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1 Big Picture

Problem Representation Stochastic/DeterministicGoal
Search (all types) States, Transitions, Start state,

Goal state
Deterministic Finding a path to the goal

CSPs Domains, Variables, Constraints Deterministic Finding a complete assignment
that satisfies constraints

LPs, IPs Constraints, Objective function Deterministic Assignment that minimizes ob-
jective

Planning Propositions, Actions, Start
state, Goal state

Deterministic Finding a plan (duh)

MDPs States, Actions, Transition prob-
abilities, Reward model

Stochastic Finding a policy

Bayes Nets CPT’s, queries Stochastic Finding probabilities of specific
events/queries

Game Theory Choices, Payoffs Deterministic Finding a strategy that maxi-
mizes utility

Social Choice Voting rules, candidates Deterministic Finding the winner
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2 Search

For each of the following graph search strategies, work out the order in which states are explored, as well as
the path returned by graph search. In all cases, break ties in alphabetical order. The start and goal state
use letter S and G, respectively. Remember that in graph search, a state is explored only once.

(a) Depth-first search.

States Explored: Start, A, C
Path Returned: Start-A-C-Goal

(b) Breadth-first search.

States Explored: Start, A, B, D, C
Path Returned: Start-D-Goal

(c) Uniform cost search.

States Explored: Start, A, B, D, C
Path Returned: Start-A-C-Goal

(d) Greedy search with the heuristic values h shown on the graph.

States Explored: Start, D
Path Returned: Start-D-Goal

(e) A⋆ search with the same heuristic.

States Explored: Start, A, D, B, C
Path Returned: Start-A-C-Goal
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3 Adversarial Search

Warm up

1. What is the advantage of adding alpha-beta pruning to a minimax algorithm?

It on average speeds up minimax algorithms by reducing the number of nodes that need to be exam-
ined.This is achieved by “pruning” nodes which have been found not to change the result produced by
thealgorithm.

2. Give two advantages of Iterative Deepening minimax algorithms over Depth Limited minimax algo-
rithms.

I) Solution availability: You always have the solution of the previous iteration available during the
execution of the current iteration (this is particularly useful when under a time constraint).

II) Information gleaned during the current iteration can be employed to increase pruning in successive
iterations (Recall HW2 Question 5). Because successive iterations require exponentially more time,
and searching at lower depths is typically insignificant while increased pruning at higher depths can be
very significant.

Expectiminimax

The following three questions are about the following adversarial “chance” tree.

1. Calculate the EXPECTIMINIMAX values for nodes B, C and D in the above adversarial “chance” tree.
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EXPECTIMINIMAX(B) = .3 * 5 + .7 * 1 = 1.5 + .7 = 2.2
EXPECTIMINIMAX(C) = .4 * 2 + .2 * 3 + .4 * 9 = .8 + .6 + 3.6 = 5.0
EXPECTIMINIMAX(D) = .1 * 4 + .9 * 7 = .4 + 6.3 = 6.7

2. Which action will MAX choose, a1, a2, or a3? Why?

MAX will choose action a3 because it has the highest EXPECTIMINIMAX value.

3. If the utility values given for MIN were multiplied with a positive constant c, which action would MAX
then choose?

MAX would still choose action a3 because multiplying with a positive constant is a positive linear trans-
formation and such transformations do not change decisions made on the basis of EXPECTIMINIMAX
values.

Expectimin Pruning

For each of the leaves labeled A, B, and C in the expectimin tree below, determine which values of x would
cause the leaf to be pruned, given the information that all values are non-negative and all nodes have 3
children. Assume all children of expectation nodes have equal probability and sibling nodes are visited left
to right for all parts of this question. Assume we do not prune on equality.
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Below, write your answers as one of (1) an inequality of x with a constant, (2) ”none” if no values of x will
cause the pruning, or (3) ”any” if the node will be pruned for all values of x.

1. A:

None. No value of x can cause A to be pruned since the minimizer does not have any bound until after
A is visited

2. B:

x < 7. To prune B, the value of the first expectation node must be less than the value of the second
even if B were 0. 2+x+3

3 < 7+5
3 =⇒ x < 7

3. C:

x < 1. To prune C, the value of the first expectation node must be less than the value of the third if
both of the last two leaves had value 0. 2+x+3

3 < 6
3 =⇒ x < 1
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4 CSP Backtracking Search

1. What is the difference between MRV and LCV?

With MRV we pick the variable with the smallest number of remaining assignable values while for LRV
we pick the value that constrains the smallest number of the chosen variable’s neighbors.

2. What is the difference between forward checking and AC-3?

Forward checking only enforces consistency on arcs corresponding to a single variable while AC-3 also
enforces arc consistency for any variables whose domains were affected in the process.

3. In this problem, you are given a 3× 3 grid with some numbers filled in. The squares can only be filled
with the numbers {2, 3, . . . , 10}, with each number being used once and only once. The grid must be
filled such that adjacent squares (horizontally and vertically adjacent, but not diagonally) are relatively
prime.

x1 x2 x3

x4 x5 3

4 x6 2

We will use backtracking search to solve the CSP with the following heuristics:

• Use the Minimal Remaining Values (MRV) heuristic when choosing which variable to assign next.

