Warm-up as You Log In

Given

- Set actions (persistent/static)
- Set states (persistent/static)
- Function T(s,a,s_prime)

Write the pseudo code for:

function V(s) return value

that implements:

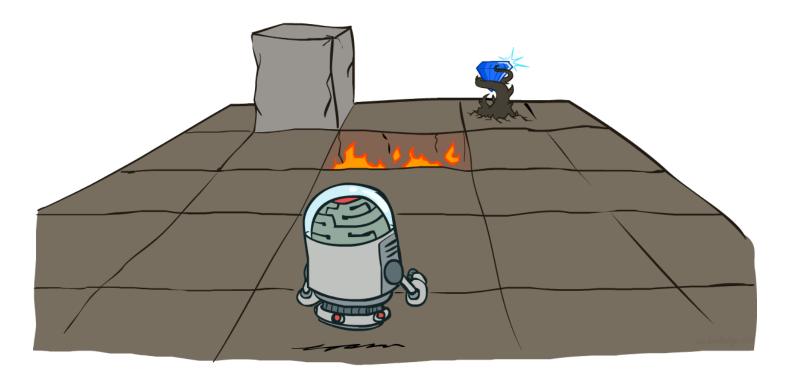
$$V(s) = \max_{a \in actions} \sum_{s' \in states} T(s, a, s')V(s')$$

Finish up Graph Plan

Jump to previous slides

AI: Representation and Problem Solving

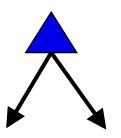
Markov Decision Processes



Instructor: Pat Virtue

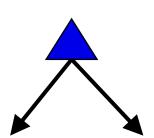
Slide credits: CMU AI and http://ai.berkeley.edu

Minimax Notation



$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$



$$\hat{a} = \underset{a}{\operatorname{argmax}} V(s'),$$
where $s' = result(s, a)$

