Warm-up as you walk in: Grid World

o 1 2 3 For starting state s=(2,2), fill in

5 actions, probabilities, and next states




Al: Representation and Problem Solving

Markov Decision Processes |

Instructor: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu



Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

=  Walk-through of super-simple value iteration

= Discounting, vy A B C D

Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Bellman equations
=" Policy Extraction
= Method 2) Policy Iteration



MDP Example: Racing




MDP Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

: 1.0
Going faster gets double reward 0.5 Fast

Slow

Overheated

1.0



Racing Search Tree




Recursive Expectimax

V(s) = mc?xz: P(s'|s,a) V(s")

!/
Now with rewgrds:

V(s) = mc?xz P(s'ls,a) |[R(s,a,s") + V(s")]




T (Terminal)

Simple Deterministic Example

R(A, Exit, T) = 10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

V(s) = mc?X[R(S, a,s')+ V(s')]




T (Terminal)

Simple Deterministic Example

R(A, Exit, T) =10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

Viera () = max[R(s, a,5") + Vi(s)]




T (Terminal)

Simple Deterministic Example

R(A, Exit, T) =10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

Vir1(s) = max[R(s,a,s") + Vie(s")] .
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Utilities of Sequences




Utilities of Sequences

What preferences should an agent have over reward sequences?
More orless?  [1,2,2] or [2,3,4]

Now or later? [0,0,1] or [1,0,0]




Discounting

It’s reasonable to maximize the sum of rewards
It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially
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Worth Now Worth Next Step Worth In Two Steps




Discounting

How to discount?

= Each time we descend a level, we
multiply in the discount once

Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge
= Important: use0<y<1




Poll

What is the value of this ordered sequence of
rewards [2,4,8] withy = 0.5?

o0 wx
N o w

Bonus: What is the value of [8,4,2] withy = 0.5?



T (Terminal)

Discounting

. R(A, Exit, T) = 10 R(A, Exit, T) = 1
= Actions: B, C, D: East, West
= Actions: A, E: Exit _

" Transitions: deterministic
= Rewards only for transitioning to terminal state A B C D E

Viera () = max[R(s, @,5") + Vie(s")]

Fory =1, what is the optimal policy?

Fory =0.1, what is the optimal policy?

For which y are West and East equally good when in state D?



T (Terminal)

Discounting

. R(A, Exit, T) = 10 R(A, Exit, T) = 1
= Actions: B, C, D: East, West
= Actions: A, E: Exit _

" Transitions: deterministic
= Rewards only for transitioning to terminal state A B C D E

Viera () = max[R(s, @,5") + Vie(s")]

Fory =1, what is the optimal policy?

Fory =0.1, what is the optimal policy?

For which y are West and East equally good when in state D?



Solving MDPs




Optimal Quantities

* The value (utility) of a state s:

V*(s) = expected utility starting in s and s is a
acting optimally state
. (s,a)is a
*= The value (utility) of a g-state (s,a): g-state

Q"(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

(s,a,s’) is a
transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]



Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Snapshot of Demo — Gridworld Q Value
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Values of States

Fundamental operation: compute the (expectimax) value of a state
" Expected utility under optimal action

= Average sum of (discounted) rewards
" This is just what expectimax computed!

Recursive definition of value:

Vi(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*(s) = mngT(s, a,s’) {R(s,a, ") + ’)/V*(S,)}



Racing Search Tree




Racing Search Tree

We’re doing way too much work
with expectimax!