• Break ties with the Most Constraining Variable (MCV) heuristic.

• If there are still ties, break ties between variables xi, xj with i < j by choosing xi.

• Once a variable is chosen, assign the minimal value from the set of feasible values.

• For any variable xi, a value v is infeasible if and only if: (i) v already appears elsewhere in the grid,
or (ii) a variable in a neighboring square to xi has been assigned a value u where gcd(v, u) > 1,
which is to say, they are not relatively prime.

Fill out the table below with the appropriate values.

• Give initial feasible values in set form; x1 has already been filled out for you.

• Assignment order refers to the order in which the final value assignments are given. If xi is the
jth variable on the path to the goal state, then the assignment order for xi is j.

• In the branching column, write “yes” if the algorithm branches (considers more than one value)
at that node in the search tree (for example, x4 considers more than 1 value), and write “B” if
the algorithm backtracks at that node, meaning it is the highest node in its subtree that fails for
a value, and has to be chosen again. Also write the values it tried then failed.
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Variable Initial Feasible Values Assignment Order Final Value Branch or Backtrack?

x1 {5, 6, 7, 8, 9, 10}

x2

x3

x4

x5

x6

Variable Initial Feasible Values Assignment Order Final Value Branch or Backtrack?

x1 {5, 6, 7, 8, 9, 10} 5 6 No

x2 {5,6,7,8,9,10} 4 7 No

x3 {5,7,8,10} 6 10 No

x4 {5,7,9} 1 5 Yes

x5 {5,7,8,10} 2 8 B: 7

x6 {5,7,9} 3 9 B: 7

To get started, we can assign 5 to x4. This forces us to cross 5 off the remaining values for each of the
other variables. We additionally have to cross off 10 from x1 and x5 since 5 and 10 are not relatively
prime. Next, we assign 7 to x5. Then, we assign 9 to x6 since this is the only value left in its domain.
Next, we can consider the value 6 for x1. However, that leaves no value for x2 to take on so instead, we
backtrack and consider changing the values of x5 and x6 until we settle on 8 for x5 and 9 for x6. This
leaves the values of 7, 6, and 10 for x2, x1, and x3 respectively (the process is more clearly laid out in
the following diagram).
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5 Local Search

1. Warm-up Questions

(a) In what ways are genetic algorithms and local beam search similar? How are they different?

Both start with k randomly generated states and choose a set of ”best” successors. Genetic
algorithms use a fitness function to rank the states, which influences which states get paired in
selection. Additionally, genetic algorithms contain crossover, which combines two parents, and
random mutation for each child state.

(b) What is the difference between first-choice hill climbing and random-restart hill climbing?

First-choice hill climbing: randomly generate successors until a better one is found
Random-restart hill climbing: randomly generate a start state and perform hill climbing from
there

(c) What are some pros and cons of local beam search?

Pros: quickly abandons unfruitful searches and moves resources to where the most progress is
being made
Cons: can suffer from a lack of diversity among the k states. States can quickly become concen-
trated in a small region of the state space, making the search little more than an expensive version
of hill climbing

2. Of the local search algorithms we have discussed, which one(s) would perform best in a continuous
state space and why?

First-choice hill climbing and simulated annealing: both of these search algorithms do not have infinite
branching factors, so they would be able to handle continuous state spaces. AIMA Page 129 includes
more discussion on local search in continuous spaces.

3. What are the disadvantages and advantages of allowing sideways moves? How can we modify our search
algorithm to address the disadvantages?

Advantage: the algorithm can find a better state if we make a sideways move along a shoulder.
Disadvantage: allowing sideways moves could result in an infinite loop if we are at a local maximum.
One potential modification to address this disadvantages would be to limit the number of consecutive
sideways moves taken.
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6 LP/IP

It’s the holiday season and Santa Claus is getting ready to deliver lots of presents this year. However, he is
struggling to pack everything, especially since there are a lot of perishable and fragile items. He needs help
in determining how much dry ice and packing peanuts to use.

Let x1 represent pounds of dry ice and let x2 represent pounds of packing peanuts. We assume we can
use a fraction of a pound of dry ice or packing peanuts. Santa has given us the following requirements:

• Santa only has room to spare for 10 bags of these materials. One pound of dry ice fits in one bag while
one pound of packing peanuts takes up two bags.

• Santa needs to ensure that the temperature of the storage compartment of his sleigh is at most -2
degrees. One pound of dry ice decreases the temperature by 3 degrees while one pound of packing
peanuts increases the temperature by 1 degree.

• Santa needs to ensure that the gifts are properly cushioned by these packaging materials. A pound
of dry ice provides 2 units of “protectiveness” and a pound of packing peanuts provides 1 unit of
“protectiveness”. Santa wants there to be at least 3 units of “protectiveness”.

