Announcements

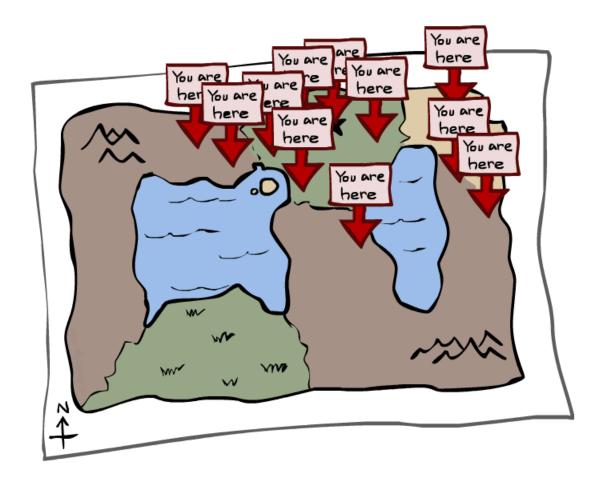
Assignments

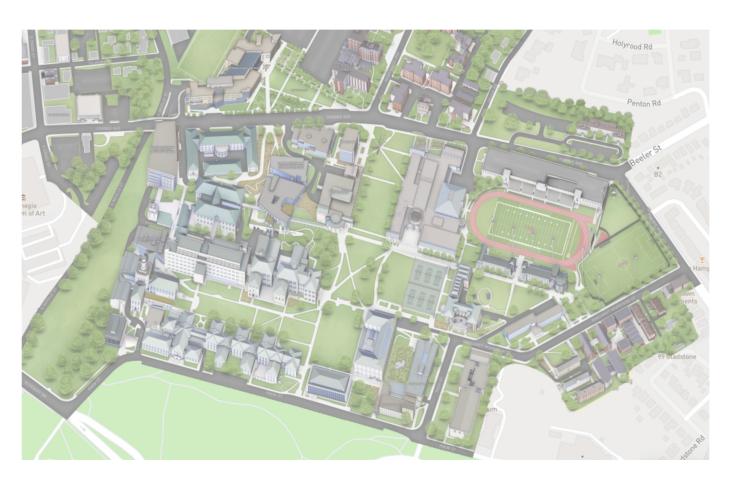

- HW10
 - Due 4/25, 10 pm
- P5
 - Due 4/27, 10 pm

Late days can be used on either/both assignments

Final Exam -5/4 5:30pm (location TBA)

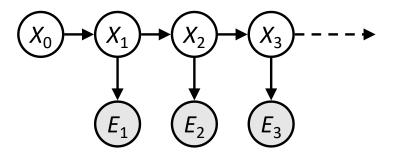
Al: Representation and Problem Solving


Particle Filtering


Instructor: Stephanie Rosenthal

Slide credits: CMU AI and http://ai.berkeley.edu

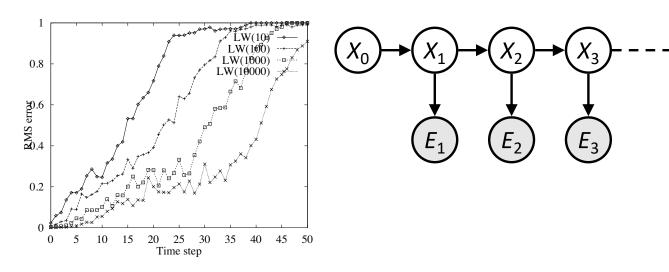
Particle Filtering


Particle Filtering

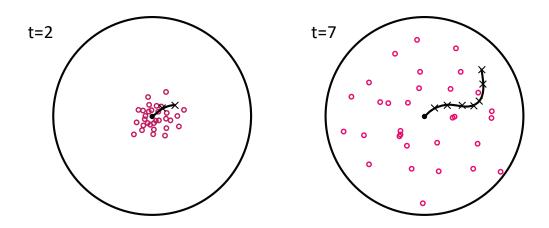
Belief States

When we're predicting the actual location we're in at each time step X_k Really, what we're doing is maintaining a probability distribution over all possible states

This distribution is called a **belief state**, it represents the belief of where we are We denote the belief state for X at time 3 is $b(X_3)=P(X_3)$



We need a new algorithm!


