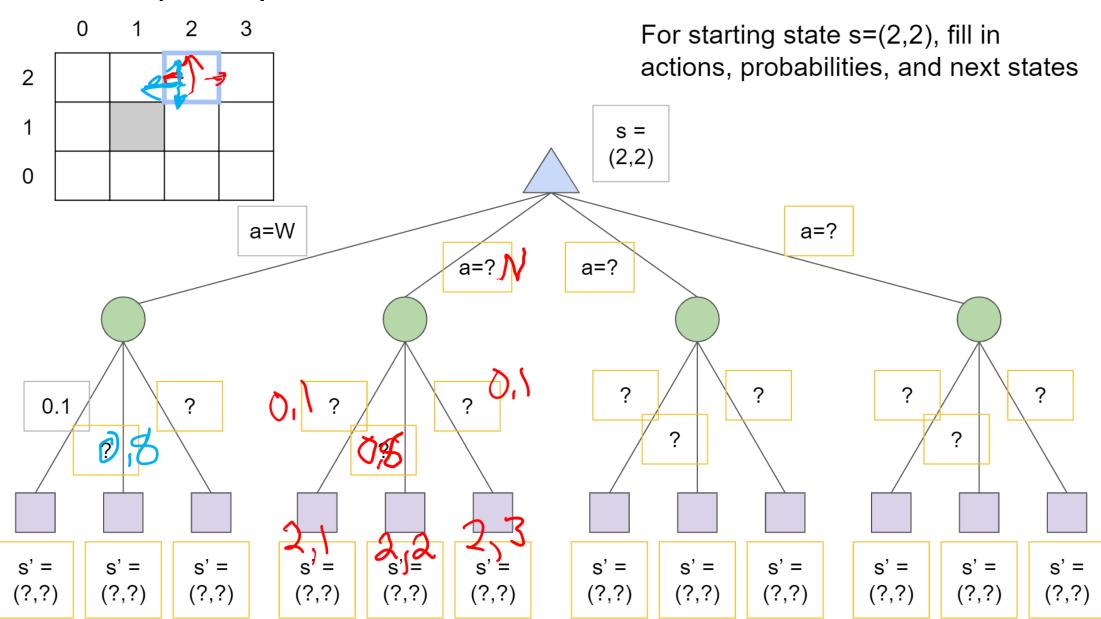
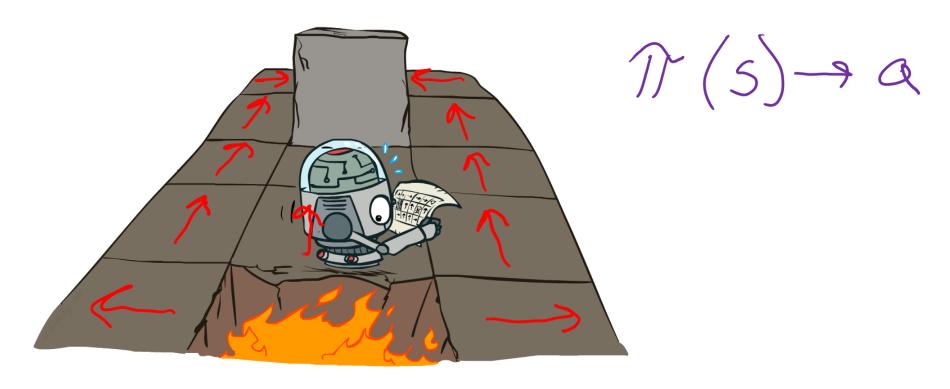
Warm-up as you walk in: Grid World



AI: Representation and Problem Solving

Markov Decision Processes II



Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Outline

MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
 - Walk-through of super-simple value iteration
- A B C D E

• Discounting, γ

Solving MDPs

- Method 1) Value iteration
 - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration

MDP Example: Racing

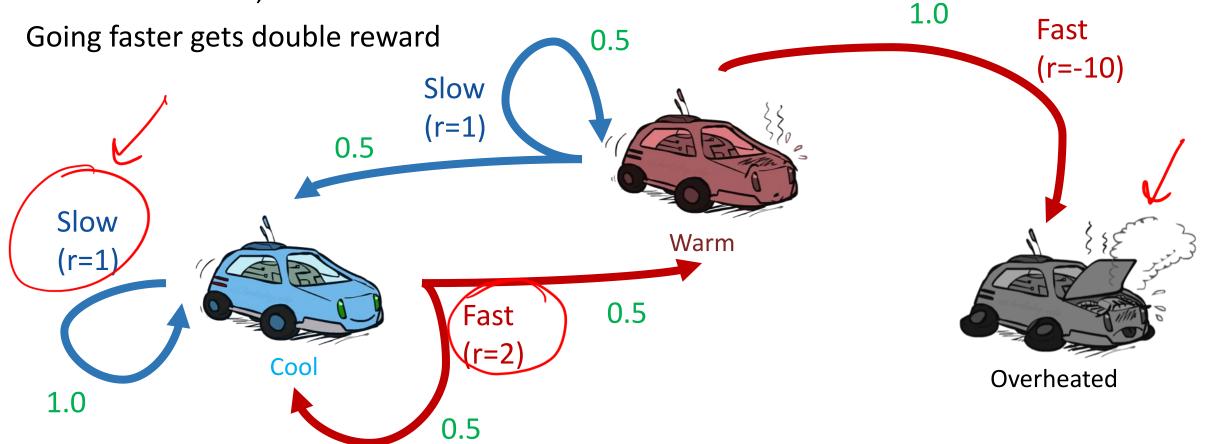


MDP Example: Racing

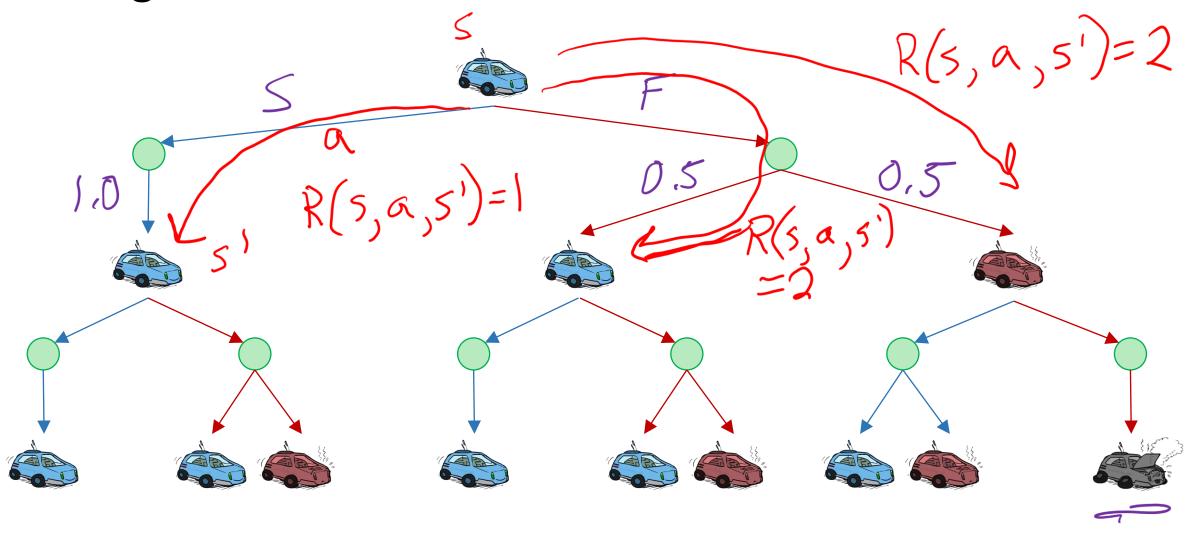
A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: *Slow, Fast*



Racing Search Tree



Recursive Expectimax

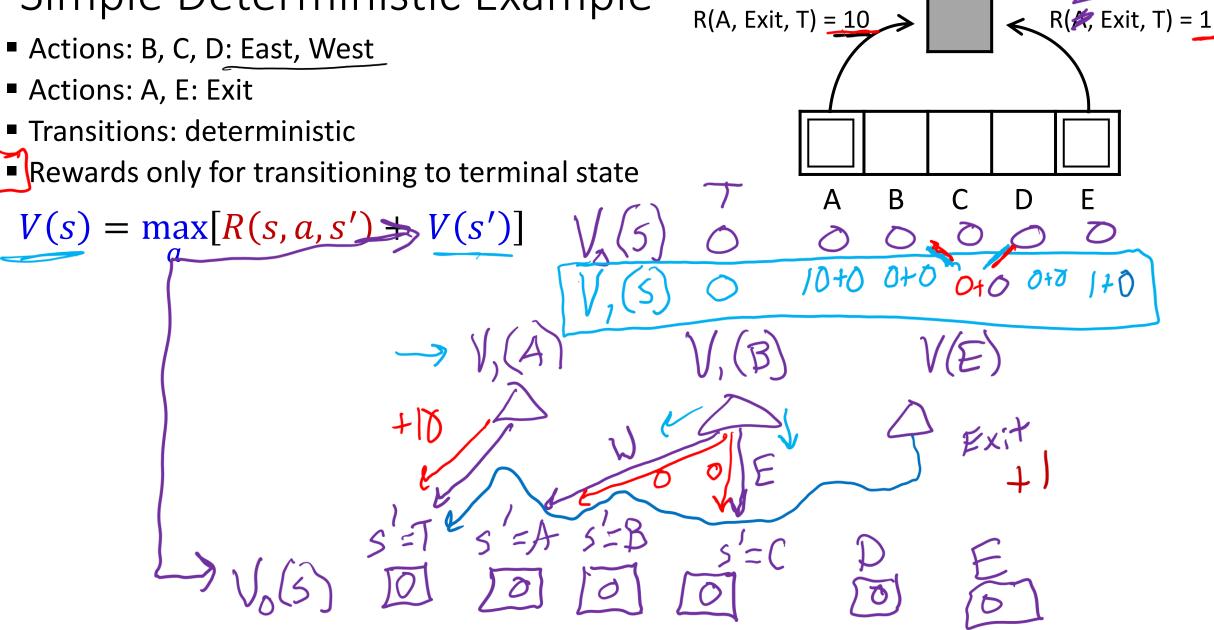
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) V(s')$$

Now with rewards:

$$V(s) = \max_{a} \sum_{s'} \left[P(s'|s,a) \left[R(s,a,s') + V(s') \right] \right]$$

$$V(s) = \max_{\alpha} 1.0 \left[R(sas') + V(s') \right] s,a,s'$$

Simple Deterministic Example

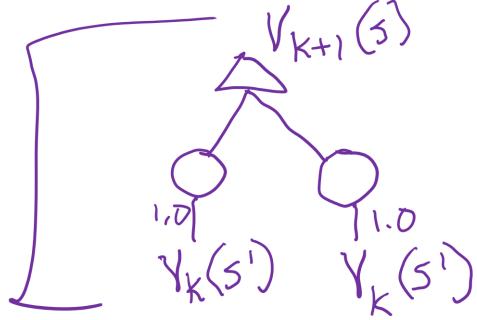


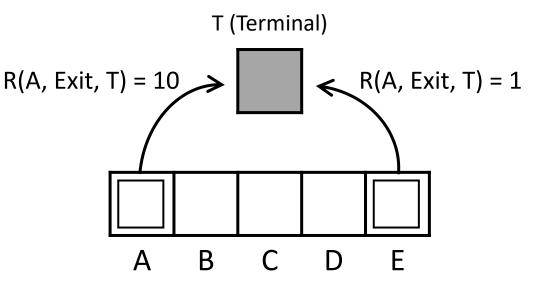
T (Terminal)

Simple Deterministic Example

- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V_{k+1}(s) = \max_{a} [R(s, a, s') + V_k(s')]$$





Simple Deterministic Example

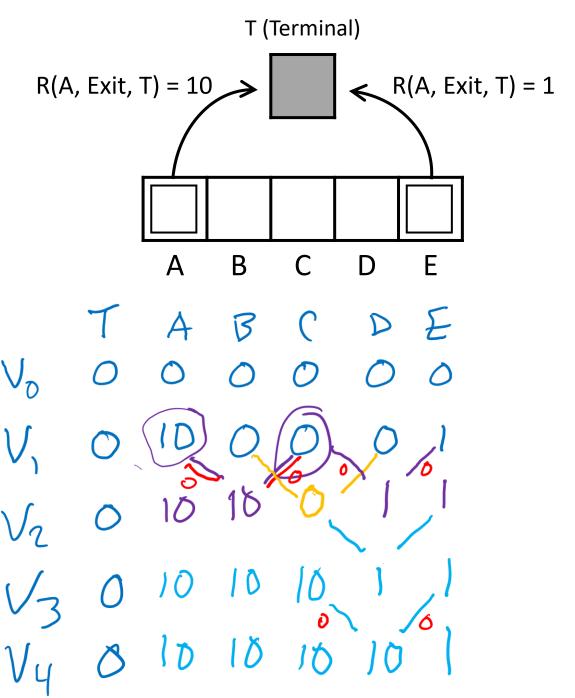
- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V_{k+1}(s) = \max_{a} [R(s, a, s') + V_{k}(s')]$$