• Unfortunately, Santa is on a tight budget this year so he is trying to minimize costs. One pound of dry
ice costs $0.5 and one pound of packing peanuts costs $1.

1. Represent the following problem as an LP and graph the constraints in the provided graph.

minx c
Tx st Ax ≤ b where A =


−1 0
0 −1
−3 1
1 2
−2 −1

, b =


0
0
−2
10
−3

, c =
[
0.5
1

]
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2. Which rows in A correspond to the lines in the graph?

ip_sol.pdf

3. What would the optimal solution be?

The optimal point would be (1.5, 0).

4. If Santa didn’t know the cost of dry ice and packing peanuts, what would be a cost vector that makes
the optimal solution (1, 1)?

A possible cost vector would be [1, 0].

5. List four cost vectors that will lead to an infinite number of solutions.[
2
1

]
,

[
−1
−2

]
,

[
3
−1

]
,

[
0
1

]

6. If Santa can only add dry ice and packing peanuts in increments of 1 pound (ie. he cannot divide a
pound up) which constraints (and corresponding priorities) get pushed onto the priority queue in the
first iteration of Branch and Bound?

x1 ≤ 1 with priority 1.5
x1 ≥ 2 with priority 1

7. What is the IP solution to this problem?

(2, 0) with cost 1
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7 Propositional Logic

1. Warm Up: Are you familiar with these terms?

• Symbols

Variables that can be T/F (capital letter)

• Operators

and, or, not, implies, equivalent

• Sentences

Symbols connected with operators, can be T/F

• Literals

atomic sentence

• Knowledge Base

Sentences agents know to be true

• Entailment

α entails β iff ∀ models that causes α to be true, β is also true

• Query

A sentence we want to know whether it’s true (usually we want to know whether KB entails q)

• Satisfiable

At least one model makes the sentence true

• Valid

True for all models

• Clause - Definite, Horn clauses

Clause - disjunction of literals; definite - clause with exactly one positive literal, horn - clause with
at most one positive literal

• Model Checking

Enumerating all possible models and using that to check entailment/satisfiability

• Theorem Proving

Search for a sequence of proof steps. (e.g. Forward Chaining)

• Modus Ponens

From P, (P −→ Q), infer Q

2. Assume we have the following propositions: BatteryDead,RadioWorks,OutOfGas, and CarStarts
(You may use the abbreviations B,R,O,C in your answer).

(a) What is the total number of possible models?
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4 variables, hence 24 = 16 models

(b) How many models are there in which the following sentence is false?
(RadioWorks ∧ CarStarts) =⇒ (¬OutOfGas ∧ ¬BatteryDead)

An implication is false if the premise is true and the conclusion is false. There are 4 models where
R ∧C is true, The negated conclusion is ¬(¬O ∧¬B) which is just O ∨B, and this is true in 3 of
the 4 models

(c) Is the above sentence equivalent to a set of Horn clauses? Explain.

Yes. It is equivalent to R∧C¬O and R∧C =⇒ ¬B. In clause form these become ¬R∨¬C ∨¬O
and ¬R ∨ ¬C ∨ ¬B. These clauses have zero positive literals and hence are Horn.

(d) Prove that the above sentence is not entailed by the sentence RadioWorkds =⇒ ¬BatteryDead.

To prove that A does not entail B, one simply has to provide a model where A is true and B is
false. The model is R,C,¬B,O.

3. From the knowledge base below, prove E.

The resolution algorithm involves iteratively applying the general resolution rule to derive new clauses
which will (hopefully) lead to a contradiction.
The general resolution rule has the following format:

a1 ∨ · · · ∨ am ∨ b ¬b∨ c1 ∨ . . . cn a1 ∨ · · · ∨ am ∨ c1 ∨ . . . cn We can show that this works by considering
the unit clause case - resolving (a ∨ b) ∧ (¬b ∨ c). By the law of excluded middle, exactly one of the
following cases must hold:
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Case 1: b is true
In this case, c must be true for the clause (¬b ∨ c) to evaluate to true.

Case 2: b is false
In this case, a must be true for the clause (a ∨ b) to evaluate to true.

Thus, a or c must be true for our original conjunction to be true.
We can inductively use this logic to show that the general resolution rule applies for arbitrary m,n ∈ N.

A couple things to note:

• Applying the resolution rule isn’t “reducing” or removing anything from our current knowledge
base - rather, we’re generating more clauses and adding them to our KB.

• It’s not necessary to resolve all possible pairs of clauses to reach a contradiction. As we can see
above, we only needed to derive ¬P1,2 to reach a contradiction.

• We can only eliminate one pair of literals at a time. To demonstrate this, consider the following
pair of clauses: (A∨P ∨Q)∧(B∨¬P ∨¬Q). We can only resolve this pair to get (A∨P ∨B∨¬P )
and (A ∨Q ∨B ∨ ¬Q) separately (which both end up evaluating to True).
What we cannot do is derive (A ∨ B). Consider the model A = False, B = False, P = True, Q
= False.

