Warm-up as you walk in

= For the following Bayes net, write the query P(X, | e,,4) in terms of
the conditional probability tables associated with the Bayes net.
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Warm-up as you walk in

= For the following Bayes net, write the query P(X, | e,,4) in terms of
the conditional probability tables associated with the Bayes net. L
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Reasoning over Time or Space

Often, we want to reason about a sequence of observations
= Speech recognition

= Robot localization

= User attention

= Medical monitoring

Need to introduce time (or space) into our models



Markov Chains

= Value of X at a given time is called the state

Ny —
()~ -+

P(X1)  P(X¢Xi-1)

» Parameters: called transition probabilities or dynamics, specify how the state evolves
over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action



Conditional Independence @»@QO
L@ ‘*"i‘@
Basic conditional independence: ?O%D

= Past and future independent given the present

= Each time step only depends on the previous
» This is called the (first order) Markov property

Note that the chain is just a (growable) BN

= We can always use generic BN reasoning on it if we truncate
the chain at a fixed length



Example: Markov Chain Weather

States: X = {rain, sun}

—

= |nitial distribution: 1.0 sun

_—

= CPTP(X; | Xiq):

Xea | Xe | P(Xe|X)

sun | sun_ 0.9 0.9

sun | rain 0.1 = v =
rain | sun 0.3 A

rain | rain 0.7 0.7




Example: Markov Chain Weather

Initial distribution: P(X; = sun) = 1.0

0.3 ’

What is the probability distribution after one step?

P(Xy = sun) =7 Z’?<><l X z
=72 [Plx W(

5u/\'

1x> G—é@
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Example: Markov Chain Weather
Initial distribution: P(X; = sun) = 1.0
0.7
What is the probability distribution after one step?
P(X, =sun) =7

P(X; = sun) = ), P(X; = x4, X, = sun)
= lep(Xz =sun | X; = x1 )P(X1 = x1)
= P(X, =sun | X; = sun)P(X; = sun) +
P(X, =sun| X; = rain)P(X, = rain)
=09-1.0+0.3-0.0=0.9

0.3

0.1

0.9



0.9
Poll 1 0.3
Initial distribution: P(X, = sun) = 0.9

0.7
0.1
What is the probability distribution after the next step?

P(X3 =sun) =7
‘?(\(3} = Z F(Kl /><§>
A) 0.81 2 |
"2 Dfsl),

C) 0.9 ,E
L=< T <<P<3/,\>> Sy °©QZ>
E)) 12 X a\(<-%/j\>> B9 ’077




0.9

Poll 1 0.3
Initial distribution: P(X, = sun) = 0.9
0.7 0.1
What is the probability distribution after the next step? '
P(X3 =sun) =7
?(Xf—jwq = Z P(Xf%’\) XZ;XZ\
A) 0.81 Xy
B) 0.84 _ _ —
) 0.8 - 2 P<X3:5W\ \XZ- A P(XZ~X2\
C) 0.9 Xy
D) 1.0 = 0909 + 030\
E) 1.2

1

O3 + 0.03 = 084



Markov Chain Inference

DD Ona by

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),

write an equation to compute P(Xc).

ZI ?@W<& / X{b




Markov Chain Inference

DD Ona by

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),

write an equation to compute P(Xg).

P(Xs) = S, P(x4,X5)
= %, P(Xs | x,)P(xy) &—



Markov Chain Inference

DD Ona by

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),

_—

write an equation to compute P(Xc).

P(Xs) = le,xz,xg,x4 P(x1, %3, X3, X4, X5)
= le X3,X3, x4P(X5 | %4 )P (x4 | X3)P (x5 | x2)P (22 | 1) P (1)
= Zx P(Xs |x4)2x1 Xy, xgp(x4 | x3)P (x5 | x2)P(x; | x1)P(x1)
= Yx, P(Xs |X4)Zx1 xpxs P (X1, X2, X3, Xg)
= Zx4P(X5 | x4 )P (x4)




Weather prediction

States {rain, sun}

= |nitial distribution P(X,)

P(Xo)

sun

rain

0.5

0.5

* Transition model P(X;|X:-1)

Initial distribution P(Xy)

= Transition model P(X | X:—1)