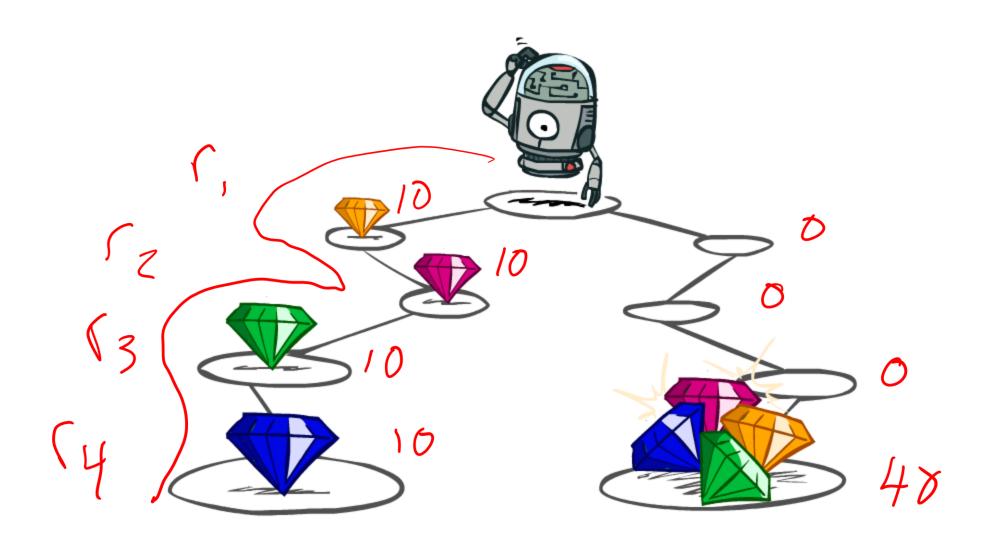
$$V_{o}(s) = 0 \quad \forall s$$

$$(A) \quad \bigvee_{s=0} V_{2}(B)$$

$$F_{x,i+1}(s) = 0 \quad \forall s$$



Utilities of Sequences

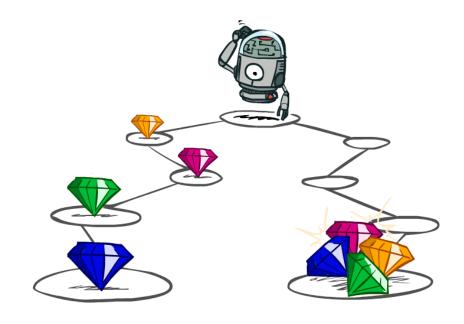


Utilities of Sequences

What preferences should an agent have over reward sequences?

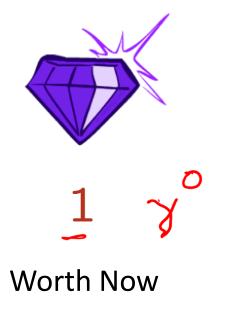
More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]



Discounting

It's reasonable to maximize the sum of rewards
It's also reasonable to prefer rewards now to rewards later
One solution: values of rewards decay exponentially



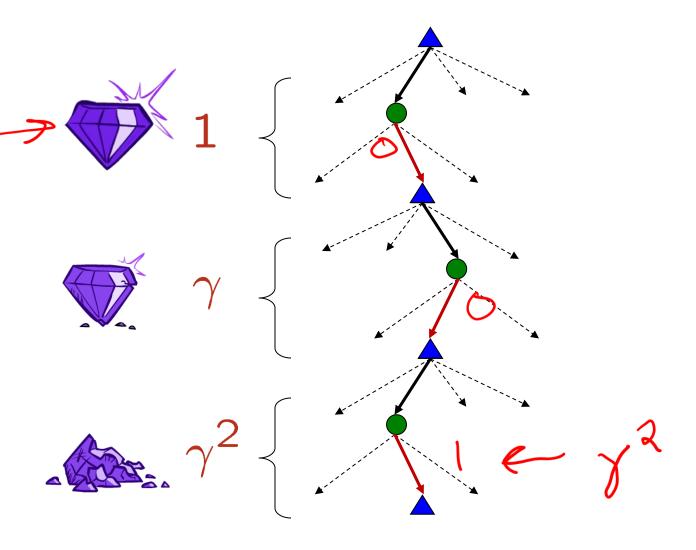
Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Important: use $0 < \gamma < 1$



Poll

What is the value of this ordered sequence of rewards [2,4,8] with $\gamma = 0.5$?

A. 3

B. 6

C. 7

D. 14

$$2 \cdot y^{0} + 4y' + 8y'^{2}$$
 $2 \cdot y^{0} + 4y' + 8y'^{2}$
 $2 \cdot y^{0} + 4y' + 8y'^{2}$

Bonus: What is the value of [8,4,2] with $\gamma = 0.5$?

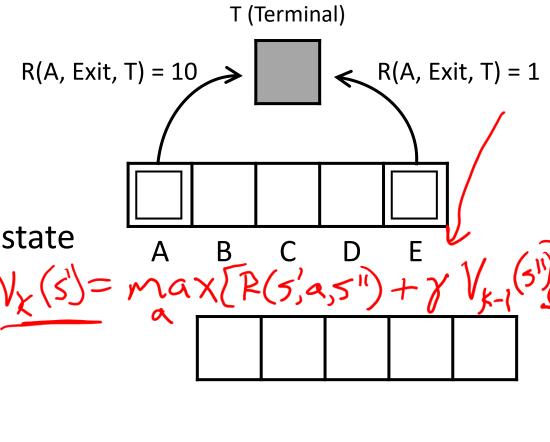
Discounting

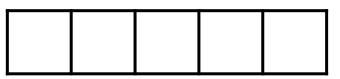
- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V_{k+1}(s) = \max_{a} [R(s, a, s') + \gamma V_k(s')]$$

For $\gamma = 1$, what is the optimal policy?

For $\gamma = 0.1$, what is the optimal policy?





For which γ are West and East equally good when in state D?

Discounting

- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

$$V_{k+1}(s) = \max_{a} [R(s, a, s') + \gamma V_k(s')]$$

For $\gamma = 1$, what is the optimal policy?

what is the optimal policy?

