As you come in... Candy Grab Game

Everyone should take a worksheet.

Work in groups of 3-4 people, one person should take a bag of colored discs.

Two people take turns, starting with 11 discs (fill in sheet):

- 1. On your turn, take 1 or 2 discs
- 2. The person to take the last disc wins

Is there a winning strategy? Think about how you might implement an Agent:

```
class Agent
    function getAction(state)
    return action
```

AI: Representation and Problem Solving Introduction

Instructor: Stephanie Rosenthal

Slide credits: CMU AI & http://ai.berkeley.edu

Course Team

Instructor

Teaching Assistants

Olivia

Stephanie Rosenthal

Mansi

Lily

Josep

Course Information

Website: www.cs.cmu.edu/~15281

Canvas: canvas.cmu.edu

Communication: www.piazza.com/cmu/spring2023/15281

(password AIRPS-S23)

E-mail: srosenth@andrew.cmu.edu

Prerequisites/Corequisites/Course Scope

Participation Points and Late Days

Participation points! Last semester we had 65 points

- Lecture Polls
- In-Class Activities
- Recitation Attendance

5%

OKCEPT

Late Days

- 6 late days to use during the semester
- At most 2 can be used on a single programming assignment
- O- At most 1 can be used on a single online/written assignment

Safety and Wellness

Virtual and in-person office hours!

Lectures are recorded for everyone to use, no questions asked. Use the late days appropriately.

Contact me ASAP if you think you'll miss more than one class so we can make a plan for how to catch up!

Announcements

Recitation starting this Friday

- Recommended. Materials are fair game for exams
- Attendance counts towards participation points
- Choosing sections

Assignments:

- P0: Python & Autograder Tutorial (out now)
 - Required, but worth zero points
 - Already released
 - Due Friday 1/20, 10 pm (no OH on Fridays!)
- HW1 (online)
 - Released Today!
 - Due Tues 1/24, 10 pm

Today

An Al game

What is AI?

A brief history of Al

State representation and world modeling

class Agent

discs function getAction(state)

return action

Agent 001 – Always choose 1

```
function getAction( numPiecesAvailable )
    return 1
```

Agent 004 – Choose the opposite of opponent

```
function getAction( numPiecesAvailable )
    return ?
```

Agent 007 – Whatever you think is best

```
function getAction( numPiecesAvailable )
   return ?
```

Agent 007 – Whatever you think is best

```
function getAction( numPiecesAvailable )

if numPiecesAvailable % 3 == 2
    return 2
else
    return 1
```

Participation Poll Question

Games – Three "Intelligent" Agents

Which agent code is the most "intelligent"?

Games – Three "Intelligent" Agents

A: Search / Recursion

Games – Three "Intelligent" Agents

B: Encode the pattern

```
function getAction( numPiecesAvailable )

if numPiecesAvailable % 3 == 2
     return 2
  else
    return 1
```

```
10's value:Win
    value:Lose
9's
8's value:Win
7's value:Win
6's
    value:Lose
5's value:Win
    value:Win
4′s
    value:Lose
3′s
2's value:Win
1's value:Win
    value:Lose
0's
```

Games – Three "Intelligent" Agents

C: Record statistics of winning positions

Pieces Available	Take 1	Take 2
2	0%	100%
3	→ 2%	0%
4	75 %	2%
5	4%	68%
6	5%	6%
7	60%	5%

Poll question

Games – Three "Intelligent" Agents

Which agent code is the most "intelligent"?

- A. Search / Recursion 25%
- B. Encode multiple of 3 pattern

 C. Keep stats on winning positions

What is AI?

The science of making machines that:

Turing Test

In 1950, Turing defined a test of whether a machine could "think" \leftarrow

"A human judge engages in a natural language conversation with one human and one machine, each of which tries to appear human. If judge can't tell, machine passes the Turing test"

en.wikipedia.org/wiki/Turing_test

What is AI?

The science of making machines that:

Think like people

Act like people

Rational Decisions

We'll use the term **rational** in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the **utility** of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

What About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren't as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"
- Lessons learned from the brain: memory and simulation are key to decision making

Rationality, contd.

What is rational depends on:

- Performance measure
- Agent's prior knowledge of environment
- Actions available to agent
- Percept sequence to date

Being rational means maximizing your expected utility

Rational Agents

Are rational agents **omniscient**?

■ No – they are limited by the available percepts and state

Are rational agents *clairvoyant*?