4. Indicate whether the following sentence is valid, satisfiable, or unsatisfiable. If satisfiable, give a model
such that the sentence is satisfied. Prove your answer by reducing the sentence to its simplest form.
Remember to show all the steps and write down an explanation of each step. Let T stand for
the atomic sentence True and F for the atomic sentence False.

((T ⇔ ¬(x ∨ ¬x)) ∨ z) ∧ ¬(z ∧ ((z ∧ ¬z) ⇒ x))

Unsatisfiable

((T ⇔ ¬(x ∨ ¬x)) ∨ z) ∧ ¬(z ∧ ((z ∧ ¬z) ⇒ x))

((T ⇔ (¬x ∧ x)) ∨ z) ∧ ¬(z ∧ ((z ∧ ¬z) ⇒ x)) De Morgan’s Law

((T ⇔ F ) ∨ z) ∧ ¬(z ∧ (F ⇒ x)) a ∧ ¬a is equivalent to False

(((T ⇒ F ) ∧ (F ⇒ T )) ∨ z) ∧ ¬(z ∧ (F ⇒ x)) Biconditional Elimination

(((¬T ∨ F ) ∧ (¬F ∨ T )) ∨ z) ∧ ¬(z ∧ (¬F ∨ x)) Implication Elimination

(((F ∨ F ) ∧ (T ∨ T )) ∨ z) ∧ ¬(z ∧ (T ∨ x)) Negation

((F ∧ T ) ∨ z) ∧ ¬(z ∧ T ) F ∨ F is F, T ∨ T is T, T ∨ a is T

(F ∨ z) ∧ ¬(z ∧ T ) F ∧ T is False

(F ∨ z) ∧ ¬z ∨ ¬T ) De Morgan’s Law

(F ∨ z) ∧ (¬z ∨ F )) Negation

z ∧ ¬z F ∨ a is a

F a ∧ ¬a is F

5. Indicate whether the following sentence is valid, satisfiable, or unsatisfiable. If satisfiable, give a model
such that the sentence is satisfied. Prove your answer by reducing the sentence to its simplest form.
Remember to show all the steps and write down an explanation of each step. Let T stand for
the atomic sentence True and F for the atomic sentence False.

(¬(x ∨ ¬x) ∧ y) ∨ ((x ∨ (z ⇒ ¬z)) ∧ ((x ⇒ z) ∨ ¬(F ⇒ T )))
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Satisfiable. {x: T, z: F}

(¬(x ∨ ¬x) ∧ y) ∨ ((x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ ¬(F ⇒ T )))

(¬(T ) ∧ y) ∨ ((x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ ¬(F ⇒ T ))) x ∨ ¬x is True

(F ∧ y) ∨ ((x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ ¬(F ⇒ T ))) Negation

F ∨ ((x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ ¬(F ⇒ T ))) F ∧ T is False

(x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ ¬(F ⇒ T )) F ∨ a is a

(x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ ¬(T )) F ⇒ T is True

(x ∨ (z ⇒ ¬z)) ∧ ((z ⇒ x) ∨ F ) Negation

(x ∨ (z ⇒ ¬z)) ∧ (z ⇒ x) a ∨ F is a

(x ∨ (¬z ∨ ¬z)) ∧ (z ⇒ x) Implication Elimination

(x ∨ ¬z) ∧ (z ⇒ x) a ∨ a is a

(x ∨ ¬z) ∧ (¬z ∨ x) Implication Elimination

x ∨ ¬z a ∧ a is a
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8 Satisfiability and Planning

Up until now we have assumed that the plans we create always make sure that an actions preconditions
are satisfied. Let us now investigate what propositional successor-state axioms such as HaveArrowt+1 ⇐⇒
(HaveArrowt ∧ ¬Shoott) have to say about actions whose preconditions are not satisfied.

(a) First, let us consider what successor-state axioms are. How do they differ from action axioms, and why
might we choose to use them?

Action axioms give us the conditions needed at the current state for an action to be carried out at the
current state. Successor state axioms are axioms outlining what preconditions in the current state need
to be true in order to ensure that the state at the next timestep will be as specified. By definition,
it is an axiom that sets the truth value of F t+1 (where F is some fluent, or changeable variable in an
environment) in one of two ways:

• The action at time t causes F to be true at t+ 1 (which refers to ActionCausesF t)

• F was already true at time t and the action at time t does not cause it to be false.

It has the following schema: F t+1 ⇐⇒ ActionCausesF t ∨ (F t ∧ ¬ActionCausesNotF t).

We use successor state axioms to ensure that each state we compute is the result of legal action. Also,
writing only in terms of action axioms can become overwhelming, if there are a lot of time-dependent
variables to keep track of. Successor state axioms are what help us do this.

(b) Show that the axioms predict that nothing will happen when an action is executed in a state where its
preconditions are not satisfied.

