likelihood Weighting

𝐴

𝐵

𝐶

+a 1/2
-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)

How many {−𝑎,+𝑏,−𝑐} samples out of N=1000 should we expect?



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution
Evidence: +𝑎, −𝑑
Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎 𝑃 𝐵 +𝑎 𝑃 𝐶 +𝑎 𝑃 −𝑑 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution
Evidence: +𝑎, +𝑏, −𝑐, −𝑑, +𝑒
Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎 𝑃 +𝑏 +𝑎 𝑃 −𝑐 +𝑎 𝑃 −𝑑 −𝑐 𝑃(+𝑒| − 𝑐)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution
Evidence: None
Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting
Sampling distribution if z sampled and e fixed evidence

Now, samples have weights

Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Poll 4

Given a fixed query, two identical samples from likelihood weighted sampling 
will have the same exact weights.

A. True
B. False
C. It depends
D. I don’t know



Poll 5
What does the following likelihood  weighted value approximate?

weight("#,%&,"') ⋅
) "#,%&,"'

)

A. 𝑃(+𝑎, −𝑏, +𝑐)
B. 𝑃 +𝑎,−𝑏 + 𝑐)
C. I’m not sure



Practice Likelihood Weighted Sampling
For each variable:
If evidence variable: you know the value, and multiply the weight of the 
sample by P(evidence|parents)
Else: Use a random number generator to pick a number between 0 and 
100, divide random number by 100 to get a probability. Check the relevant 
probability distribution to determine what value is selected. 

Continue selecting values for each variable until you have a single sample
Record the sample, repeat the process for 9 more samples
The probability for a given set of variables equals 

(COUNT OF SAMPLES * WEIGHT)/(TOTAL COUNT OF SAMPLES)



Likelihood Weighting
Likelihood weighting is good
§ We have taken evidence into account as we generate 

the sample
§ E.g. here, W’s value will get picked based on the 

evidence values of S, R
§ More of our samples will reflect the state of the world 

suggested by the evidence

Likelihood weighting doesn’t solve all our problems
§ Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable



Likelihood Weighting
Likelihood weighting is good
§ We have taken evidence into account as we generate 

the sample
§ E.g. here, W’s value will get picked based on the 

evidence values of S, R
§ More of our samples will reflect the state of the world 

suggested by the evidence

Likelihood weighting doesn’t solve all our problems
§ Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable

à Gibbs sampling



Gibbs Sampling



Gibbs Sampling
Iteration Procedure: keep track of a full instantiation x1, x2, …, xn.
1. Start with an arbitrary instantiation consistent with the evidence.
2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
3. Keep repeating this for a long time.

When done, keep last values of variables as 1 sample. 
Repeat iteration for each sample.



Step 2: Initialize other variables 
§ Randomly

Gibbs Sampling Example: P( S | +r)

Step 1: Fix evidence
§ R = +r

Steps 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C



Each iteration here is repeated 5 times. 
Keep only the last sample from each iteration:

1.

2.

3.

Gibbs Sampling Example: P( S | +r)

S +r
W

C

S +r
W

C

S +r
W

C
S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C
S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C
S +r

W

C

S +r
W

C



Efficient Resampling of One Variable
Sample from P(S | +c, +r, -w)

Many things cancel out – only CPTs with S remain!
More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Practice Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xn.
1. Start with an arbitrary instantiation consistent with the evidence.
2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
3. Iterate to repeat this for a long time.
4. Keep only the last set of variables as ONE sample
5. Repeat with new sample

Property: in the limit of repeating this infinitely many times the resulting sample is coming 
from the correct distribution



Gibbs Sampling

Property: in the limit of repeating this infinitely many times the resulting sample is coming 
from the correct distribution

Rationale: both upstream and downstream variables condition on evidence.
In contrast: likelihood weighting only conditions on upstream evidence, and hence weights 
obtained in likelihood weighting can sometimes be very small.  Sum of weights over all 
samples is indicative of how many “effective” samples were obtained, so want high 
weight.



Further Reading on Gibbs Sampling

Gibbs sampling produces sample from the query distribution P( Q | e ) in 
limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called Markov 
chain Monte Carlo (MCMC) methods 

§ Metropolis-Hastings is one of the more famous MCMC methods          
(in fact, Gibbs sampling is a special case of Metropolis-Hastings) 

You may read about Monte Carlo methods – they’re just sampling



Bayes’ Net Sampling Summary
Prior Sampling  P(Q, E)

Likelihood Weighting  P( Q , e)

Rejection Sampling  P( Q | e )

Gibbs Sampling  P( Q | e )