■ No – they may lack knowledge of the environment dynamics

Do rational agents **explore** and **learn**?

■ Yes — in unknown environments these are essential

So <u>rational agents are not necessarily successful</u>, but they are <u>autonomous</u> (i.e., make decisions on their own to achieve their goals)

Maximize Your Expected Utility

A Brief History of Al

A Brief History of Al

What went wrong?

Dog

- Barks
- Has Fur
- Has four legs

Buster

A Brief History of Al

1940-1950: Early days

- 1943: McCulloch & Pitts: Boolean circuit model of brain
- 1950: Turing's "Computing Machinery and Intelligence"

1950—70: Excitement: Look, Ma, no hands!

- 1950s: Early AI programs, including Samuel's <u>checkers program</u>, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted

1970—90: Knowledge-based approaches

- 1969—79: Early development of knowledge-based systems
- 1980—88: Expert systems industry booms
- 1988—93: Expert systems industry busts: "Al Winter"

1990—: Statistical approaches

- Resurgence of probability, focus on uncertainty
- General increase in technical depth
- Agents and learning systems... "AI Spring"?

2012—: Deep learning

2012: ImageNet & AlexNet

Images: ai.berkeley.edu

Artificial Intelligence vs Machine Learning?

What Can Al Do?

Quiz: Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- Drive safely across Pittsburgh?
- ✓ Buy a week's worth of groceries on the web?
- Buy a week's worth of groceries at Giant Eagle?
- ₱ Discover and prove a new mathematical theorem?
- X Converse successfully with another person for an hour?
- ➤ Perform a surgical operation?
- ✓ Put away the dishes and fold the laundry?
- ✓ Translate spoken Chinese into spoken English in real time?
- Generate intentionally funny memes?

Designing Agents

An **agent** is an entity that *perceives* and *acts*.

Characteristics of the percepts and state, environment, and action space dictate techniques for selecting actions

How can we design an AI agent to solve our problems given their task environments?

Pac-Man as an Agent

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes

World Models

Representing an Al problem (PEAS)

A task environment consists of:

- A state space what the agent knows about the world
- For each state, a set of
 Actions(s) of allowable actions
 OR Value(s) to assign to states
- Environmental dynamics how the world moves when the agent acts in it
- Performance measure as a metric for utility/reward/cost

Task Environment - Pacman

Performance measure

-1 per step; +10 food +500 win; -500 die; (+200 hit seared ghost

Environment

Pacman dynamics (incl ghost behavior)

Actions

State

North, South, East, West, (Stop)
 ate
 where pacman is
 all dots?

- all ghosts?

Task Environment – Automated Taxi

Performance measure

Income, happy customer, vehicle costs, fines, insurance premiums 5

Environment

US streets, other drivers, customers

Actions

State Information

■ Camera, radar, accelerometer, engine sensors, microphone

Image: http://nypost.com/2014/06/21/how-google-might-put-taxi-drivers-out-of-business/

Environment Types

Pacman	Taxi
fully	partial
multi	multi
det	stoch.
static	dynamic
diskrete	Contiaud
	fully multi det static

What's in a State Space?

The real world state includes every last detail of the environment

A state (for AI) abstracts away details not needed to solve the problem

Problem: Pathing

State representation: (x,y) location

Actions: NSEW

• Transition model: update location

Goal test: is (x,y)=END

Problem: Eat-All-Dots

State representation: {(x,y), dot booleans}

Actions: NSEW

Transition model: update location and possibly a dot boolean

· Goal test: dots all false

State Space Sizes?

World state:

Agent positions: 120

■ Food count: 30

■ Ghost positions: 12

Agent facing: NSEW

How many

- World states?
 120x(2³⁰)x(12²)x4
- States for pathing?120
- States for eat-all-dots?
 120x(2³⁰)

Safe Passage

Problem: eat all dots while keeping the ghosts perma-scared

What does the state representation have to specify?

(agent position, dot booleans, power pellet booleans, remaining scared time)

Designing Agents

An **agent** is an entity that *perceives* and *acts*.

Characteristics of the percepts and state, environment, and action space dictate techniques for selecting actions

This course is about:

- General AI techniques for a variety of problem types
- Learning to recognize when and how a new problem can be solved with an existing technique

In-Class Activity Part 2

Answer Poll Question at the end...

Take some candy on the way out! Return the bag of discs!

Summary:

- An agent perceives the world and acts in it
- PEAS framework for task environments
- Environment types
- State space calculations
- Rationality