Two new ways of representing the same CPT

X1 P(X:1X¢.1)
sun rain

sun 0.9 0.1

rain 0.3 0.7

0.9
0.3

0.9

v sun
53

0.7 0.7
0.1

sun




Weather prediction

Time O: P(XO) — (05, OS) Xiq P(X¢|Xea)
sun rain
sun 0.9 0.1
What is the weather like at time 1Prin | 03 0.7

PXy) =
/T\ ZxOP(XO = Xo,X1)

=Zx0P(X1|X0 = xo)P(Xo = Xo)
G — 0.5(0.9, 0.1) + 0.5(0.3,0.7)
1 = (0.6,0.4)

—_—




Weather prediction, contd.

Time 1: P(Xl) — (06, 04‘) X P(X:|X¢4)
sun rain
sun 0.9 _\Ol
What is the weather like at time 2Prain | .03 0.7

P(X5) =
lep(X1 = X1, X2)
= 2ix, P(X21 X1 = x)P(X; = %) N
= 0.6(0.9,0.1) + 0.4¢0.3,0.7)
= (0.66,0.34)




Weather prediction, contd.

Time 2: P(Xz) — <066, 034‘) Xi.q P(X:|X¢4)

sun rain
sun 0.9 0.1
What is the weather like at time 3Prin | 03 0.7

P(X3) =

zP(Xz = Xx3,X3)
X2

=Zx2P(X3|X2 = x2)P (X3 = x3)
= 0.66(0.9,0.1) + 0.34(0.3,0.7)
= (0.696,0.304)

Time 2: P(X,) = (0.66,0.34)

What is the weather like at time 3?

P(X3) =

&

()




Forward algorithm (simple form)

What is the state at time t?

P(Xt) = z P(Xt—l = Xt 11X Probability from
X previous iteration
t—1

Z P(Xt|Xt 1 = X¢— 1)(P(Xt 1 = X¢— 1)
)

Transition model ]

Xt—1

Iterate this update starting at t=0



Prediction with Markov chains

As time passes, uncertainty “accumulates”

<0.01/{<0.01}[<0.01/{<0.01/{<0.01/{<0.01

|
<0.01/[<0.01/[<0.01/|<0.01/[<0.01/[<0. 01/

<0.01/{<0.01}<0.01{<0.01|<0.01/{<0.01

<0.01 <0.01<0.01 <0.01/{<0.01
<0.01 <0.01<0.01 <0.01/{<0.01

1 : 00

<0.01/{<0.01{<0.01/|<0.01|<0.01}|<0.01
P ——

(Transition model: ghosts usually go clockwise)

<0.01(<0.01|<0.01(<0.01

=5

—




Observations Reduce Uncertainty

As we get observations, beliefs get reweighted, uncertainty “decreases”

ﬂﬂ

ﬂ

Before observation After observation




Hidden Markov Models




Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
= Underlying Markov chain over states X
® You observe evidence E at each time step

= X;is a single discrete variable; £+ may be continuous and
may consist of several varlables

OEOEOSE




Real HMM Examples

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

= Observations are words (tens of thousands)
= States are translation options

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= Observations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



HMM as a Bayes Net Warm-up

= For the following Bayes net, write the query P(X, | e;,4) in terms of the conditional
probability tables associated with the Bayes net.

Op OO O
P(X, | eyeyesey) = e e e @



Example: Weather HMM

An HMM is defined by: \
= |nitial distribution: P(X,) D C/T?:?

" Transition model: P(X; | X.,) Wi Pwiwed
t- t t-
= Sensor model: P(E, | X;) sun | rain
sun 0.9 0.1
rain 0.3 0.7
Weather {4 Weather 4 Weather 4,4
W, P(U|Wy)

true false

sun | 02 | 03

rain 0.9 0.1

— —




HMM as Probability Model

= Joint distribution for Markov model:

P(Xg, -y X7) = P(Xo) | Licq.7 POX; | Xy q)
= Joint distribution for hidden Markov model: -
P(Xgs X1,E1, <oy X, E7) = PIXQ) L Lima:7 POX | Xeq) PLEG | X0
= Future states are fn—w_dependent of the past given the present
= Current evidence is independent of everything else given the current state
= Are evidence variables independent of each other?