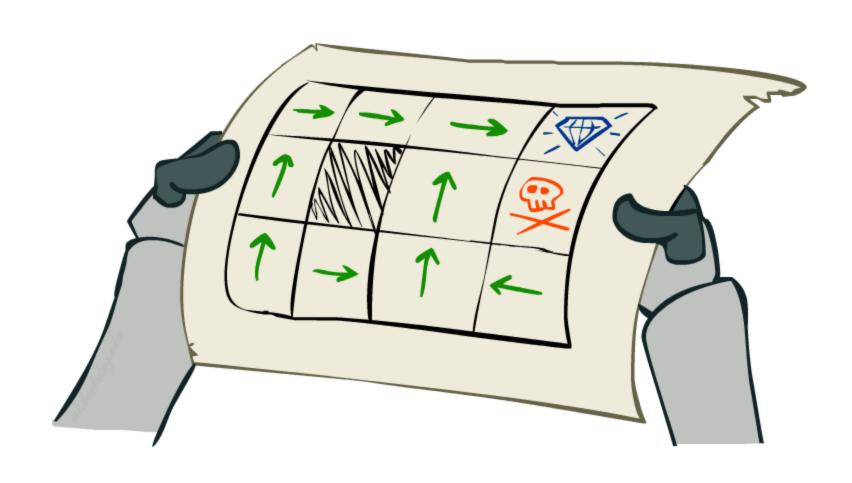
$$\frac{1}{A}$$

T (Terminal) R(A, Exit, T) = 10R(A, Exit, T) = 1

0.01=0+70.1

For which γ are West and East equally good when in state D? (

Solving MDPs



Optimal Quantities

The value (utility) of a state s:

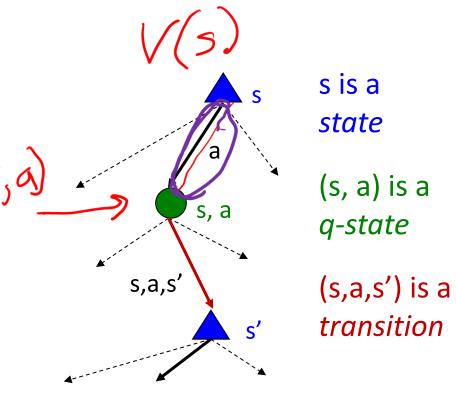
 \checkmark (s) = expected utility starting in s and acting optimally

■ The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

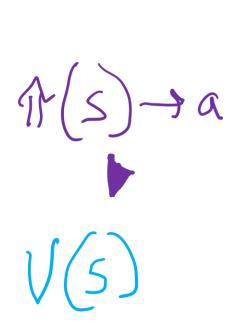
The optimal policy:

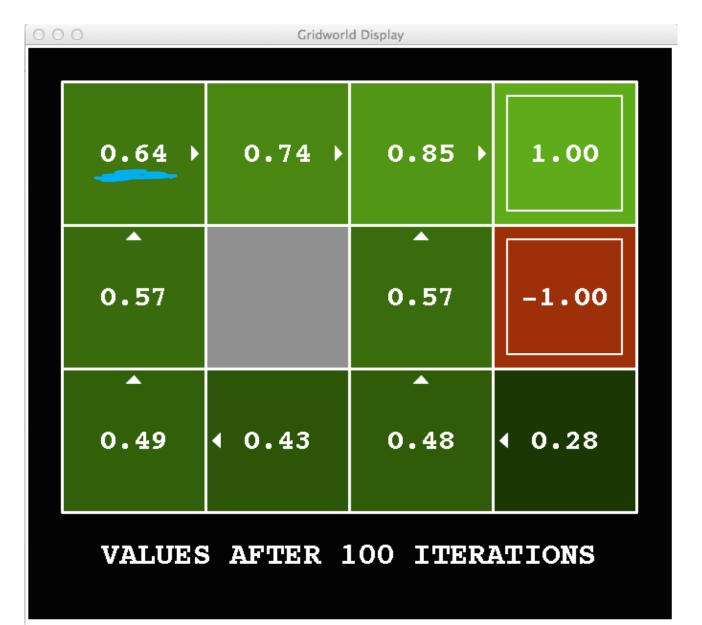
optimal action from state s



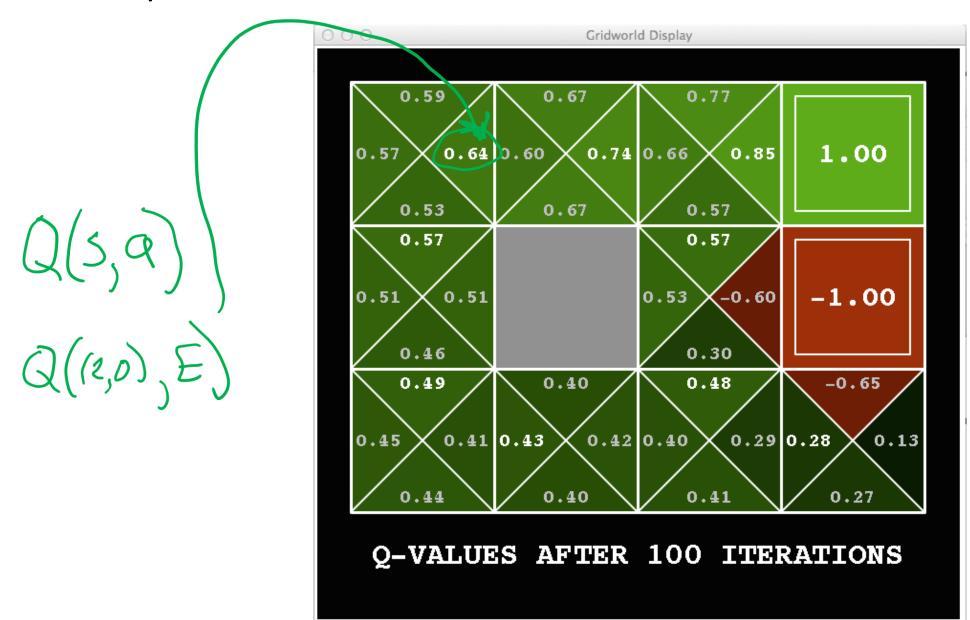
argmax $\geq [R(s,a,s') + \lambda V(s')]$

Snapshot of Demo – Gridworld V Values





Snapshot of Demo – Gridworld Q Values



Values of States

Fundamental operation: compute the (expectimax) value of a state

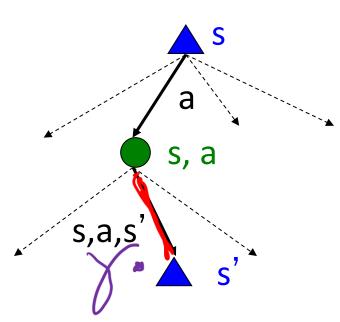
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!

