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Outline
MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Rewards

▪ Walk-through of super-simple value iteration

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Value iteration convergence

▪ Bellman equations

▪ Policy Extraction

▪ Method 2) Policy Iteration

A B C D E



MDP Example: Racing



MDP Example: Racing
A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Going faster gets double reward
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Racing Search Tree



𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎) 𝑉(𝑠′)

Recursive Expectimax

Now with rewards:

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ +  𝑉 𝑠′
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s, a

s,a,s’

s’



Simple Deterministic Example
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state
A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ +  𝑉 𝑠′



Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ +  𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state



Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ +  𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state



Utilities of Sequences



Utilities of Sequences
What preferences should an agent have over reward sequences?

More or less?

Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

It’s reasonable to maximize the sum of rewards

It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

How to discount?

▪ Each time we descend a level, we 
multiply in the discount once

Why discount?

▪ Sooner rewards probably do have 
higher utility than later rewards

▪ Also helps our algorithms converge

▪ Important: use 0 <  < 1



Poll

What is the value of this ordered sequence of 
rewards [2,4,8] with 𝛾 = 0.5?

A. 3

B. 6

C. 7

D. 14

Bonus: What is the value of [8,4,2] with 𝛾 = 0.5?



Discounting
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑉𝑘 𝑠′  

For  = 1, what is the optimal policy?

For  = 0.1, what is the optimal policy?

For which  are West and East equally good when in state D?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1



Discounting
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑉𝑘 𝑠′  

For  = 1, what is the optimal policy?

For  = 0.1, what is the optimal policy?

For which  are West and East equally good when in state D?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1



Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States
Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

Recursive definition of value:

a

s

s, a

s,a,s’
s’



Racing Search Tree



Racing Search Tree

We’re doing way too much work 
with expectimax!

Problem: States are repeated 
▪ Idea: Only compute needed quantities 

once

Problem: Tree goes on forever
▪ Idea: Do a depth-limited computation, 

but with increasing depths until 
change is small

▪ Note: deep parts of the tree eventually 
don’t matter if γ < 1



Time-Limited Values

Key idea: time-limited values

Define Vk(s) to be the optimal value of s if the game ends in k 
more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



Computing Time-Limited Values



Value Iteration



Example: Value Iteration
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k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Value Iteration



Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

...

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Poll 1
What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions

I: 𝑂(|𝑆||𝐴|)

II: 𝑂( 𝑆 2|𝐴|)

III: 𝑂(|𝑆| 𝐴 2)

IV: 𝑂( 𝑆 2 𝐴 2)

V: 𝑂( 𝑆 2)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Poll 1
What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions

I: 𝑂(|𝑆||𝐴|)

II: 𝑂( 𝑆 2|𝐴|)

III: 𝑂(|𝑆| 𝐴 2)

IV: 𝑂( 𝑆 2 𝐴 2)

V: 𝑂( 𝑆 2)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

[Demo:  gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

[Demo:  gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

[Demo:  gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’



Gridworld Values V*



Gridworld: Q*



The Bellman Equations

How to be optimal:

    Step 1: Take correct first action

    Step 2: Keep being optimal



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values
 

a

s

s, a

s,a,s’

s’



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values
 

a

s

s, a

s,a,s’

s’



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values

 

a

s

s, a

s,a,s’

s’



The Bellman Equations

Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values

These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over
 

a

s

s, a

s,a,s’

s’



MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Standard expectimax:



Value Iteration

Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just a fixed point solution method

a

s

s, a

s,a,s’



Value Iteration Convergence

How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM 
holds the actual untruncated values

Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual 
rewards while Vk has zeros

▪ That last layer is at best all RMAX 

▪ It is at worst RMIN 

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge



Outline
MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Rewards

▪ Walk-through of super-simple value iteration

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Value iteration convergence

▪ Bellman equations

▪ Policy Extraction

▪ Method 2) Policy Iteration

A B C D E



Solved MDP! Now what?
What are we going to do with these values?? 

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎



Poll 2
If you need to extract a policy, would you rather have

A) Values, B) Q-values?



Poll 2
If you need to extract a policy, would you rather have

A) Values, B) Q-values ?



Policy Extraction



Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?

▪ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values
Let’s imagine we have the optimal q-values:

How should we act?

▪ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!



Value Iteration Notes
Value iteration repeats the Bellman updates:

Things to notice when running value iteration:

▪ It’s slow – O(S2A) per iteration

▪ The “max” at each state rarely changes

▪ The optimal policy appears before the values converge (but we 
don’t know that the policy is optimal until the values converge)

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Outline
MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Rewards

▪ Walk-through of super-simple value iteration

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Value iteration convergence

▪ Bellman equations

▪ Policy Extraction

▪ Method 2) Policy Iteration

A B C D E



Policy Iteration



Two Methods for Solving MDPs 
Value iteration + policy extraction

▪ Step 1: Value iteration: calculate values for all states by running one 
ply of the Bellman equations using values from previous iteration 
until convergence

▪ Step 2: Policy extraction: compute policy by running one ply of the 
Bellman equations using values from value iteration

Policy iteration

▪ Step 1: Policy evaluation: calculate values for some fixed policy (not 
optimal values!) until convergence

▪ Step 2: Policy improvement: update policy by running one ply of the 
Bellman equations using values from policy evaluation

▪ Repeat steps until policy converges



Policy Evaluation



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Evaluation: Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy (s), then the tree would be simpler               
– only one action per state

▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

(s)

s

s, (s)

s, (s),s’
s’

Normally: Do the optimal action Fixed policy: Do what  says to do



Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of 
a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy :
V(s) = expected sum of discounted rewards starting 

in s and following 

Recursive relation (one-step look-ahead / Bellman 
equation):

(s)

s

s, (s)

s, (s),s’
s’



Policy Evaluation
How do we calculate the V’s for a fixed policy ?

Idea 1: Turn recursive Bellman equations into updates

 (like value iteration)

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with your favorite linear system solver

(s)

s

s, (s)

s, (s),s’
s’



Policy Improvement



Policy Iteration:
Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction

▪ One-step look-ahead:

Policy iteration

▪ It’s still optimal!

▪ Can converge faster under some conditions



Two Methods for Solving MDPs 
Value iteration + policy extraction

▪ Step 1: Value iteration: 
𝑉𝑘+1 𝑠 = max

𝑎
σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠 until convergence

▪ Step 2: Policy extraction:
𝜋𝑉 𝑠 = argmax

𝑎
σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠 

Policy iteration

▪ Step 1: Policy evaluation: 

𝑉𝑘+1
𝜋 𝑠 = σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘

𝜋 𝑠′ ] , ∀ 𝑠 until convergence

▪ Step 2: Policy improvement:
𝜋𝑛𝑒𝑤 𝑠 = argmax

𝑎
σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠 

▪ Repeat steps until policy converges



Comparison
Both value iteration and policy iteration compute the same thing                     
(all optimal values)

In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
▪ We do several passes that update values with fixed policy (each pass is fast because we 

consider only one action, not all of them; however we do many passes)

▪ After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)

▪ The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)



Summary: MDP Algorithms
So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions



MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] ,  ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:



MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] ,  ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′
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