When |X| is more than 10^6 or so (e.g., 3 ghosts in a 10x20 world), exact inference to compute the belief state becomes infeasible

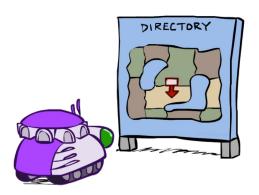
We could try to sample our Bayes net to compute b(X)

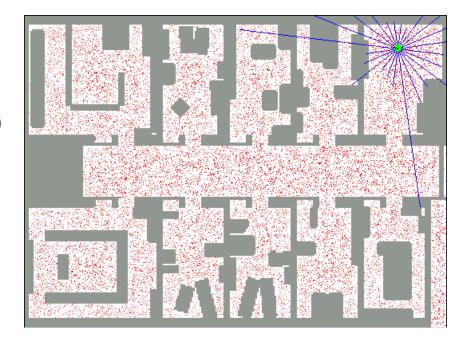
Likelihood weighting fails completely – number of samples needed grows **exponentially** with **T**

We need a new idea!

Idea: Sample in the first state, and then move those samples by sampling the transition function

The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples


Solution: kill the bad ones, make more of the good ones. This way the population of samples stays in the high-probability region.

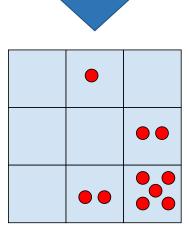

This is called resampling or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)


[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filtering

- Represent belief state by a set of samples
 - Samples are called *particles*
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

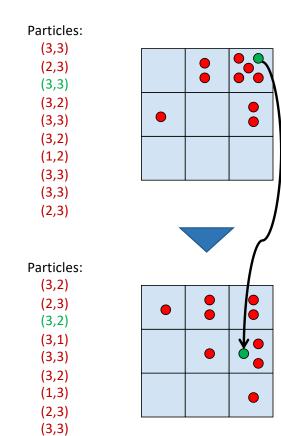
0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

Our representation of P(X) is now a list of N particles (samples)

- Generally, N << |X|
- Storing dictionary mapping from X to counts would defeat the point

P(x) approximated by number of particles with value x


- So, many x may have P(x) = 0!
- More particles, more accuracy
- Usually we want a low-dimensional marginal
 - E.g., "Where is ghost 1?" rather than "Are ghosts 1,2,3 in {2,6}, [5,6], and [8,11]?"

For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Propagate forward ("Predict")

- A particle in state x_t is moved by sampling its next position directly from the transition model:
 - $x_{t+1} \sim P(X_{t+1} \mid x_t)$
 - Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(2,2)

Particle Filtering: Observe/Weight ("Update" part 1)

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, weight samples based on the evidence

•
$$W = P(e_t | x_t)$$

Normalize the weights: particles that fit the data better get higher weights, others get lower weights

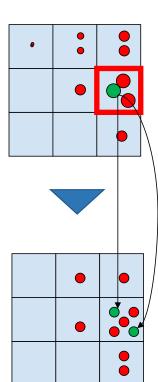
Particles: (3,2)			
(2,3)			
(3,2)	•	•	
(3,1)			
(3,3)		•	
(3,2)			
(1,3)			
(2,3)			
(3,2)			
(2,2)			
Particles:			
(3,2) w=.9			
(2,3) w=.2	•	•	
(3,2) w=.9		•	•
(3,1) w=.4			
(3,3) w=.4		•	
(3,2) w=.9			
(1,3) w=.1			
(2,3) w=.2			
(3,3) w=.4 (2,2) w=.4	·	·	·
(2.2) W=.4			

Particle Filtering: Resample ("Update" part 2)

Rather than tracking weighted samples, we *resample*

We have an updated belief distribution based on the weighted particles

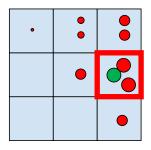
We sample N new particles from the weighted belief distributions


Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,3) w=.4
- (2,2) w=.4

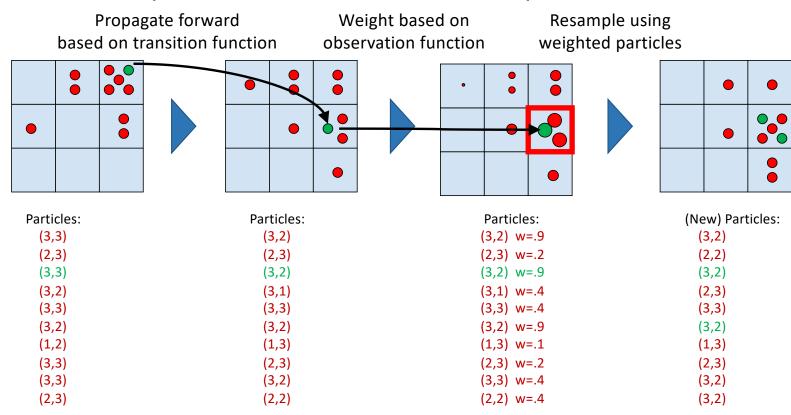
(New) Particles:


- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2) (1,3)
- (2,3)
- (3,2)
- (3,2)

Weighting and Resampling

How to compute a belief distribution given weighted particles

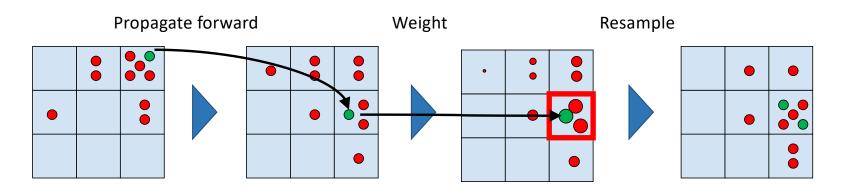
Weight



Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,3) w=.4
- (2,2) w=.4

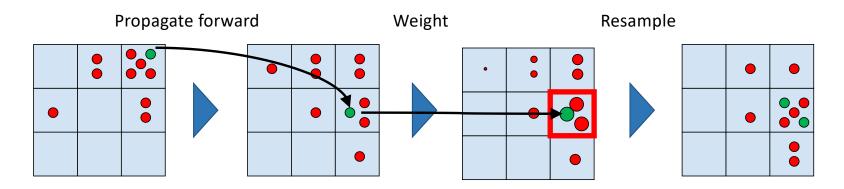
Summary: Particle Filtering


Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 14

Poll 1

If we only have one particle which of these steps are unnecessary?



Select all that are unnecessary.

- A. Propagate forward
- B. Weight
- C. Resample
- D. None of the above

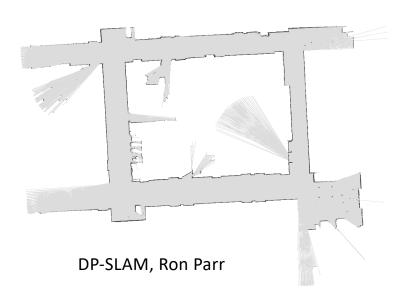
Poll 1

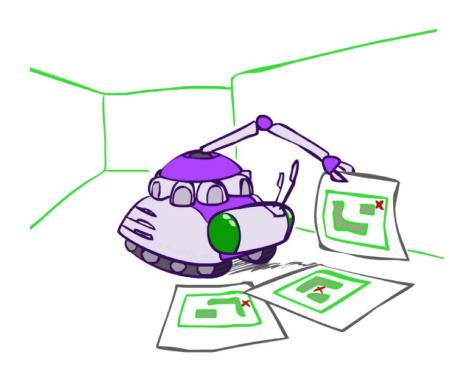

If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

- A. Propagate forward
- B. Weight Unless the weight is zero, in which case, you'll
- C. Resample want to resample from the beginning 🕾
- D. None of the above