Recursive definition of value:

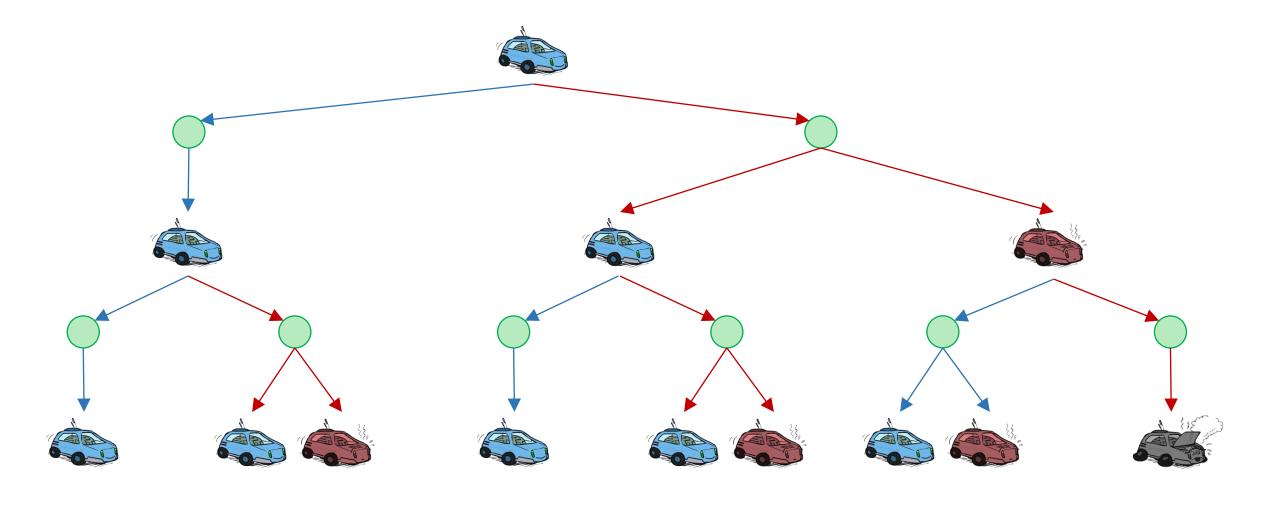
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[\underbrace{R(s, a, s')}_{s'} + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Racing Search Tree



Racing Search Tree

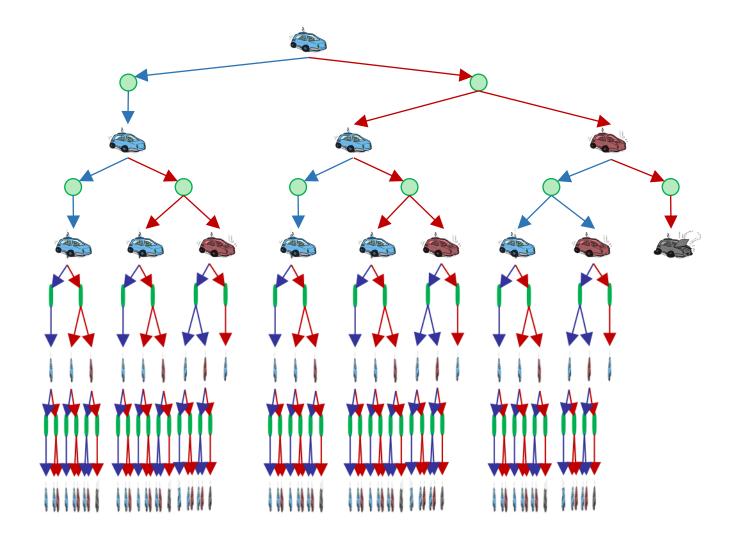
We're doing way too much work with expectimax!

Problem: States are repeated

Idea: Only compute needed quantities once

Problem: Tree goes on forever

- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don't matter if $\gamma < 1$

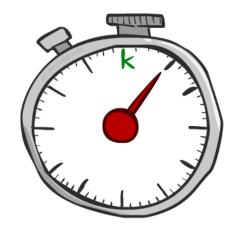


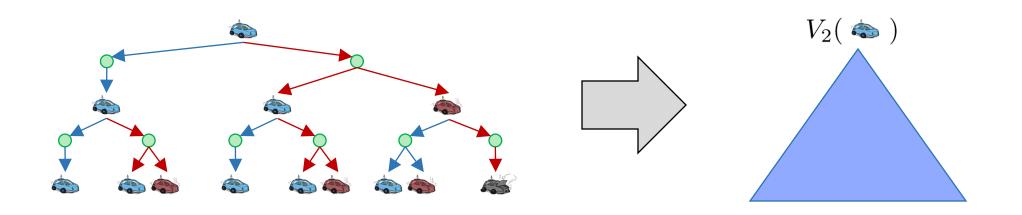
Time-Limited Values

Key idea: time-limited values

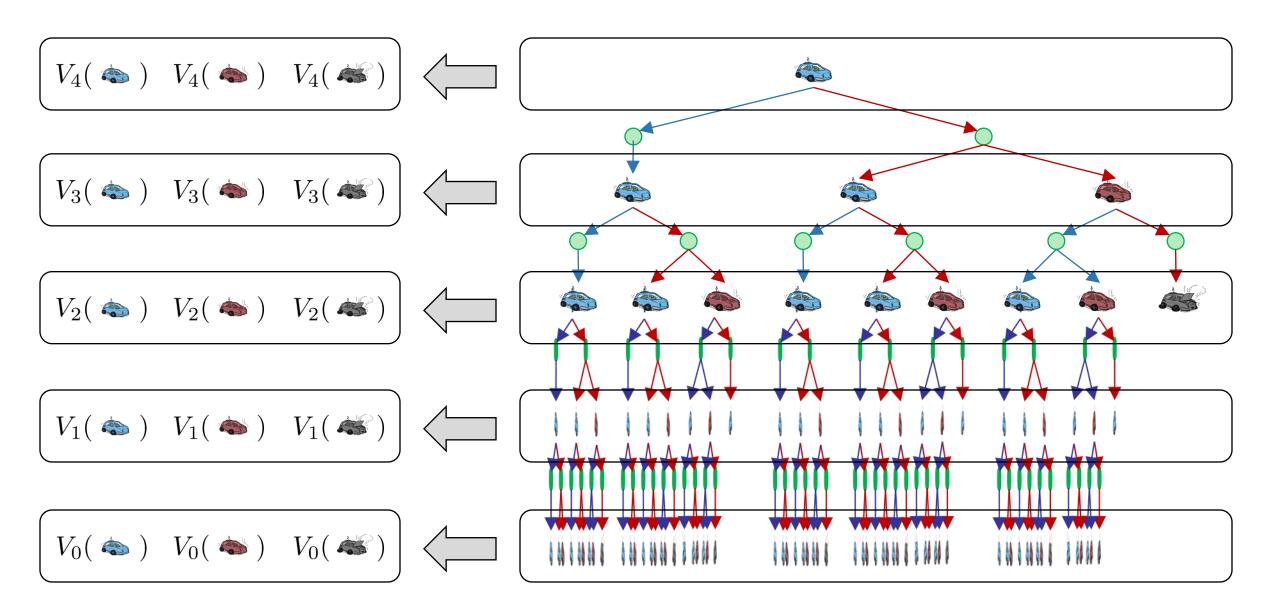
Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