We can illustrate the basic idea using the axiom given. Suppose that Shoott is true but HaveArrowt is
false. Then the RHS of the axiom is false, so HaveArrowt+1 is false, as we would hope. More generally,
if an action precondition is violated, then both ActionCausesF t and ActionCausesNotF t are false, so
the generic successor-state axiom reduces to F t+1 ⇐⇒ False∨ (F t∧True) which is the same as saying
F t+1 ⇐⇒ F t , i.e., nothing happens.

(c) Consider a plan p that contains the actions required to achieve a goal but also includes illegal actions.
Is it the case that successor-state axiom will allow the actions?

We recommend that you write a truth table and ask yourself the following question when looking at
the truth table:

• Can I shoot if I don’t have an arrow?

Yes, the plan plus the axioms will allow the actions and the axiom to evaluate to true; the axioms
will copy every fluent across an illegal action and the rest of the plan will still work. Note that
goal entailment is trivially achieved if we add precondition axioms, because then the plan is logically
inconsistent with the axioms and every sentence is entailed by a contradiction. Precondition axioms
are a way to prevent illegal actions in satisfiability-based planning methods (this will become clearer
once we go over First Order Logic and Planning lectures). Refer to the truth table below where A1
refers to HaveArrow1, A2 refers to HaveArrow2 and S1 refers to Shoot1.

A1 S1 A2 A1 ∧ ¬S1 A2 ⇐⇒ A1 ∧ ¬S1 Reference
F T F F T 1
F T T F F
T T F F T
T T T F F

Here, 1 refer to “Can I shoot if I don’t have an arrow?”
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Suppose we are tasked with making a plan to deliver N-95 masks around the U.S.
We use the following propositions below in a GraphPlan approach:

• at(loc): our cargo plane is at location loc

• fuel(x): the fuel level is at x , x ∈ [0, 5].

• hasFuel(loc): location loc has fuel (to re-fuel the plane with)

• hasMasks(loc): location loc has masks

Our starting state is at(Pittsburgh) ∧ fuel(5).

1. Define each action as an operator in the following table (note that we can drop the t parameter from
each predicate and action):

refuel fly(o, d) deliver
Precondition

Add

Delete

refuel fly(o, d) deliver

Precondition
at(loc), hasFuel(loc),

fuel(x)
at(o), fuel(x), x > 0,

o ̸= d
at(loc)

Add fuel(5) fuel(x− 1), at(d) hasMasks(loc)
Delete fuel(x) fuel(x), at(o)

2. Now draw the GraphPlan graph up to proposition level S1. Suppose NYC is the only other location
besides Pittsburgh.
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3. Which operators are mutually exclusive in A0? Which propositions are mutually exclusive in S1?

noop/persist on both propositions (at(Pittsburgh) and fuel(5)) and fly(Pittsburgh, NYC) have an in-
consistent effects mutex relation. fly(Pittsburgh, NYC) and deliver have an interference mutex relation.
at(NYC) and at(Pittsburgh); fuel(4) and fuel(5); fuel(4) and at(Pittsburgh); fuel(5) and at(NYC) are
mutex since all possible pairs of actions leading to these propositions are mutex.

4. In general, when does GraphPlan stop extending the graph?

GraphPlan stops extending the graph once it reaches a proposition level where all goal propositions are
present and a solution is found, or when the graph levels off, i.e., two consecutive proposition levels are
identical.

5. Is GraphPlan sound? complete? optimal (with respect to the number of actions in the plan returned)?

GraphPlan is sound, complete, but not optimal.
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9 Probability

1. Write all the possible chain rule expansions of the joint probability P (a, b, c). No conditional indepen-
dence assumptions are made.

P (a)P (b|a)P (c|a, b), P (a)P (c|a)P (b|a, c),
P (b)P (a|b)P (c|a, b), P (b)P (c|b)P (a|b, c),
P (c)P (b|c)P (a|b, c), P (c)P (a|c)P (b|a, c)

2. Determine if the following statements are true or false. No independence assumptions are made.

(a) P (A,B) = P (A|B)P (A)

False. This is not a valid application of the product rule. P (A,B) = P (A|B)P (B) would be a
valid example.

(b) P (A|B)P (C|B) = P (A,C|B)

False. This assumes that A and C are conditionally independent given B

(c) P (B,C) =
∑

a∈A P (B,C|A)

False. P (B,C) =
∑

a∈A P (A,B,C) would be a valid example.

(d) P (A,B,C,D) = P (C)P (D|C)P (A|C,D)P (B|A,C,D)

True. This is a valid application of the chain rule.

3. Let A be a random variable representing the choice of protein in the sandwich with three possible values,
{mutton, bacon, egg}, let B be a random variable representing the choice of bread with two possible val-
ues, {toast, naan}, and let K be a random variable representing the presence of ketchup or not, {+k, k}.

How many values are in each of the probability tables and what do the entries sum to?
Write ‘?’ if there is not enough information given.