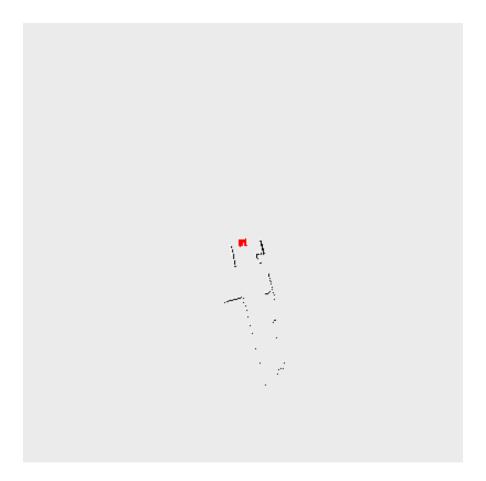
Particle Filter Localization (Laser)



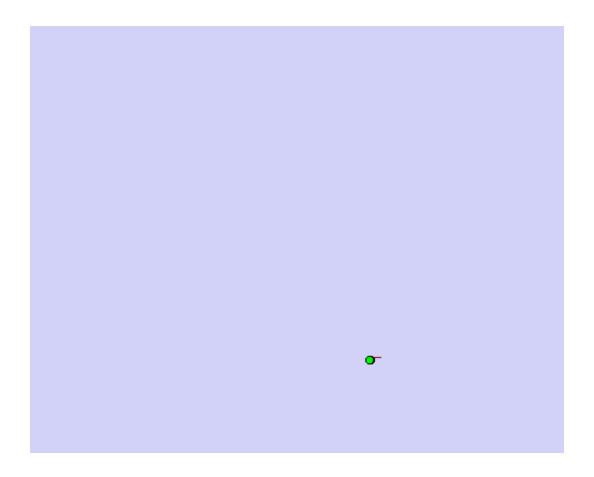

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

SLAM: Simultaneous Localization And Mapping


- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

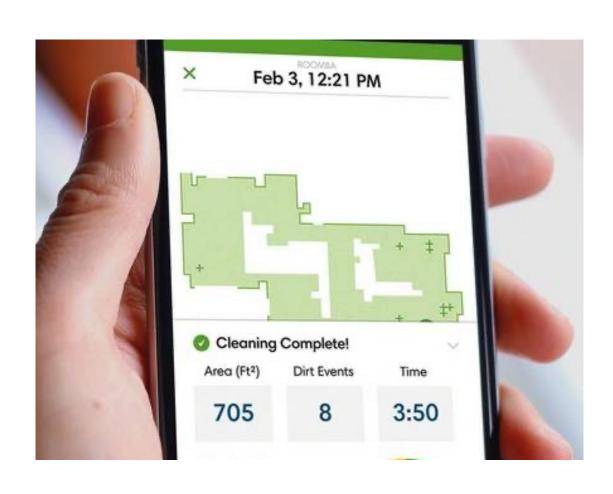
[Demo: PARTICLES-SLAM-mapping1-new.avi]


Particle Filter SLAM – Video 1

[Sebastian Thrun, et al.]

[Demo: PARTICLES-SLAM-mapping1-new.avi]

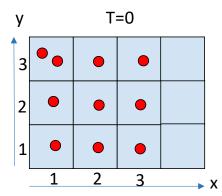
Particle Filter SLAM – Video 2

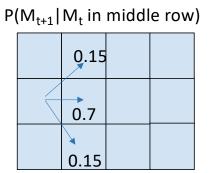


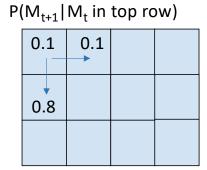
[Dirk Haehnel, et al.]

