
Announcements
Recitation change form closes tonight!
Assignments:
§ P2: Optimization

§ Due Thurs 2/23, 10pm 
§ HW4 (online)

§ Covers LP, IP
§ Due Tues 2/14, 10 pm (Happy Valentine’s Day)

EXAM 1 2/16!!



Plan
Last Time
§ Linear programming formulation

§ Problem description
§ Graphical representation
§ Optimization representation

Today
§ Solving linear programs
§ Higher dimensions than just 2
§ Integer programs



From last time…



Poll 4 (already completed)
What is the relationship between the half plane:

𝑎! 𝑥! + 𝑎" 𝑥" ≤ 𝑏!
and the vector:

𝑎!, 𝑎" #

𝑥!

𝑥"

Feasible

Infeasible

I II

III
IV



Question
Given the cost vector 𝑐!, 𝑐" # and initial point 𝒙(%),
Which unit vector step △ 𝒙 will cause 𝒙(!) = 𝒙(%) +△ 𝒙
to have the lowest cost 𝒄#𝒙(!)?

Notation Alert!

𝒄
I II

III
IV



Cost Contours
Given the cost vector 𝑐!, 𝑐" # where will
𝒄#𝒙 = 0 ?
𝒄#𝒙 = 1 ?
𝒄#𝒙 = 2 ?
𝒄#𝒙 = -1 ?
𝒄#𝒙 = -2 ?



Question
As the magnitude of 𝒄 increases, the distance between
the contours lines of the objective 𝒄#𝒙:

A) Increases

B) Decreases



AI: Representation and Problem Solving
Integer Programming

Instructor: Stephanie Rosenthal
Slide credits: CMU AI with drawings from http://ai.berkeley.edu



Solving a Linear Program

min
𝒙
. 𝒄#𝒙

Inequality form, with no constraints



Solving a Linear Program

min
𝒙
. 𝒄#𝒙

s.t. 𝑎!𝑥! + 𝑎"𝑥" ≤ 𝑏

Inequality form, with one constraint



Poll 1

min
𝒙
. 𝒄#𝒙

s.t. 𝑎!𝑥! + 𝑎"𝑥" ≤ 𝑏

True or False: A minimizing LP with exactly one constraint, will always 
have a minimum objective at −∞.



Question

min
𝒙
. 𝒄#𝒙

s.t. 𝑎!!𝑥! + 𝑎!"𝑥" ≤ 𝑏!
𝑎"!𝑥! + 𝑎""𝑥" ≤ 𝑏"

True or False: A minimizing LP with exactly two constraints, will always 
have a minimum objective > −∞.



Convexity
Convex sets are those in which you can draw a line 
between two points and all the points between 
them are also in the set

Convex optimization problems are ones in which 
the local minimum is also the global minimum

Convex functions have the property that for any 
point between two points x and y in a convex set: 
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

Linear functions (like our costs) are convex!

��

*VU]L_�ZL[

�

5VUJVU]L_�ZL[

*VU]L_�M\UJ[PVU 5VUJVU]L_�M\UJ[PVU

f1(x) f2(x)

(x, f (x))
(y, f (y))



Convexity and LPs
LPs are constrained convex problems. 
The constraints form a convex set
The objective function is convex
What does this tell us about the costs at the corners of a constrained polygon? 



Bigger Picture

Constrained

Unconstrained

Convex Nonconvex
Most machine 

learning

Linear 
programming

Deep learning

Integer 
programming



Convexity and LP Solutions
Solutions are at feasible intersections
of constraint boundaries!!



Solving an LP
Solutions are at feasible intersections
of constraint boundaries!!
Algorithm
§ Check objective at all feasible 

intersections

In more detail:
1. Enumerate all intersections
2. Keep only those that are feasible 

(satisfy all inequalities)
3. Return feasible intersection with 

the lowest objective value



Solving an LP
But, how do we find the intersection between boundaries?

min
𝒙

𝒄#𝒙
s.t. 𝐴𝒙 ⪯ 𝒃

𝐴 =
−100 −50
100
3
−20

50
4
−70

𝒃 =

−2000
2500
100
−700

Calorie min
Calorie max
Sugar
Calcium



Solving an LP
Solutions are at feasible intersections
of constraint boundaries!!
Algorithms
§ Check objective at all feasible 

intersections
§ Simplex



Solving an LP
Simplex algorithm
§ Start at a feasible intersection (if 

not trivial, can solve another LP to 
find one)

