Announcements

Assignments:

- HW3 (online)
 - Due Tue 2/7, 10 pm
- P1: Search and Games
 - Due Mon 2/6, 10 pm
 - Submit to Gradescope early and as often as you like

up to 2 late days

Recitation:

- Last week to "shop around"
- Stay tuned to Piazza for informal recitation switch form

online

Outlook: HW4 due 2/14, Exam 1 2/16

Plan

Last Time

Constraint Satisfaction Problems

Today

- CSPs continued (MRV, LCV)
- Local Search

Back to CSPs Lecture

AI: Representation and Problem Solving Local Search

Instructor: Stephanie Rosenthal

Slide credits: CMU AI, http://ai.berkeley.edu

Local Search

- Can be applied to identification problems (e.g., CSPs), as well as some planning and optimization problems
- For identification problems, we use a complete-state formulation e.g., all variables assigned in a CSP (may not satisfy all the constraints)
- For planning problems, typically we make local decisions. e.g., not a plan all the way to the goal or not a deep search

Iterative Improvement for CSPs

Iterative Improvement for CSPs

- Start with an arbitrary assignment, iteratively reassign variable values
- While not solved,
 - Variable selection: randomly select a conflicted variable
 - Value selection with min-conflicts heuristic h: Choose a value that violates the fewest constraints (break tie randomly)
- For *n*-Queens: Variables $x_i \in \{1..n\}$; Constraints $x_i \neq x_j$, $\left|x_i x_j\right| \neq |i j|$, $\forall i \neq j$

Iterative Improvement for CSPs

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- Same for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Local Search

- A local search algorithm is...
 - Optimal if it always finds a global minimum/maximum heuristic value

Will an iterative improvement algorithm for CSPs always find a solution?

No! May get stuck in a local optima

State-Space Landscape

In identification problems, could be a function measuring how close you are to a valid solution, e.g., $-1 \times$ #conflicts in n-Queens/CSP

Hill Climbing (Greedy Local Search)

• Simple, general idea:

Hill Climbing (Greedy Local Search)


```
function HILL-CLIMBING(problem) returns a state that is a local maximum
  current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
                                                              What if there is a tie?
  loop do
                                                           Typically break ties randomly
      neighbor \leftarrow a highest-valued successor of current
      if neighbor. Value \leq current. Value then return current. State
      current \leftarrow neighbor What if we do not stop here? Make a <u>sideway</u> move if "="
```

- In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
 - Takes 4 steps on average when it succeeds, and 3 steps when it fails
- When allow for ≤ 100 consecutive sideway moves, solves 94% of problem instances
 - Takes 21 steps on average when it succeeds, and 64 steps when it fails

Poll 1: Hill Climbing

Variants of Hill Climbing

- Random-restart hill climbing
 - "If at first you don't succeed, try, try again."
 - What kind of landscape will random-restarts hill climbing work the best?
- Stochastic hill climbing
 - Choose randomly from the uphill moves, with probability dependent on the "steepness" (i.e., amount of improvement)
 - Converge slower than steepest ascent, but may find better solutions
- First-choice hill climbing
 - Generate successors randomly (one by one) until a better one is found
 - Suitable when there are too many successors to enumerate

Variants of Hill Climbing

- What if variables are continuous, e.g. find $x \in [0,1]$ that maximizes f(x)?
 - Gradient ascent
 - Use gradient to find best direction
 - Use the magnitude of the gradient to determine how big a step you move

Random Walk

- Uniformly randomly choose a neighbor to move to
- Save the best you've seen so far
- Stop after K moves
- What happens to the solution as K increases?

Simulated Annealing

- Combines random walk and hill climbing
- Inspired by statistical physics
- Annealing Metallurgy
 - Heating metal to high temperature then cooling
 - Reaching low energy state
- Simulated Annealing Local Search
 - Allow for downhill moves and make them rarer as time goes on
 - Escape local maxima and reach global maxima

Simulated Annealing

downhill with some prob.

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
          schedule, a mapping from time to "temperature"
\Rightarrow current \leftarrow Make-Node(problem.Initial-State)
\rightarrow for t = 1 to \infty do time
                                      Control the change of
      temperature T (\downarrow over time)
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
                                                         Almost the same as hill climbing
      \Delta E \leftarrow next. Value - current. Value
                                                         except for a random successor
      if \Delta E > 0 then current \leftarrow next
                                                         Unlike hill climbing, move
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Poll 2:

Which of the following will make it more likely that we'll take a downward step?

- A. Decrease T, decrease ΔE
- B. Decrease T, increase ΔE
- \mathcal{L} Increase T, decrease ΔE
- D. Increase T, increase ΔE

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature"

current \leftarrow Make-Node(problem.Initial-State)

for t=1 to \infty do

T \leftarrow schedule(t)

if T=0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow next. \text{Value} - current. \text{Value}

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{\Delta E/T}
```

Poll 2:

Which of the following will make it more likely that we'll take a downward step?

- A. Decrease T, decrease ΔE
- B. Decrease T, increase ΔE
- C. Increase T, decrease ΔE
- D. Increase T, increase ΔE

 ΔE is negative but should be close to 0, T should be big because of E's negative

Simulated Annealing

- $P[\text{move downhill}] = e^{\Delta E/T}$
 - Bad moves are more likely to be allowed when T is high (at the beginning of the algorithm)
 - Worse moves are less likely to be allowed

• But! In reality, the more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row

Summary: Local Search

- Maintain a constant number of current nodes or states, and move to "neighbors" or generate "offspring" in each iteration
 - Do not maintain a search tree or multiple paths
 - Typically, do not retain the path to the node
- Advantages
 - Use little memory
 - Can potentially solve large-scale problems or get a reasonable (suboptimal or almost feasible) solution