Table num sum
P (A,B)

P (A,B,+k)
P (A,B | +k)
P (B | +k,A)

Table num sum
P (A,B) 6 1

P (A,B,+k) 6 ?
P (A,B | +k) 6 1
P (B | +k,A) 6 3

P (A,B) sums to 1 through marginalizing out both A and B (
∑

a

∑
b P (A = a,B = b) =

∑
a P (A =

a) = 1).
We do not know P (A,B,+k) because the resulting sum is dependent on +k (

∑
a

∑
b P (A = a,B =

b,+k) = P (+k)).
P (A,B| + k) sums to 1 through marginalizing out both A and B (

∑
a

∑
b P (A = a,B = b| + k) =∑

a P (A = a|+ k) = 1).
P (B| + k,A) sums to 3 through casing on values of A and marginalizing out B (

∑
a

∑
b P (B = b, | +

k,A = a) =
∑

b P (B = b, |+ k,A = mutton)+
∑

b P (B = b, |+ k,A = bacon)+
∑

b P (B = b, |+ k,A =
egg) = 1 + 1 + 1 = 3).
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4. Consider the following probability tables:

(a) Using the table above and the assumptions per subquestion, calculate the following probabilities
given no independence assumptions. If it is impossible to calculate without more independence
assumptions, specify the least number of independence assumptions that would allow you to answer
the question (don’t do any computation in this case).

(i) P (+a,−b)

.8 * .1 = .08

(ii) P (−a,−b,+c)

Given that C is independent of A given B

(iii) Now assume C is independent of A given B and D is independent of everything else given C.
Calculate P (+a,−b,+c,+d) or say what other independence assumptions are necessary.

.8*.1*.8*.25 = .016

(b) Which of the following expressions indicate that X is independent of Y given Z?

(i) P (X,Y |Z) = P (X|Z)P (Y |Z)

(ii) P (X|Y,Z) = P (X|Z)

(iii) P (X,Y, Z) = P (X,Z)P (Y )

(iv) None of the above

(i), (ii)

(c) Which of the following expressions are equal to P (R,S, T ) given no independence assumptions?

(i) P (R|S, T )P (S|T )P (T )

(ii) P (T, S|R)P (R)

(iii) P (T |R,S)P (R)P (S)

(iv) P (T |R,S)P (R,S)

(v) P (R|S)P (S|T )P (T )

(vi) P (R|S, T )P (S|R, T )P (T |R,S)

(vii) None of the above

(i),(ii),(iv)
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10 MDPs/RL

1. Warm Up

• What does the Markov Property state?

Markov Property states that action outcomes depend on the current state only. It states that
action outcomes do not depend on the past.

• What are the Bellman Equations, and when are they used?

The Bellman Equations give a definition of “optimal utility” via expectimax recurrence. They
give a simple one-step lookahead relationship amongst optimal utility values.

• What is a policy? What is an optimal policy?

A policy is a function that maps states to actions. π(s) gives an action for state s. An optimal
policy is a policy that maximizes the expected utility if an agent follows it.

• How does the discount factor γ affect the agent’s policy search? Why is it important?

γ determines how much the value of a state should take into account future states. The higher
the discount factor, the more one state would value distant states. Having 0 < γ < 1 also helps
our algorithms converge.

• What are the two steps to Policy Iteration?

Policy evaluation and policy improvement.

• What is the relationship between V ∗(s) and Q(s, a)?

V ∗(s) = max
a

Q(s, a)

• Exploration, exploitation, and the difference between them? Why are they both useful?

Exploration: trying out unknown actions; Exploitation: Following the known policy.

Exploration allows the agent to see if there are any other actions that lead to a better reward by
taking random actions. Exploitation guarantees that the agents get some reward at least.

• What is the difference between on-policy and off-policy learning?

For on-policy learning, it attempts to evaluate and improve the policy that is being used to make
decisions. For off-policy learning, it attempts to evaluate or improve a policy different from the
one that is being used to generate the data.

• What is the difference between model-based and model-free learning?

For model-based learning, the agent learns an approximate model based on experiences and solves
for values as if the learned model were correct. A model-free learning is an algorithm which does
not use the transition probability distribution.

• We are given a pre-existing table of Q-values (and its corresponding policy), and asked to perform
ϵ-greedy Q-learning. Individually, what effect does setting each of the following constants to 0
have on this process?

(i) α:

α is the the learning rate. It determines by how much the q-values should change each iteration
given the new information found. The smaller α, the slower the policy will approach a solution,
but the more accurate the solution would be; thus,
Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] becomes Q(s, a).
We put 0 weight on newly observed samples, never updating the Q-values we already have.
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(iii) ϵ:

By definition of an ϵ-greedy policy, we randomly select actions with probability 0 and select our
policy’s recommended action with probability 1; we exclusively exploit the policy we already
have.

• For each of the following functions, write which MDP/RL value the function computes, or none if
none apply. We are given an MDP (S,A, T, γ,R), where R is only a function of the current state
s. We are also given an arbitrary policy π.

Possible choices: V ∗, Q∗, π∗, V π, Qπ.