N
—-——=»

@-O-Er®
lel )\l @ é é Useful notation: X = Xg. Xgs1, - X

For example: P(X1.5 | e7.3) = P(X1, X5, | €1, €5, €3)



HMM Queries 1R, —y ey 0

N B

Filtering: P(X,|e;.)

@@@

Smoothing: P(X,|e;.;), k<t
ofolole
() () () (0

Prediction: P(X,,|e1.)
DEHOPEHE) |
5 © O

Explanation: P(X,..| e1.;)

c¥o¥o¥o




Filtering Algorithm

Query: What is the current state, given all of the current and past

evidence?
Marching fo

P(&l\xb\ l
C?(X‘M

7Y




Filtering Algorithm

Query: What is the current state, given all of the current and past

evidence?
Marching forward through the HMM network

o)

©—
()




Filtering Algorithm

Query: What is the current state, given all of the current and past

evidence?
Marching forward through the HMM network

GGG
|

o1¢




Filtering Algorithm

Query: What is the current state, given all of the current and past

evidence?
Marching forward through the HMM network

-0-6f

ag




Filtering Algorithm — RTINS Avkgo(l% N

P(Xei1l€r.en) = 0 Pleg,q [ Xis) th P(Xeia | X:) P(x, | €1.)

lNormaIizeI i Update I i Predict I

f1.t+1 = FORWARD(f, ; , €441)




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X; | e1.¢) = P(X¢] €t €1:¢-1)
= a },)_(_Xt\:e_tl €1:t-1)

S

eg




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | e1.r) = P(X¢| e, eq.6-1)
= a P(X;, e e1.4-1)

a z P(x¢—1, Xt et| €1.t—1)

Xt—1

v v l




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

@]=P(Xt| €t e1:t—1) @—» X, ——»@—
O,

= a P(X;, e e1.0-1) l

v ) 4
= Z P(xt—l'Xt' etl el:t—l) @

Xt—1

= a Z@(xt—ﬂ el:t—ﬂp(xdxt—b e1.t-1) P(et|Xe, Xt—1, €1:¢-1)

Xt—-1




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| et, €1:6-1) @—»@ >@ >

=a P(Xy, et eq.0-1)

v 4 A4
= Z P(Xt—l;Xt; etl el;t_l) @:

Xt—1

= a Z P(x¢_1| €1:¢-1) P(thxt—lr e1:t—1) P(ﬁtpﬁt» Xt—1,€1:t—1)

_— s

Q _6

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

/\P(Xt | 31:1:& P(X¢| e, €1:t-1) @—»@ >@

=a P(X, e e1.-1)

v y Y
= Z P(Xt—l;Xt; etl el:t—l)

Xt—1

v
Q _6

= prgxtlxt—l) Mrg)

Xt—1




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| et, €1:6-1) @—»@ >@

= a P(X;, e e1.-1)

) 4 ) 4 ) 4
= Z P(x¢—1, Xt el €1.4-1)

Xt—1

v
Q _6

=a PQxe-1] e1:e—1) P(Xelx—1) }_)_(et\|X£)

Xt—-1

=a P(e;|x;) z P(x¢|xt—1) P(xt-1] €1:6-1)

Xt—1




Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net
P(X: | e1.t) = P(X¢| er, e1.6-1) @—»@——»@-—»
= a P(X¢, et| e1.4-1) | l
v

|
i

Qg

—a ) Penoaleac) | @) @) @
() () (o
=a ) Pt ere-1) P(Xelxeos) Plecl X))
Xt—1

= aPeclx) ) Prelxer) POl ere-n)

Xt—1



Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | e1.t) = P(X¢| e, eq.0-1) X1) ’@"® '
= a P(X¢, et €1.4-1)

=a Z P(x¢—1, Xt, €] €1:0-1) ‘ ‘ . .
& @@ E
=a ) PCteal ene-1) POelxe-y) PleclX)
Xt—1

= a Pled) ) PGrel¥es) P(reoa] eres)

Xt—-1



] \ ,

/><( Poll 2 N \J L

P(Xii1l€1:401) et+1 | Xi+1) th P(Xei1 @ Xy C1 /)(/
l Normalize I i Update I i Predict I
What is the runtime of the forward algorithm in terms of the number g
of states | X| and time t? Assume all 3 CPTs are given.
o — —~— S
A) O(|X|?%*t) /%/
B) O(|X] *t)
C) O(|X]?)
D) O(1X])