best-action=None for a in actions

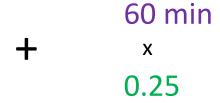
Expectations

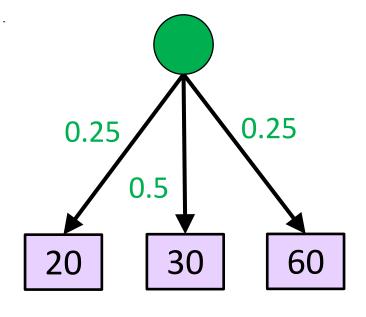
Time: 20 min X

Probability: 0.25

X

30 min





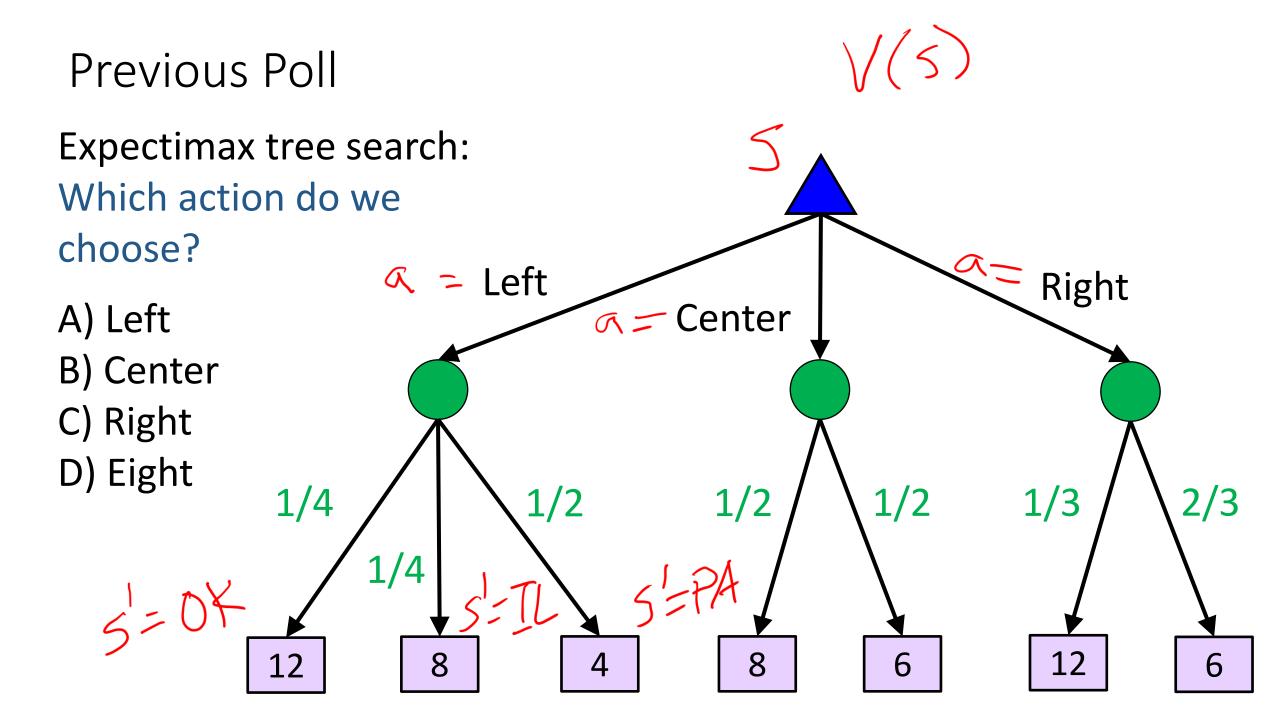
Max node notation

$$V(s) = \max_{a} V(s'),$$

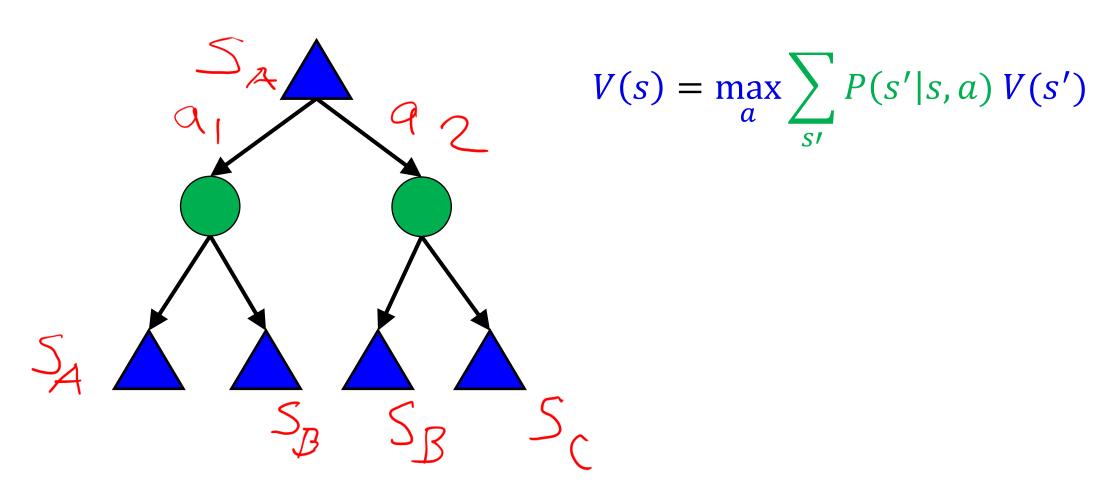
where $s' = result(s, a)$

Chance node notation

$$V(s) = \sum_{S'} P(s') V(s')$$



Expectimax Notation



Warm-up as You Log In

Given

- Set actions (persistent/static)
- Set states (persistent/static) ←
- Function T(s,a,s_prime)

Write the pseudo code for:

function V(s) return value

that implements:

$$V(s) = \max_{a \in actions} \sum_{s' \in states} T(s, a, s')V(s')$$

for a in actions:

$$sum = 0$$

 $for s' in states:$
 $t = T(s, a, s')$
 $V-s'=V(s')$

MDP Notation

Standard expectimax: $V(s) = \max_{a} \sum_{s} P(s'|s,a)V(s')$

Bellman equations: $V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$

Value iteration: $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$

Q-iteration: $Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$

Policy extraction: $\pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s$

Policy evaluation: $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$

Policy improvement: $\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$

MDP Notation

Standard expectimax:

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')]$$

Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:

$$\pi_{V}(s) = \underset{a}{\operatorname{argmax}} \sum_{S'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s$$

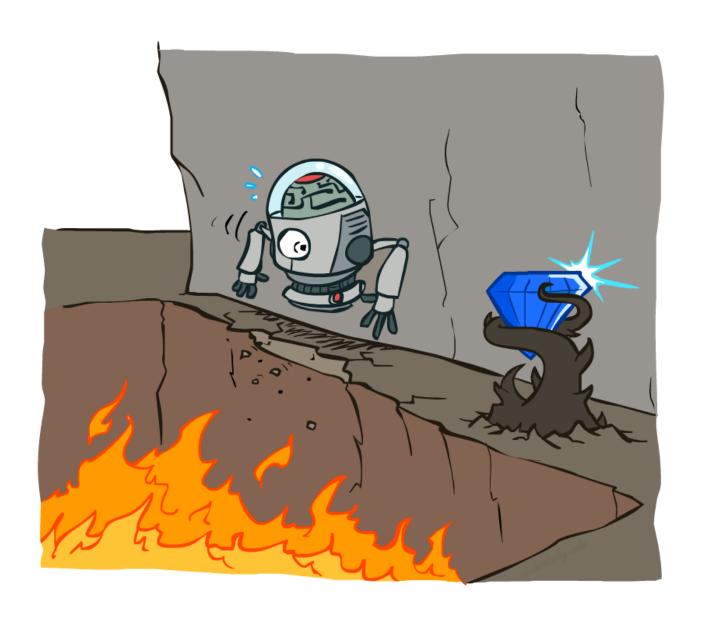
Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:

