
Announcements
Assignments:
§ HW2 (written)

§ Due Tuesday 1/31, 10 pm
§ P1: Search

§ Due Monday 2/6, 10pm
§ Working in pairs is suggested but not required

Polls
§ Don’t worry if you miss a few
§ Talk to Stephanie if you are systematically missing polls

Announcements
Recitation
§ Join any recitation you want this week
§ Stay tuned to Diderot for post about informally changing section

More coming on Diderot
§ Recitation change form
§ Student info survey

AI: Representation and Problem Solving
Adversarial Search

Instructor: Stephanie Rosenthal
Slide credits: CMU AI, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions

Search Efficiency (α-β Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art
Checkers:
§ 1950: First computer player.
§ 1959: Samuel’s self-taught program.
§ 1994: First computer world champion: Chinook ended 40-year-reign

of human champion Marion Tinsley using complete 8-piece
endgame.

§ 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
§ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,

McCarthy.
§ 1960s onward: gradual improvement under “standard model”
§ 1997: special-purpose chess machine Deep Blue defeats human

champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:
§ 1968: Zobrist’s program plays legal Go, barely (b>300!)
§ 2005-2014: Monte Carlo tree search enables rapid advances: current

programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

§ 2015: AlphaGo from DeepMind beats Lee Sedol

Many different kinds of games!

Axes:
§ Deterministic or stochastic?
§ Perfect information (fully observable)?
§ One, two, or more players?
§ Turn-taking or simultaneous?
§ Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities
§ Pure competition:

§ One maximizes, the other minimizes

§ General Games
§ Agents have independent utilities
§ Cooperation, indifference,

competition, shifting alliances, and
more are all possible

“Standard” Games

Standard games are deterministic, observable,
two-player, turn-taking, zero-sum
Game formulation:
§ Initial state: s0

§ Players: Player(s) indicates whose move it is
§ Actions: Actions(s) for player on move
§ Transition model: Result(s,a)
§ Terminal test: Terminal-Test(s)
§ Terminal values: Utility(s,p) for player p
§ Or just Utility(s) for player making the decision at root

Adversarial Search

Single-Agent Trees

8

2 0 2 6 4 6… …

Minimax

+8-10-5-8

States
Actions
Values

Minimax

States
Actions
Values

Minimax Code

Poll 1 (+ worksheet Poll 2 and 3 for Q1a/b)

12 8 5 23 2 144 6

What is the minimax value at the root?
A) 2
B) 3
C) 6
D) 12
E) 14

Poll 1

12 8 5 23 2 144 6

3 2 2

3

What is the minimax value at the root?
A) 2
B) 3
C) 6
D) 12
E) 14

Minimax Notation

𝑉 𝑠 = max
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

𝑎 = argmax
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

3𝑎 = argmax
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Generic Game Tree Pseudocode
function minimax_decision(state)

return argmax a in state.actions value(state.result(a))

function value(state)
if state.is_leaf

return state.value

if state.player is MAX
return max a in state.actions value(state.result(a))

if state.player is MIN
return min a in state.actions value(state.result(a))

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1

Minimax Efficiency

How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ Humans can’t do this either, so how do

we play chess?
§ Bounded rationality – Herbert Simon

Resource Limits

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
§ Search only to a preset depth limit or horizon
§ Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ For chess, b=~35 so reaches about depth 4 – not so good ? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

Evaluation functions are always imperfect

Deeper search => better play (usually)

Or, deeper search gives same quality of
play with a less accurate evaluation
function

An important example of the tradeoff
between complexity of features and
complexity of computation

Evaluation Functions

Evaluation Functions
Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position
In practice: typically weighted linear sum of features:
§ EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
§ E.g., w1 = 9, f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

Game Tree Pruning

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

3

3

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

On your own
Which branches are pruned?
(Left to right traversal)
(Select all that apply)

Poll 4
Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n

1

Poll 4

?

10

?

?

10

10 100

?

?

2

2

?

β =

α =

α= α= α=

β =

Alpha-Beta Code

10 v=100

β = 10

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Code

10

10 100 2

v = 2

α = 10
def min-value(state , α, β):

initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties
Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
§ Iterative deepening helps with this

With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ 1M nodes/move => depth=8, respectable

This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

Modeling Assumptions

Know your opponent

10091010

Modeling Assumptions

Know your opponent

10091010

Modeling Assumptions

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

A probability distribution is an assignment of weights
to outcomes

Example: Traffic on freeway
§ Random variable: T = whether there’s traffic
§ Outcomes: T in {none, light, heavy}
§ Distribution:

P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Probabilities over all possible outcomes sum to one

0.25

0.50

0.25

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Expected Value

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

𝑉 𝑠 = max
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation

𝑉 𝑠 =

0.25

0.5

0.25

Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

𝑉 𝑠 = max
!

𝑉 𝑠′ ,

where 𝑠" = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation

𝑉 𝑠 =4
#"

𝑃 𝑠" 𝑉(𝑠′)

On your own…

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

On your own…

Expectimax tree search:
Which action do we
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4
1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right

Expectimax Code
function value(state)

if state.is_leaf
return state.value

if state.player is MAX
return max a in state.actions value(state.result(a))

if state.player is MIN
return min a in state.actions value(state.result(a))

if state.player is CHANCE
return sum s in state.next_states P(s) * value(s)

Expectimax Pruning?

12 93 2

Modeling Assumptions

Minimax
Ghost

Random
Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 493

Won 5/5

Avg. Score: 464

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

In Class Activity Demo – Connect 4
Q1c – practice alpha-beta pruning on your own

Q2 – apply minimax and evaluation functions (heuristics) to Connect 4

Summary
Games require decisions when optimality is impossible
§ Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
§ Alpha-beta pruning

Game playing has produced important research ideas
§ Reinforcement learning (checkers)
§ Iterative deepening (chess)
§ Monte Carlo tree search (Go)
§ Solution methods for partial-information games in economics (poker)

Video games present much greater challenges – lots to do!
§ b = 10500, |S| = 104000, m = 10,000

𝑉 𝑠 = max
!

4
#"

𝑃(𝑠") 𝑉(𝑠")

Preview: MDP/Reinforcement Learning Notation

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#

𝑉$%& 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉$ 𝑠# , ∀ 𝑠

𝑄$%& 𝑠, 𝑎 = '
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄$(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋' 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉$%&
(𝑠 = '

"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉$
(𝑠#] , ∀ 𝑠

𝜋)*+ 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉("#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎)𝑉(𝑠#)

𝑉 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#

𝑉$%& 𝑠 = max
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉$ 𝑠# , ∀ 𝑠

𝑄$%& 𝑠, 𝑎 = '
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾max
!!

𝑄$(𝑠#, 𝑎#)] , ∀ 𝑠, 𝑎

𝜋' 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉 𝑠#] , ∀ 𝑠

𝑉$%&
(𝑠 = '

"#

𝑃 𝑠# 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠# + 𝛾𝑉$
(𝑠#] , ∀ 𝑠

𝜋)*+ 𝑠 = argmax
!

'
"#

𝑃 𝑠# 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠# + 𝛾𝑉("#$ 𝑠# , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Why Expectimax?

Pretty great model for an agent in the world
Choose the action that has the: highest expected value

Bonus Question
Let’s say you know that your opponent is actually running a depth 1
minimax, using the result 80% of the time, and moving randomly
otherwise
Question: What tree search should you use?
A: Minimax
B: Expectimax
C: Something completely different