Filtering Algorithm
P(Xpalerea) = P(EtﬂlXtﬂ)F P(Xeia | Xi) P(x; | €1.,) K

lNormaIizeI i Update I i Predict I

fl:t+1 = FORWARD(-fl:t ’ et+1)

Cost per time step: O(|X|?) where | X| is the number of states

Time and space costs are constant, independent of t

O(|X|?) is infeasible for models with many state variables

We get to invent really cool approximate filtering algorithms



In Class Activity: Weather HMM

An HMM is defined by:

i . . . Wig | P(WelWyg) W, P(Us| W)
" |nitial distribution: P(X) S E— —T
" Transition model: P(X, | X,.1) = P(W,[W ;) |[sun | 0o | o1 sun | 02 | o8
= Sensor model: P(E, | X,) = P(U, |W,) rain | 03 | 0.7 rain | 0.9 | 0.1

Given P(X;) =/{srun:0.5, rain:0.5}
Compute P(X,=sun | e,= e;= e,= e;=True)

X, G (%
%

—&

(B



In Class Activity: Weather HMM

AN HMM IS. de:ﬁned by Wi | P(WilWg) W, P(Up|Wy)

= |nitial distribution: P(X,) S — rue | false
= Transition model: P(X; | X,,) sun | 09 | o1 sun | 02 | 08
® Sensor model: p(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;,e;) = P(eq|X1)P(X;) #OBSERVE (chain rule)

P(X,le;) = aP(Xy,e1) » a =1/, P(e1|x;)P(x;) #Don’t forget to NORMALIZE

P(X;le1) = Xxex, P(X2]x)P(x|e;) #PREDICT



In Class Activity: Weather HMM

AN HMM IS. de:ﬁned by Wi | P(WilWg) W, P(Up|Wy)

= |nitial distribution: P(X,) S — rue | false
= Transition model: P(X; | X,,) sun | 09 | o1 sun | 02 | 08
® Sensor model: p(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X3le1) = Syex, P(X2|X)P(x|e;) #PREDICT

P(X;|e1,e;) = aP(X,, e3le;) = aP(ey|X3)P(Xzleq); a =1/ z P(ez|x)P(x|eq)

xX€X,

P(X3le1,e2) = Xix,ex, P(X3|x2)P(xz]eq, €;) #PREDICT



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,,) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X3le1,e2) = Xx,ex, P(X3|x2)P(xz]eq, €;) #PREDICT

P(X3|eq,ep,e3) = aP(X3,e3leq, e;) = aP(e3|X3)P(X3leq, e3);
a=1/ P(es|x)P(x|ey, e2)

XEX3

P(X4leq, ez, e3) = Xyex, P(X4|x)P(x|ey, €5, 3) #PREDICT



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,,) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}
P(X4leq, ez, e3) = Xyex, P(Xalx)P(x|ey, e, €3) #PREDICT
P(X4le1, ey e3,e4) = aP(Xy, e4ler, e, €3) = aP(es|X4)P(Xule, €3, €3);

a=1/ P(e4lx)P(x|eq, €2, €3)

xXEX,



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,.1) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X{,e;) = P(e,|X1)P(X;) #OBSERVE (chain rule)
P(e; = True|X; = sun)P(X; =sun) =.2x.5= .1
P(e; = True|X; = rain)P(X; = rain) = 9.5 = 45

P(Xi,e1)

P(X1ley) = =725 = P(e1|X)P(X1)/ Txex, Perx)P(x) #NORMALIZE USING BAYES RULE
1
1
(X; = sun|eq rue) 14,45
P(X; = rain|e; = True) = = .82

1+ .45



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,.1) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(Xler) = Yxex, P(Xz|x)P(x|e;) #PREDICT
P(X, = sun|e; = True) = Z P(X, = sun|x)P(x|e; = True) = 9*.18 + .3 %.82 = .41

X
P(X, = rain|le; = True) = 31: P(X, = rain|x)P(x|e; = True) = .1 *.18 4+ .7 x.82 = .59