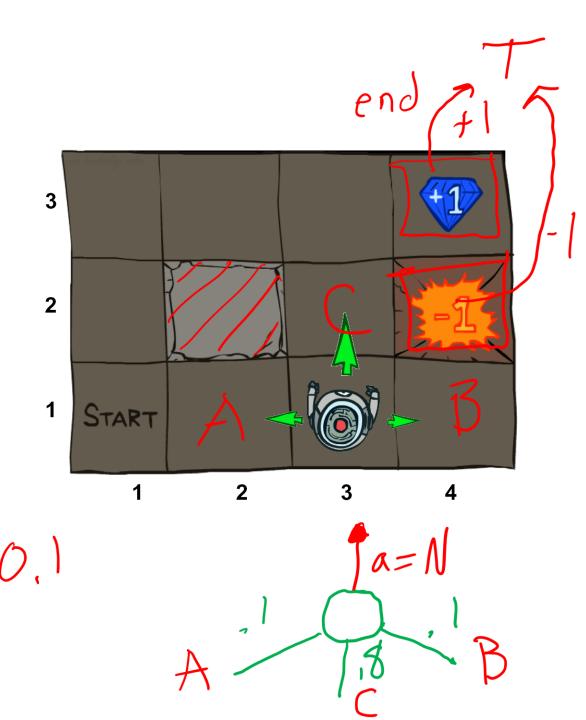
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Non-Deterministic Search

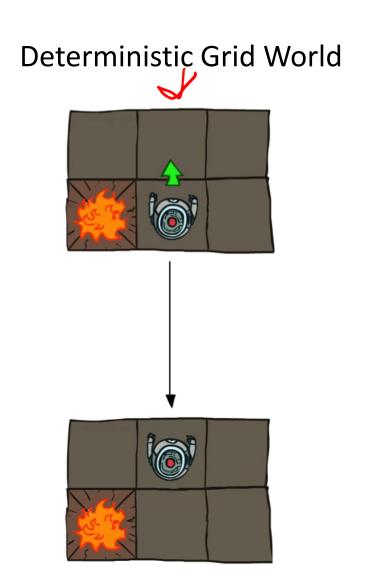


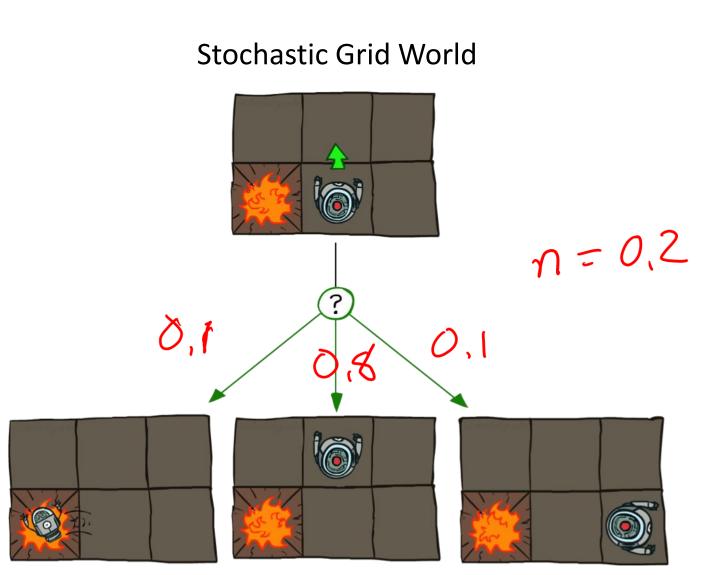
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
 - Goal: maximize sum of rewards



Grid World Actions





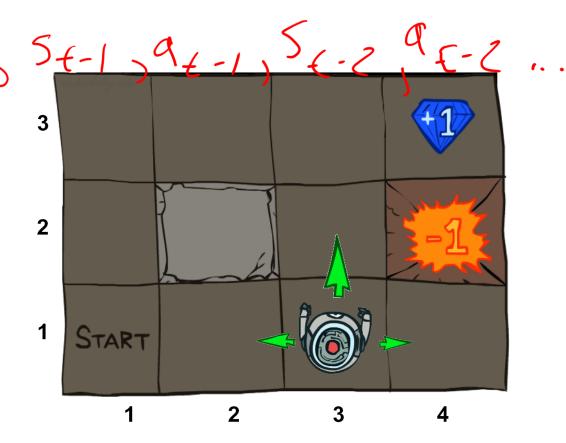
Markov Decision Processes

An MDP is defined by:

- A set of states $s \in S$
- A set of actions a ∈ A
- A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
- A reward function R(s, a, s')
 - Sometimes just R(s) or R(s') \leftarrow $R(5, \alpha)$
- Maybe a terminal state

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon



Demo of Gridworld

What is Markov about MDPs?