Problem: States are repeated

= |dea: Only compute needed quantities
once

Problem: Tree goes on forever

= |dea: Do a depth-limited computation,
but with increasing depths until
change is small

= Note: deep parts of the tree eventually
don’t matterify<1
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Time-Limited Values

Key idea: time-limited values

Define V,(s) to be the optimal value of s if the game ends in k
more time steps
= Equivalently, it’s what a depth-k expectimax would give from s

o > A
e

[Demo — time-limited values (L8D6)]



Computing Time-Limited Values
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Value lteration



Example: Value Iteration

6 a Slow |
| 0.5 (R=1) v,

Overheated

Assume no discount!

o } Vig1(s) + maXZT(S a,s’) R(s a,s) —I—’ka(s’)]

ST




K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

2

0.72 » 1.00

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

3

1.00

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

A

Cridworld Display

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

5

Cridworld Display

0.51 »| 0.72 »| 0.84 ) 1.00

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K
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Cridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0
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Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



K
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Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0



k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Value lteration



Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S, a,s) {R(s,a, s + ’)/Vk(S,)}

S

Repeat until convergence o

VALUES AFTER 0 ITERATIONS VALUES AFTER 1 ITERATIONS VALUES AFTER 2 ITERATIONS VALUES AFTER 100 ITERATIONS




Poll 1

What is the complexity of each iteration in Value Iteration?
S -- set of states; A -- set of actions

1:0(|S|[A])

: O(ISI%|A[)

I: 0(]S]141%)

IV: 0(]S1%]41%)
V: 0(IS1%)

Viet1(s) < maaxZT(s, a,s) {R(s,a, s+ ’ka(sl)}

S




Poll 1

What is the complexity of each iteration in Value lteration?
S -- set of states; A -- set of actions

1 O(]S||4])

| n:o(Is1?14) | 2
1 0(|S|1A4]%)
IV: 0(|S|]Al?)
V: 0(|S]%)

Viet1(s) < mGQXZT(s, a,s) {R(s,a, s+ 'ka(s')}

S




Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S, a,s) {R(s,a, s + q/Vk(s')}

S

Repeat until convergence e

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do




Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

[Demo: gridworld values (L9D1)]



Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

[Demo: gridworld values (L9D1)]



Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

" The optimal policy:
n"(s) = optimal action from state s

[Demo: gridworld values (L9D1)]



Gridworld Values V*

VALUES AFTER 100 ITERATIONS
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The Bellman Equations

How to be optimal:

i& Step 1: Take correct first action
(e
\

Step 2§Keep being optimal

ONN=$

Nt
=




The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values




The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s, a)



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

Q*(s,a) =) T(s,a, s [R(S, a,s’) + *ﬂ/*(s’)]




The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s,a)
Q*(s,a) =) T(s,a, s [R(S, a,s’) + *ﬂ/*(s’)] )

V*i(s) = mC?XZT(S, a,s) [R(s,a, ") + ’)/V*(S,)}

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over



MDP Notation

Standard expectimax: V(s) = mc?XZ: P(s'|s,a)V(s")
Bellman equations: V*(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]

Value iteration: Vi+1(s) = max g P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a
S/



Value lteration

Bellman equations characterize the optimal values:

V() = max 3 T(s.a,) [Rls,a) + VD] ¥

Value iteration computes them: o

Viet1(s) mngT(s, a,s’) {R(s,a, s + nyk(sl)}

S

Value iteration is just a fixed point solution method



Value Iteration Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vi+1(s)
Case 1: If the tree has maximum depth M, then V,,
holds the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

" That last layer is at best all Ry, / \ /

= |tis at worst Ry,

= But everything is discounted by y* that far out
= SoV, and V,,, are at most y* max|R| different
= So as k increases, the values converge



Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

=  Walk-through of super-simple value iteration

L/

VU 6 A B C D

= Discounting, vy é<

Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Bellman equations
=" Policy Extraction
= Method 2) Policy Iteration



Solved MDP! Now what?

What are we going to do with these values??
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Policy Extraction



Computing Actions from Values

Let’s imagine we have the optimal values V*(s) .n..
0.95 » 0.98 » 1.00
How should we act?
, . 4« 0.89 -1.00
= |t's not obvious!
.. . 0.92 4 0.91 0.80
We need to do a mini-expectimax (one step) )

7*(s) = arg gnaXZT(s, a,s)[R(s,a,s) +~yV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

Let’s imagine we have the optimal g-values:

How should we act?
=" Completely trivial to decide!

m*(s) = argmaxQ*(s,a)

Important lesson: actions are easier to select from g-values than values!



