Announcements Aq

Assignments: 0
- w J P —l’oi \Ma\} 8 UOO/%

= Due Tue 2/7, 10 pm

= P1:Search and Games
o doys
= Due Mon 2/6, 10 pm I (e 2 (C\ N A

= Submit to Gradescope early and as often as you like
Recitation:
= Last week to “shop around”

= Stay tuned to Piazza for informal recitation switch form

Outlook: HW4 due 2/14, Exam 1 2/16

Plan

Last Time
= Constraint Satisfaction Problems

Today
= (CSPs continue RV, LCV)

= | ocal Search

Back to CSPs Lecture

Al: Representation and Problem Solving
Local Search

Instructor: Stephanie Rosenthal

Slide credits: CMU Al, http://ai.berkeley.edu

Local Search

e Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

* For identification problems, we use a/complete-state formulation
e.g., all variables assigned in a CSP (may notsatisfy all the constraints)

* For planning problems, typically we make@cal decisions.)
e.g., not a plan all the way to the goal or not a deep search

Iterative Improvement for CSPs

v
E
(=

/ y >

= W

A _\

9
°
N

lterative Improvement for CSPs

e Start with an arbitrar assignment,k iteratively reassign variable values

* While not solved,
» Variable selection: randomly select a conflicted variable

* Value selection with min-conflicts heuristic h: Choose a value that violates the fewest
constraints (break tie randomly)

xi—xj| #li—jl,Vi+]j

| W
:>w.
L

* For n-Queens: Variables x; € {1..n}; Constraints x; # x;,

=5
]
o

lterative Improvement for CSPs

* Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)! -

* Same for any randomly-generated CSP except in a narrow range of the ratio

R number of constraints N sk)
number of variables
CPU
time

|
critical
ratio

Local Search

* A local search algorithm is...
* Optimal if it_.always finds a global minimum/maximum heuristic value

\s

Will an iterative improvement algorithm for
CSPs always find a solution?

No! May get stuck in a local optima

State-Space Landscape

In identification problems, could be a function measuring how close you are to a
valid solution, e.g., —1X #conflicts in n-Queens/CSP

objectixe function al maximum

What's the difference between

shoulder and flat local maximum

(both are plateaux)?
shoulder

local maximum
"flat" local maximum

\p\ O\JTQG\\)

»state space
current R

state

Hill Climbing (Greedy Local Search)

* Simple, general idea:
e Start wherever
* Repeat: move to th’neighboring" state
(successor state) instead of picking variable
randomly

* If no neighbors better than curren

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «— MAKE-NODE(problem . INITIAL-STATE) What if there is a tie?
loop do |

|nez’ghb0r « a highest-valued successor of current Typically break ties randomly
if neighbor. VALUE < current. VALUE then|return current.STATE

current — neighbor \what if we do not stop here? Make a sideway move if “="

—_——

* In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
* Takes 4 steps on average when it succeeds, and 3 steps when it fails

* When allow for <100 consecutive sideway moves, soIve@ of problem instances
* Takes 21 steps on average when it succeeds, and 64 steps when it fails

Poll 1: Hill Climbing

Objective Function

| /

1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?

X—->AY—->D,Z->FE
W.)X —->B,Y—>D,Z—->E
M. X ->B,Y—>E,Z->E
V. 1don’t know

State Space

>

Variants of Hill Climbing

* Random-restart hill climbing
* “If at first you don’t succeed, try, try again.”
* What kind of landscape will random-restarts hill climbing work the best?

e Stochastic hill climbing

* Choose randomly from the uphill moves, with probability dependent on the
“steepness” (i.e., amount of improvement)

* Converge slower than steepest ascent, but may find better solutions

* First-choice hill climbing

* Generate successors randomly (one by one) until a better one is found
» Suitable when there are too many successors to enumerate

Variants of Hill Climbing

» What if variables are continuous, e.g. find x € [0,1] that maximizes f(x)?
* Gradient ascent
* Use gradient to find best direction
* Use the magnitude of the gradient to determine how big a step you move

objecti\‘e function lobal maximum

shoulder

N

local maximum
"flat" local maximum

= Value space of variables

current
state

Random Walk

e Uniformly randomly choose a neighbor to move to
e Save the best you’ve seen so far

e Stop after K moves

* What happens to the solution as K increases?

Simulated Annealing

* Combines random walk and hill climbing

* Inspired by statistical physics

* Annealing — Metallurgy
* Heating metal to high temperature then cooling
* Reaching low energy state

e Simulated Annealing — Local Search
* Allow for downhill moves and make them rarer as time goes on
* Escape local maxima and reach global maxima

Simulated Annealing

inputs: problem, a problem

——fort=1tocodo Clme

——>current < MAKE-NODE(problem.INITIAL-STATE)

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

schedule, a mapping from time to “temperature”

T — schedule(t) <=— T~ Qgﬁ‘é(blme change of
lthhen return current temperature T (l over tlme)

AFE « next.VALUE — current.VALUE
"553’%? if AF > 0 then current «— next

next «— a randomly selected successor of cu

e

—r
else current «— next only with probabilit{ eAE/T

ATmost the same as hill climhij
except for a random successor

>Un|ike hill climbing, move

N~ —

downhill with some prob.

0&\6\/\/\ s k“\f

o (

“A. Decrease T, decrease AE
PO | | 2 . B. Decrease T, increase AE

S Increase T, decrease AE
Which of the following will make it more Increase T, increase AE
likely that we’ll take a downward step?

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature” Q E < Q

/

current < MAKE-NODE(problem INITIAL-STATE) \ > O
fort=1toocodo \

T «— schedule(t) -\

< _

if 7' =0 then return current %EE - o ‘3 ¢

nexrt «—— a randomly selected successor of current — ZA B /Y T

AFE < next.VALUE — current.VALUE —~ s\ L\

| ——— if AE > 0 then current < next - /Z . CD\
else current — next only with probability e2£/L e -

Decrease T, decrease AE
Decrease T, increase AE
Increase T, decrease AE
Increase T, increase AE

Poll 2:

Which of the following will make it more
likely that we’ll take a downward step?

o0 wp

AE is negative but should be close to O,
T should be big because of E’s negative

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current <« MAKE-NODE(problem .INITIAL-STATE)
fort=1toocdo
T «— schedule(t)
if 7' =0 then return current
nexrt «—— a randomly selected successor of current
AFE < next.VALUE — current.VALUE

if AE > 0 then current < next
else current «— next only with probability e2 £/ ;\

Simulated Annealing

» P[move downhill] = eAE/T

* Bad moves are more likely to be allowed when T
is high (at the beginning of the algorithm)

* Worse moves are less likely to be allowed

* Guarantee: If T decreased slowly enough, will converge to optumai state!

 But! In reality, the more downhill steps you need to escape a local optimum, the
less likely you are to eyer make them all in a row

Summary: Local Search

 Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offspring” in each iteration
* Do not maintain_a search tree or multiple paths
* Typically, do not retain the path to the node

* Advantages
* Use little memory

» Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