(i) f(s) = R(s) +
∑
s′

γT (s, π(s), s′)f(s′)

f = V π. This is only different from the given formula for V π(s) on the formula sheet in that
the reward function only depends on s here. Thus, we consider R(s) outside the summation
over s′ - and do not discount it (because the reward is wrt. our current state).

(ii) g(s) = max
a

∑
s′

T (s, a, s′)[R(s) + γmax
a′

Q∗(s′, a′)]

g = V ∗. What this function does is essentially extract optimal values from optimal Q-values.
Of our possible actions, we take the actions that yields the max sum of reward + future
discounted rewards given by Q∗, summed over all possible successor states (each weighted by
the successor’s probability).

2. MDPs - Micro-Blackjack: In micro-blackjack, you repeatedly draw a card (with replacement) that is
equally likely to be a 2, 3, or 4. You can either Draw or Stop if the total score of the cards you have
drawn is less than 6. Otherwise, you must Stop. When you Stop, your utility is equal to your total
score (up to 5), or zero if you get a total of 6 or higher. When you Draw, you receive no utility. There
is no discount (γ = 1).

(a) What are the states and the actions for this MDP?

The state is the current sum of your cards, plus a terminal state:

0, 2, 3, 4, 5, Done

The actions are {Draw, Stop}.

(b) What is the transition function and the reward function for this MDP?

The transition function is

T (s, Stop,Done) = 1

T (s,Draw, s′) =


1/3 if s′ − s ∈ {2, 3, 4}
1/3 if s = 2 and s′ = Done
2/3 if s = 3 and s′ = Done
1 if s ∈ {4, 5} and s′ = Done
0 otherwise

The reward function is
R(s, Stop, s′) = s, s ≤ 5

R(s, a, s′) = 0 otherwise
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(c) Fill out the value iteration table below. We have filled out the first row for you. (Recall that we
always initialize V0(s) to 0 for all states s.) Then, perform policy extraction and give the optimal
policy for this MDP.

V 0 2 3 4 5 Done
V0 0 0 0 0 0 0
V1

V2

V3

Policy Extraction

V 0 2 3 4 5 Done
V0 0 0 0 0 0 0
V1 0 2 3 4 5 0
V2 3 3 3 4 5 0
V3 10/3 3 3 4 5 0

Policy Extraction 10/3Draw 3Draw 3Stop 4Stop 5Stop 0Stop

The optimal policy is Draw if s ≤ 2, Stop otherwise. The optimal policy is given by taking
the argmax instead of max, after the final iteration of value iteration.

3. Ms.Pacman: While Pacman is busting ghosts, Ms. Pacman goes treasure hunting on GridWorld Island.
She has a map showing where the hazards are, and where the treasure is. From any unmarked square,
Ms. Pacman can take any of the deterministic actions (N, S, E, W) that doesn’t lead off the island.
If she lands in a hazard square or a treasure square, her only action is to call for an airlift (X), which
takes her to the terminal Done state; this results in a reward of -64 if she’s escaping a hazard, or +128
if she reached the treasure. There is no living reward.

(a) Let γ = 0.5. What are the optimal values V ∗ of each state in the grid above?

128 64 32

-64 -64 16

2 4 8

(b) Assuming you have V*, how would we compute the Q-values for each state-action pair?

Bellman equation without taking the max: Q(s, a) =
∑

s′ T (s, a, s
′)[R(s, a, s′) + γV ∗(s)].
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(c) What’s the optimal policy? You may use the grid below to fill in the optimal action for each state.

X W W

X X N

E E N

Call this policy π0.
Ms. Pacman realizes that her map might be out of date, so she uses Q-learning to see what
the island is really like. She believes π0 is close to correct, so she follows an ϵ-random policy,
ie., with probability ϵ she picks a legal action uniformly at random (otherwise, she does what π0

recommends). Call this policy πϵ.
πϵ is known as a stochastic policy, which assigns probabilities to actions rather than recommending
a single one. A stochastic policy can be defined with π(s, a), the probability of taking action a
when the agent is in state s.

(d) Write a modified Bellman update equation for policy evaluation when using a stochastic policy
π(s, a).

We’ll keep most of the original evaluation formula, but additionally sum over all possible actions
recommended by the policy, each weighted by the probability of taking that action via the policy:

V π
k+1(s) =

∑
a

π(s, a)
∑
s′

P (s′ | s, a)[R(s, a, s′) + γV π
k (s′)]
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11 Bayes’ Nets: Representation, Independence

1. For this problem, any answers that require division can be left written as a fraction.
PacLabs has just created a new type of mini power pellet that is small enough for Pacman to carry
around with him when he’s running around mazes. Unfortunately, these mini-pellets don’t guarantee
that Pacman will win all his fights with ghosts, and they look just like the regular dots Pacman carried
around to snack on.
Pacman (P ) just ate a snack , which was either a mini-pellet (+p), or a regular dot (−p), and is about
to get into a fight (W ), which he can win (+w) or lose (−w). Both these variables are unknown, but
fortunately, Pacman is a master of probability. He knows that his bag of snacks has 5 mini-pellets and
15 regular dots. He also knows that if he ate a mini-pellet, he has a 70% chance of winning, but if he
ate a regular dot, he only has a 20% chance.