"Markov" generally means that given the present state, the future and the past are independent

For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Andrey Markov (1856-1922)

This is just like search, where the successor function could only depend on the current state (not the history)

Policies

 $\eta(s) \rightarrow a$

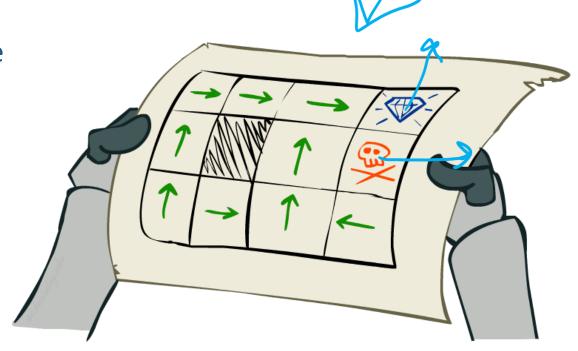
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we want an optimal policy $\pi^*: S \to A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Expectimax didn't compute entire policies

It computed the action for a single state only

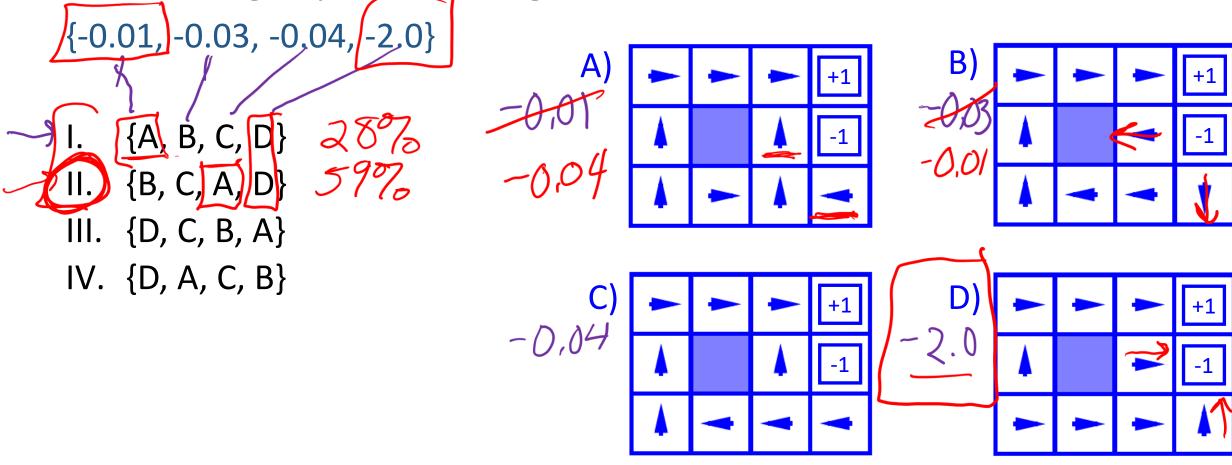


Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

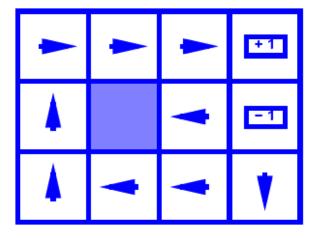
Poll 1

Which sequence of optimal policies matches

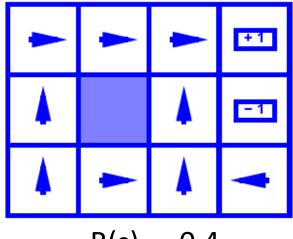
the following sequence of living rewards:



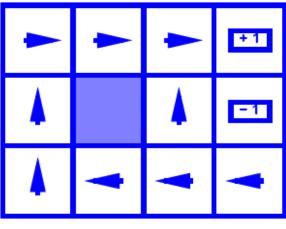
Optimal Policies



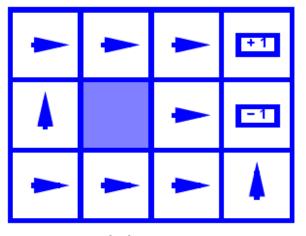
$$R(s) = -0.01$$



$$R(s) = -0.4$$



$$R(s) = -0.03$$



$$R(s) = -2.0$$

MDP Outline

MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
 - Example: GridWorld
- Policies: Mapping states → actions
- Rewards
- Discounting, γ

Solving MDPs

- Method 1) Value iteration
- Method 2) Policy Iteration