Equivalently, it's what a depth-k expectimax would give from s



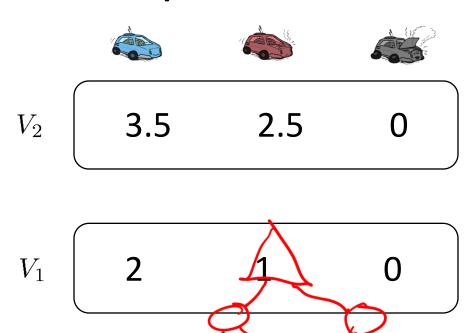


Computing Time-Limited Values

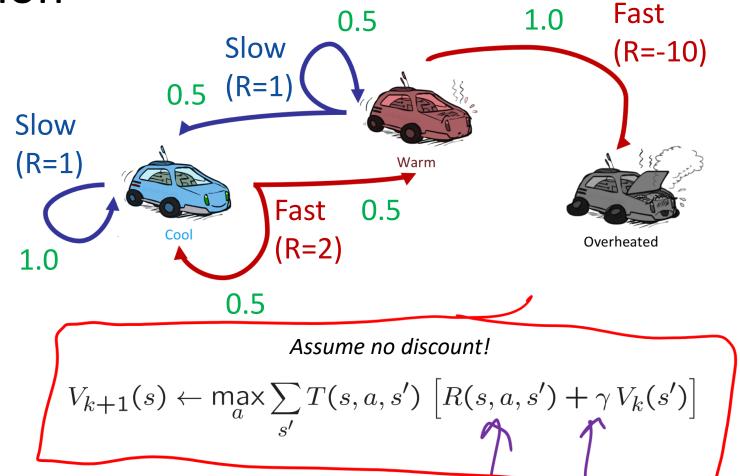


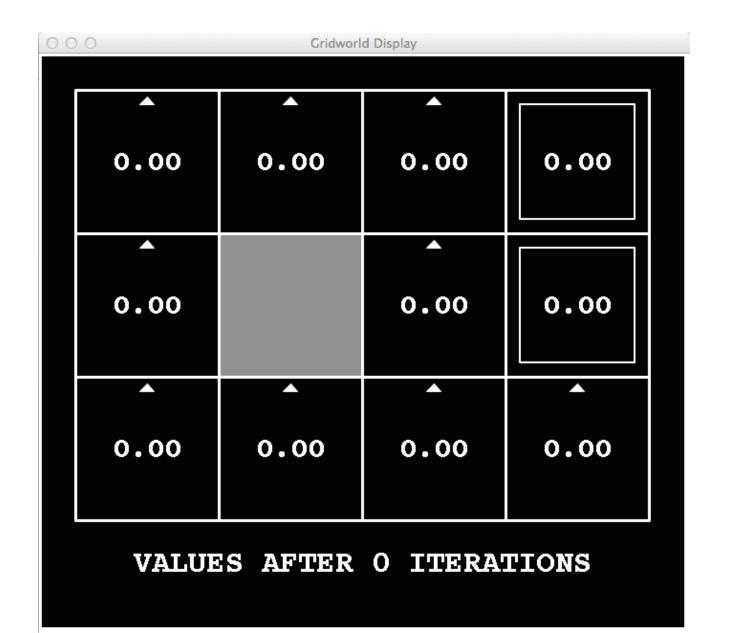
Value Iteration

Example: Value Iteration