§ Define successors as “neighbors” 
of current intersection

§ i.e., remove one row from our square 
subset of A, and add another row not 
in the subset; then check feasibility

§ Move to any successor with lower 
objective than current intersection

§ If no such successors, we are done

Greedy local hill-climbing search! … but always finds optimal solution



Solving an LP
Solutions are at feasible intersections
of constraint boundaries!!
Algorithms
§ Check objective at all feasible 

intersections
§ Simplex
§ Interior Point

Figure 11.2 from Boyd and Vandenberghe, Convex Optimization



What about higher dimensions?

min
𝒙

𝒄-𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

Problem 
Description

Graphical Representation

Optimization 
Representation



“Marty, you’re not thinking fourth-dimensionally”

https://www.youtube.com/watch?v=CUcNM7OsdsY

https://www.youtube.com/watch?v=CUcNM7OsdsY


Shapes in higher dimensions
How do these linear shapes extend to 3-D, N-D?

𝑎! 𝑥! + 𝑎" 𝑥" ≤ 𝑏!

𝑎!,! 𝑥! + 𝑎!," 𝑥" ≤ 𝑏!
𝑎",! 𝑥! + 𝑎"," 𝑥" ≤ 𝑏"
𝑎),! 𝑥! + 𝑎)," 𝑥" ≤ 𝑏)
𝑎*,! 𝑥! + 𝑎*," 𝑥" ≤ 𝑏*

𝑎! 𝑥! + 𝑎" 𝑥" = 𝑏!



What are intersections in higher dimensions?
How do these linear shapes extend to 3-D, N-D?

min
𝒙

𝒄#𝒙
s.t. 𝐴𝒙 ⪯ 𝒃

𝐴 =
−100 −50
100
3
−20

50
4
−70

𝒃 =

−2000
2500
100
−700

Calorie min
Calorie max
Sugar
Calcium



How do we find intersections in higher dimensions?

min
𝒙

𝒄#𝒙
s.t. 𝐴𝒙 ⪯ 𝒃

𝐴 =
−100 −50
100
3
−20

50
4
−70

𝒃 =

−2000
2500
100
−700

Calorie min
Calorie max
Sugar
Calcium

Still looking at subsets of 𝐴 matrix



Linear Programming
We are trying to stay healthy by finding the optimal food to purchase.
We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals
§ 2000 ≤ Calories ≤ 2500
§ Sugar ≤ 100 g
§ Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per oz) 1 100 3 20

Boba (per fl oz) 0.5 50 4 70

What is the cheapest way to stay “healthy” with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Linear Programming à Integer Programming
We are trying healthy by finding the optimal amount of food to purchase.
We can choose the amount of stir-fry (bowls) and boba (glasses).

Healthy Squad Goals
§ 2000 ≤ Calories ≤ 2500
§ Sugar ≤ 100 g
§ Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per bowl) 1 100 3 20

Boba (per glass) 0.5 50 4 70

What is the cheapest way to stay “healthy” with this menu?
How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Linear Programming vs Integer Programming
Linear objective with linear constraints, but now with additional
constraint that all values in 𝒙 must be integers

min
𝒙
. 𝒄#𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

We could also do:
§ Even more constrained: Binary Integer Programming
§ A hybrid: Mixed Integer Linear Programming

min
𝒙
. 𝒄#𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ+

Notation Alert!



Integer Programming: Graphical Representation
Just add a grid of integer points onto our LP representation

min
𝒙
. 𝒄#𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ+



Integer Programming: Scheduling
How would we formulate our CSP as an integer program?

How would we could we solve it?



Convexity and IPs
Integer programs are not convex, but perhaps we can use the LP solvers 
to find solutions to integer programs?
Relax IP to LP by dropping integer constraints

min
𝒙
. 𝒄#𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ+

Remember heuristics?



Poll 2:
True/False: It is sufficient to consider the integer points around the 
corresponding LP solution?



Poll 3:
Let 𝑦,-∗ be the optimal objective of an integer program 𝑃.
Let 𝒙,-∗ be an optimal point of an integer program 𝑃.
Let 𝑦/-∗ be the optimal objective of the LP-relaxed version of 𝑃.
Let 𝒙/-∗ be an optimal point of the LP-relaxed version of 𝑃.
Assume that 𝑃 is a minimization problem.