X€EXq



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,.1) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X;|ey, e;) = aP(Xy, e;le;) = aP(e;|X;)P(Xzle); a =1/ z P(e;|x)P(x|e1)

XEX
P(X, = sun|e;,e, = True) = aP(e,|X, = sun)P(X, = Sunlel)zz a(.2)(.41) = .13
P(X, = rain|e,, e, = True) = aP(e,|X, = rain)P(X, = rainle;) = a«(.9)(.59) = .87

P(Xglel, ez) - ZxEXZ P(X3|X)P(X|el, 62) #PREDICT
P(X; = sun|eq,e;) = P(X3 = sun|x = sun)P(x = sunley,e;) + P(X3|x = rain)P(x = rainle;, e;) = 0.38
P(X; = rainleq, e;) = P(X3 = rain|x = sun)P(x = sun|eq,e,) + P(X3|x = rain)P(x = rain|e, e,) = 0.62



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,.1) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X3leq,e5,e3) = aP(X3,e5le;, e;) = aP(e3|X3)P(X3leq, e;);
a=1/ P(es|x)P(x|ey, e3)

XEX3

P(X3; = sunleq, ey, e3) = aP(e3 = True|X; = sun)P (X3 = sunleq, e;) = a(2)(.38) =.12
P(X; = rain|eq, e,,e3) = aP(e3 = True|X; = rain)P (X3 = rainle,, e;) = a(9)(.62)=.88



In Class Activity: Weather HMM

AN HMM IS. de:ﬂned by Wi | P(WilWg) W, P(Up|Wy)

= |nitial distribution: P(X,) S — rue | false
= Transition model: P(X; | X,.1) sun | 09 | o1 sun | 02 | 08
® Sensor model: p(Et | Xt) rain | 0.3 0.7 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}
P(X4leq, ez, e3) = Xyex, P(Xalx)P(x|ey, e, €3) #PREDICT

P(X, = sun|eq,e,,e3) = z P(X, = sun|x)P(x|es, e;,e3) = .9%.12+ .3 %.88 = .37
xe{sun.rain}
P(X, = rainley, e,,e3) = 2 P(X, = rain|x)P(x|eq,e;,e3) = 1 %x.12+ .7%.88 = .63

x€{sun,rain}



In Class Activity: Weather HMM
An HMM is defined by:

- . . Wi | P(WiIWig) Wi P(Up|Wy)
= |nitial distribution: P(X,) — T — T e
= Transition model: P(X; | X,.1) sun | 09 | o1 sun | 02 | 08
= Sensor model: P(E, | X,) rain | 03 | 07 rain | 0.9 0.1

Compute P(X,=sun | e,= e;= e,= e;=True) and P(X;) = {sun:0.5, rain:0.5}

P(X4leq, ey, €3,€4) = aP(Xy e4leq, €5, €3) = aP(es|Xs)P(Xyley, €3, €3);
a=1/ P(e4lx)P(x|ey, e, €3)

XEX,

aP(e, = True|X, = sun)P(X, = sunleq, ey, e3) = a(.2*.37) =.115
aP(e, = True|X, = rain)P(X, = rainle, e;, e3) = a(.9*.63) = .885



Poll 3

Suppose we are given P(X4=sun | e4=e3=e2=el=True), along with the
same CPT tables as the activity example, and we want to compute
P(X5=sun | e5=e4=e3=e2=el=True).

What is the first step we would perform?

Predict
Observe
Forward

Smoothing



Other HMM Queries
Filtering: P(X,|€y.,)
D@-OH®)
ORORORO

Smoothing: P(X,|e;.;), k<t
ofolole
() () () (0

Prediction: P(X,.| €;1.¢)

DE-OHE)
© @ @

Explanation: P(X,..| e1.;)

c¥o¥o¥o




Inference Tasks

Filtering: P(X;|eq.4)

= belief state—input to the decision process of a rational agent

Prediction: P(X; | eq.4) for k>0

= evaluation of possible action sequences; like filtering without the evidence
Smoothing: P(X, |eq.;) forO< k<t

= better estimate of past states, essential for learning

Most likely explanation: argmax, P(xq.+ | €1.4)

= speech recognition, decoding with a noisy channel



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

t=1 t=2 t=3