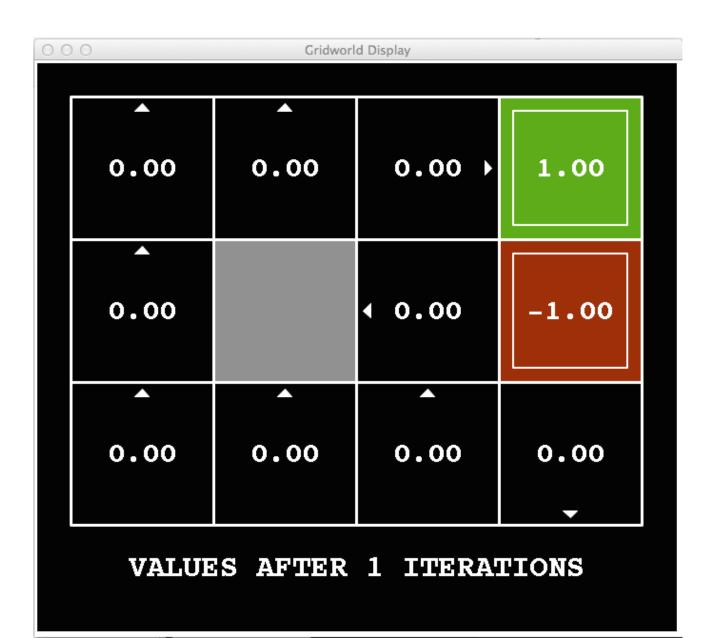


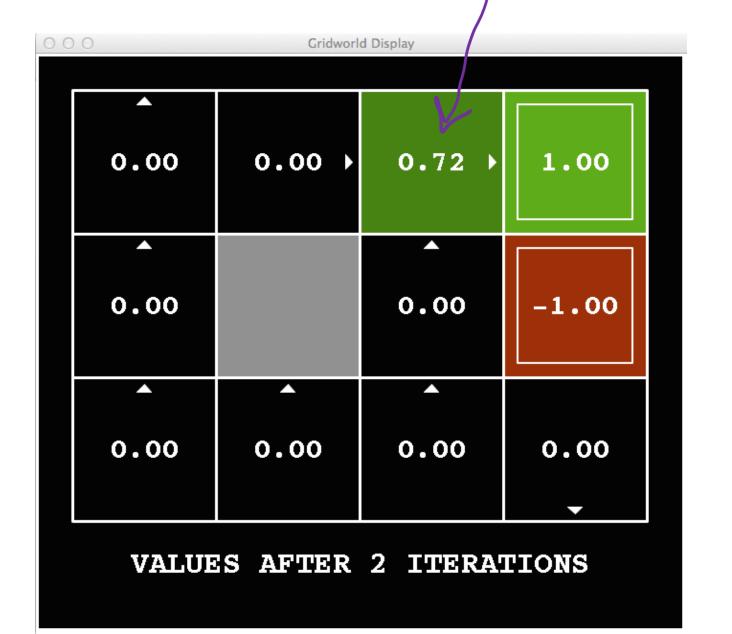
 V_0

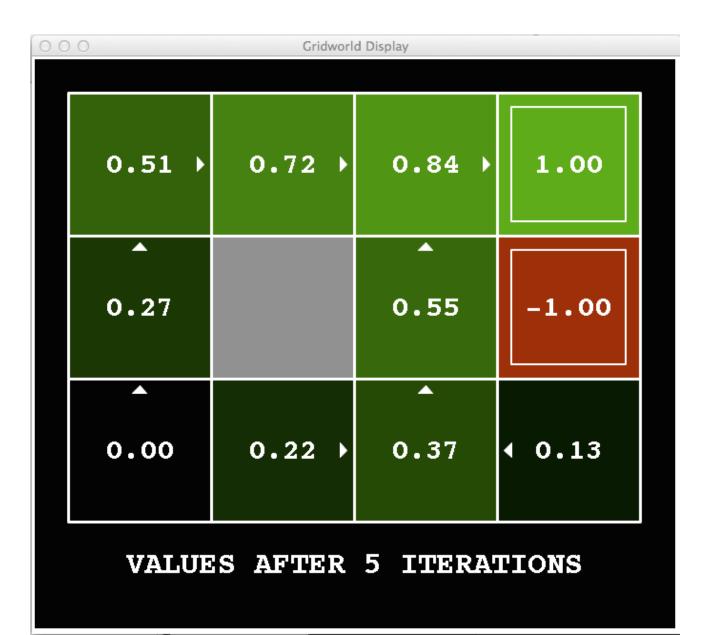


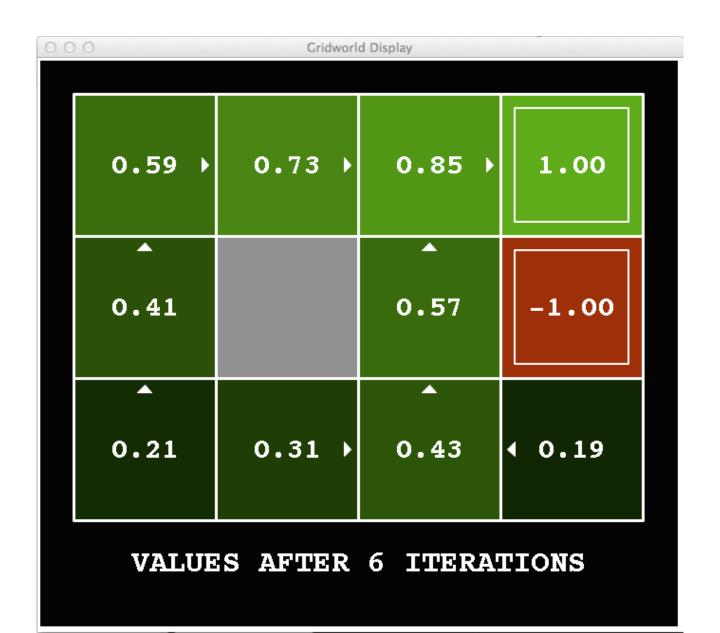


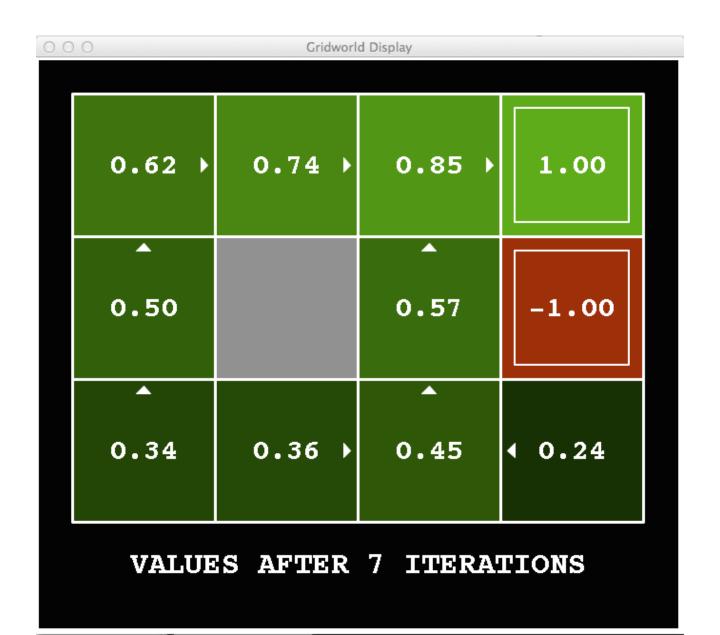
Noise = 0.2 Discount = 0.9 Living reward = 0