Which of the following are true? Select all that apply.
A) 𝒙,-∗ = 𝒙/-∗

B) 𝑦,-∗ ≤ 𝑦/-∗

C) 𝑦,-∗ ≥ 𝑦/-∗

𝑦,-∗ = min
𝒙
. 𝒄#𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ+

𝑦/-∗ = min
𝒙
. 𝒄#𝒙

s.t. 𝐴𝒙 ⪯ 𝒃



Solving an IP
Branch and Bound algorithm
1. Push LP solution of problem into priority queue,

ordered by objective value of LP solution
2. Repeat:

§ If queue is empty, return IP is infeasible
§ Pop candidate solution 𝒙/-⋆ from priority queue 
§ If 𝒙/-⋆ is all integer valued, we are done; return solution
§ Otherwise, select a coordinate 𝑥1 that is not integer valued, and 

add two additional LPs to the priority queue: 
Left branch: Added constraint 𝑥1 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥1
Right branch: Added constraint 𝑥1 ≥ 𝑐𝑒𝑖𝑙 𝑥1

Note: Only add LPs to the queue if they are feasible



Branch and Bound Example

𝒙⋆ = 17.5,5
𝑦⋆ = 20.5

Priority Queue:
1. 𝒙⋆ = 17.5,5 , 𝑦⋆ = 20.5

𝑥" ≤ 17 𝑥" ≥ 18

𝒄 = 1, 0.6 !



Branch and Bound Example

10 15 20 25

5

10

15

10 15 20 25

5

10

15

10 15 20 25

5

10

15

𝑥" ≤ 17 𝑥" ≥ 18



Branch and Bound Example

𝒄 = 1, 0.6 !

𝒙⋆ = 17.5,5
𝑦⋆ = 20.5

𝒙⋆ = 17,6
𝑦⋆ = 20.6

𝒙⋆ = 18,4.85
𝑦⋆ = 20.91

𝑥" ≤ 17 𝑥" ≥ 18

Priority Queue:
1. 𝒙⋆ = 17,6 , 𝑦⋆= 20.6
2. 𝒙⋆ = 18,4.85 , 𝑦⋆ = 20.91



Activity + Poll
Constraints :
𝑦 = −1.4𝑥 + 4.58
𝑦 = 1.56𝑥 + 3.41
𝑦 = −1.9𝑥 + 12.16
𝑦 = .44𝑥 + 4.21

x

y

(.2,4.3)

(2.7,0.8)

(4.5,3.61)

(3.4,5.7)

C =[-1,-3]

Priority Queue:

Poll 4: What is the LP solution?
Poll 5: What is the IP solution?



Activity
Constraints :
𝑦 = −1.4𝑥 + 4.58
𝑦 = 1.56𝑥 + 3.41
𝑦 = −1.9𝑥 + 12.16
𝑦 = .44𝑥 + 4.21

x

y

(.2,4.3)

(2.7,0.8)

(4.5,3.61)

(3.4,5.7)

C =[-1,-3]

Priority Queue:
-20.5: (3.4,5.7)



Activity
Constraints :
𝑦 = −1.4𝑥 + 4.58
𝑦 = 1.56𝑥 + 3.41
𝑦 = −1.9𝑥 + 12.16
𝑦 = .44𝑥 + 4.21

x

y

(.2,4.3)

(2.7,0.8)

(4.5,3.61)

(3.4,5.7)

C =[-1,-3]

Priority Queue:
-20.5: (3.4,5.7)
-19.6: (3,5.53) (x <= 3)
-17.7: (4,4.56) (x >=4)



Activity
Constraints :
𝑦 = −1.4𝑥 + 4.58
𝑦 = 1.56𝑥 + 3.41
𝑦 = −1.9𝑥 + 12.16
𝑦 = .44𝑥 + 4.21

x

y

(.2,4.3)

(2.7,0.8)

(4.5,3.61)

(3.4,5.7)

C =[-1,-3]

Priority Queue:
-20.5: (3.4,5.7)
-19.6: (3,5.53) (x <= 3)
-17.7: (4,4.56) (x >=4)
-18.0: (3,5) (x<=3,y<=5)
Inf: (x<=3,y>=6)

Why do we not need to recurse on -17.7?