Value Iteration Notes

Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(s,a,, s [R(s,a, ") + 'ka(s’)}

S

Things to notice when running value iteration:
= |t’s slow — O(S?A) per iteration

" The “max” at each state rarely changes

* The optimal policy appears before the values converge (but we
don’t know that the policy is optimal until the values converge)

[Demo: value iteration (L9D2)]
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Cridworld Display

VALUES AFTER
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Cridworld Display

VALUES AFTER 11 ITERATIONS
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Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
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Living reward =0
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Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

=  Walk-through of super-simple value iteration

L/

VU 6 A B C D

= Discounting, vy é<

Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Bellman equations
=" Policy Extraction
= Method 2) Policy Iteration



Policy Iteration



Two Methods for Solving MDPs

Value iteration + policy extraction

= Step 1: Value iteration: calculate values for all states by running one
ply of the Bellman equations using values from previous iteration
until convergence

= Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration

Policy iteration

= Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

= Step 2: Policy improvement: update policy by running one ply of the
Bellman equations using values from policy evaluation
" Repeat steps until policy converges



Policy Evaluation




Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right Always Go Forward




Policy Evaluation: Fixed Policies

Normally: Do the optimal action Fixed policy: Do what 7t says to do

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy 1t(s), then the tree would be simpler
— only one action per state

= ... though the tree’s value would depend on which policy we fixed



Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of
a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy &:

V™(s) = expected sum of discounted rewards starting
in s and following m

Recursive relation (one-step look-ahead / Bellman
equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V7" (s)]



Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo'(s) =0

Vi 1(s8) < ZT(S, 7(s),s)[R(s,m(s),s") + V(5]

S

Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with your favorite linear system solver



Policy Improvement




Policy Iteration:

Evaluation: For fixed current policy &, find values with policy evaluation:
" [terate until values converge:

ka—f—l(s) — Y T(s,m;(s), s") {R(S, mi(s),s) + V;:i(sl)}

Improvement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:

mi4+1(s) = arg CILﬂaXZT(s, a,s) [R(s, a,s) + ’yVﬂi(s')}

S

Policy iteration
" |t’s still optimal!
" Can converge faster under some conditions



Two Methods for Solving MDPs

Value iteration + policy extraction
= Step 1: Value iteration:
Vier1(s) = max Yo P(s'|s,a)[R(s,a,s") +yV,(s")], Vs until convergence
= Step 2: Policy extraction:
my(s) = argmax )., P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a

Policy iteration
= Step 1: Policy evaluation:
VE1(s) =Y P(s'|s,m(s))[R(s,m(s),s") + yViF(s")], Vs until convergence
= Step 2: Policy improvement:
Thew(S) = argmax .., P(s'|s,a)|R(s,a,s’) + yV™old(s")], Vs
a

= Repeat steps until policy converges



Comparison

Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update values with fixed policy (each pass is fast because we
consider only one action, not all of them; however we do many passes)

= After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)
" The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)



Summary: MDP Algorithms

So you want to....

" Compute optimal values: use value iteration or policy iteration

=" Compute values for a particular policy: use policy evaluation

* Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

* They differ only in whether we plug in a fixed policy or max over actions




MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/



MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]
Value iteration: Vis1(s) = maa:(Z P(s'|s,a)[R(s,a,s") +yVi,(s")], Vs
Q-iteration: Qi+1(s,a) = ZSP(S’IS, a)[R(s,a,s") + y max 0,(s",a], Vs,a
Policy extraction: my(s) = argcrln;XZ P(s'ls,a)[R(s,a,s") + yV(s")], Vs
S7
Policy evaluation: Vi, (s) = Z P(s'|s,m(s))[R(s,m(s),s") + yV,F(s")], Vs
S7

Policy improvement: Tnew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVTolda(s")], Vs
a
S/



MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/



MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: Ve(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]
Value iteration: Vierr1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a")], Vs,a
57
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
57
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + YV (s")], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/
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