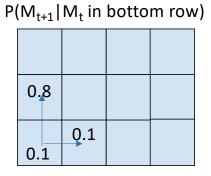
[Demo: PARTICLES-SLAM-fastslam.avi]

SLAM

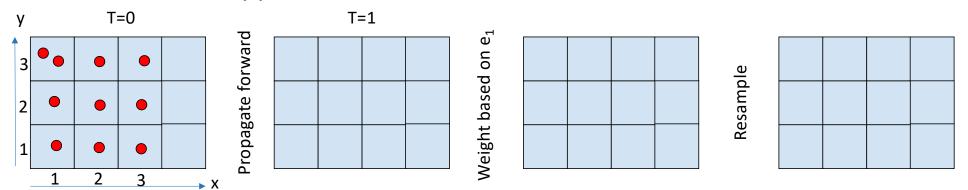





https://www.irobot.com/


In Class Activity

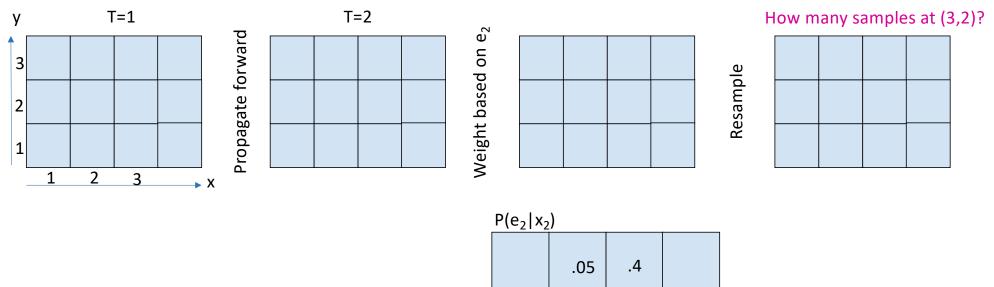
Given the following starting particles, transition model, and e_1 and e_2 observed at time 1 and time 2, what is the approximate belief state at time 2?



$P(e_1 m$	1)	
.3	.5	
.5	.5	
.2	.5	

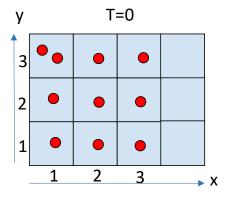
$P(e_2 m$	2)		
	.05	.4	
	.3	.5	
	.05	.2	

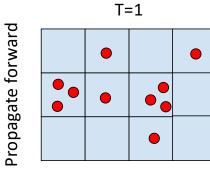
In Class Activity


Given the following starting particles, transition model, and e_1 observed at time 1, what is the approximate belief state at time 1?

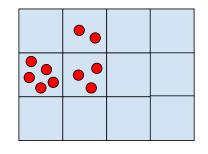
P(e ₁ m ₁)			
.3	.5		
.5	.5		
.2	.5		

In Class Activity – Poll 2


Given the particles at T=1, transition model, and e_2 observed at time 2, what is the approximate belief state at time 2?

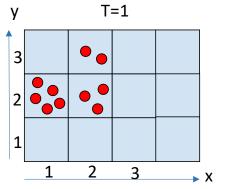


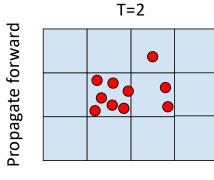
$P(e_2 x_2)$)		
	.05	.4	
	.3	.5	
	.05	.2	

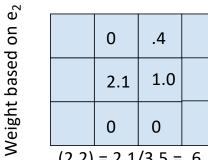

In Class Activity – Example Solution

Given the following starting particles, transition model, and e_1 observed at time 1, what is the approximate belief state at time 1?

\vdash			_	
weignt based on e_1	0	.5		
	1.5	.5		
าเลยาเ	0	0		
≥				




Resample


P(e ₁ m)			
.3	.5		
.5	.5		
.2	.5		

In Class Activity – Example Solution

Given the T=1 particles, transition model, and e_2 observed at time 2, what is the approximate belief state at time 2?

$$(2,2) = 2.1/3.5 = .6$$

 $(3,2) = 1.0/3.5 = .29$

$$(3,3) = .4/3.5 = .11$$

How many samples at (3,2)?

	•	

.05	.4	
.3	.5	
.05	.2	

 $P(e_2|x_2)$