(a) What is P (+w), the marginal probability that Pacman will win?

P (+w) =
∑
p

P (+w|p)P (p)

=
7

10
× 1

4
+

2

10
× 3

4
=

13

40
= 0.325

(b) Pacman won! Hooray! What is the conditional probability P (+p | +w) that the food he ate was
a mini-pellet, given that he won?

P (+p|+ w) =
P (+w,+p)

P (+w)
=

P (+w|+ p)P (+p)

P (+w)

=
7
10 × 1

4
13
40

=
7

13
≈ 0.538

Pacman can make better probability estimates if he takes more information into account. First,
Pacman’s breath, B, can be bad (+b) or fresh (−b). Second, there are two types of ghost (M):
mean (+m) and nice (−m). Pacman has encoded his knowledge about the situation in the following
Bayes’ Net:
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(c) What is the probability of the event (−m,+p,+w,−b), where Pacman eats a mini-pellet and has
fresh breath before winning a fight against a nice ghost?

P (−m,+p,+w,−b) = P (−m)P (+p)P (+w| −m,+p)P (−b|+ p) = 1
2 × 1

4 × 4
5 × 1

5 = 1
50 = 0.02

For the remaining of this question, use the half of the joint probability table that has been computed
for you below:

P (M,P,W,B)
+m +p +w +b 0.0800
+m +p +w −b 0.0150
+m +p −w +b 0.0400
+m +p −w −b 0.0100
+m −p +w +b 0.0150
+m −p +w −b 0.0225
+m −p −w +b 0.1350
+m −p −w −b 0.2025

(d) What is the marginal probability, P (+m,+b) that Pacman encounters a mean ghost and has bad
breath?

P (+m,+b) = 0.08 + 0.04 + 0.015 + 0.135 = 0.27

(e) Pacman observes that he has bad breath and that the ghost he’s facing is mean. What is the
conditional probability, P (+w | +m,+b), that he will win the fight, given his observations?

P (+w|+m,+b) = P (+w,+m,+b)
P (+m,+b) = 0.08+0.015

0.27 = 19
54 ≈ 0.352

(f) Pacman’s utility is +10 for winning a fight, -5 for losing a fight, and -1 for running away from a
fight. Pacman wants to maximize his expected utility. Given that he has bad breath and is facing
a mean ghost, should he stay and fight, or run away? Justify your answer.

Let Uf be the utility of fighting and Ur be the utility of running.

E(Uf |+m,+b) = 10× P (+w|+m,+b) + (−5)× P (−w|+m,+b)

≈ 10× 0.352− 5× 0.648

= 0.28 > −1 = Ur

Since E(Uf |+m,+b) > E(Ur|+m,+b), Pacman should stay and fight.
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2. Consider the following Bayes Net:

Determine whether the following statements hold given this Bayes Net

(a) P (A,B) = P (A)P (B)

True. This statement is true if A ⊥⊥ B. The only path from A to B is through C. For the triple
ACB, the common effect C is unobserved (and none of its descendants are observed) so this triple
is inactive. Therefore, the path ACB is inactive.

(b) A ⊥⊥ E|C

True. The only path from A to E is ACDE. Because C is observed in the causal chain triple ACD,
this triple is inactive. Therefore, the path ACDE is inactive and thus A ⊥⊥ E|C

(c) D ⊥⊥ J |I

False. The only path from D to J is DCFGHJ. For the triple ACF, the common cause C is
unobserved, so this triple is active. Every other triple on this path is a causal chain with none of
the variables being observed, so they are all active. Since every triple on this path is active, that
means the path is active as well.

(d) A ⊥⊥ B|H

False. The only path from A to B is through C. For the triple ACB, the common effect C is
unobserved, but its descendant H is observed, so this triple is active. Since all triples are active,
the path ACB is active.

(e) P (E|C) = P (E|C,G)

True. This statement is true if E ⊥⊥ G|C. The only path from E to G is EDCFG. The triple EDC
is a causal chain with none of the variables being observed, so it is an active triple. The triple
DCF is a common cause triple with C observed, so this triple is inactive. Therefore, the path
EDCFG is inactive as well.

(f) I ⊥⊥ J |G
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False. The only path from I to J is IHJ. For the triple IHJ, the common cause H is unobserved,
so this triple is active. Since all triples along this path are active, that means the path is active
as well.

(g) P (B|F ) = P (B|E,F )

False. This statement is true if B ⊥⊥ E|F . If we consider the path BCDE, all of the triples along
this path are causal chain triples with none of the variables observed, so they are all active. Since
all triples along this path are active, that means the path must be active as well.

28


	Big Picture
	Search
	Adversarial Search
	CSP Backtracking Search
	Local Search
	LP/IP
	Propositional Logic
	Satisfiability and Planning
	Probability
	MDPs/RL
	Bayes' Nets: Representation, Independence