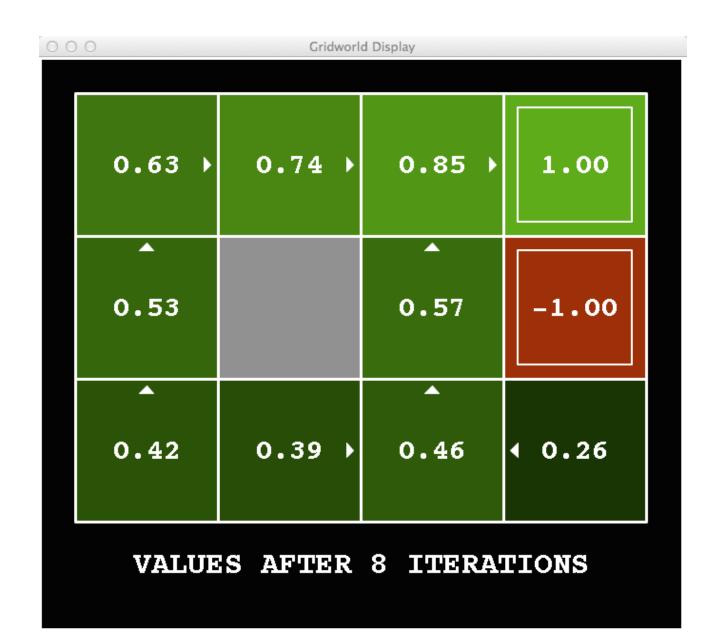




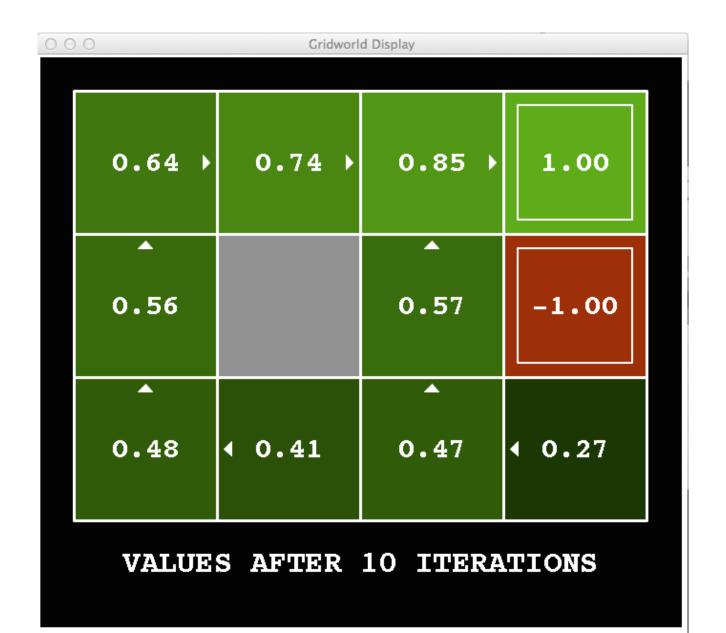




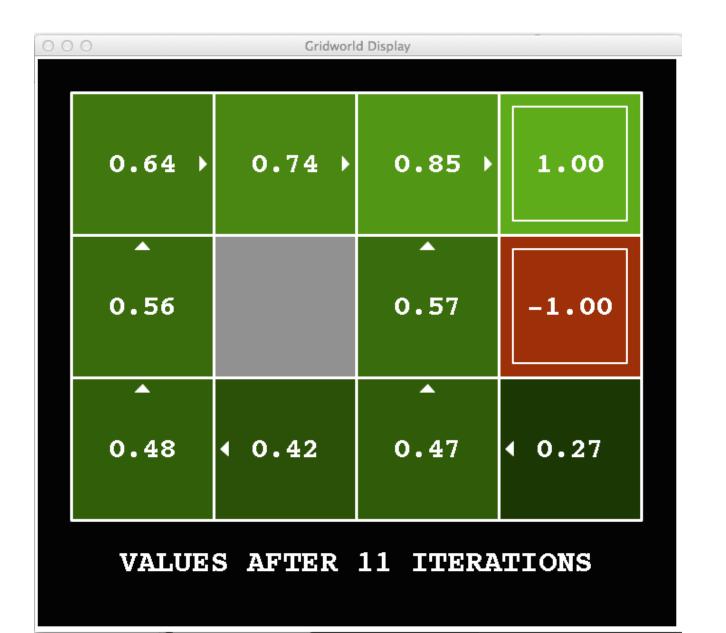


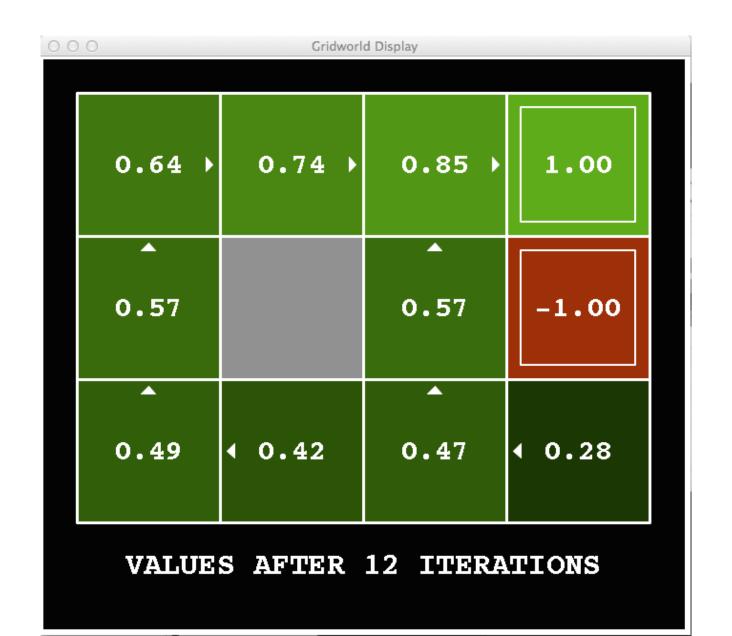


k = 10

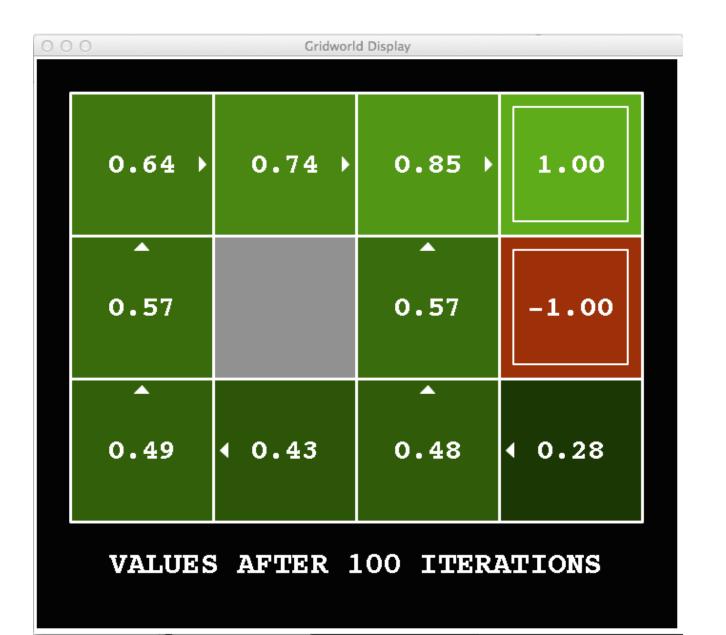


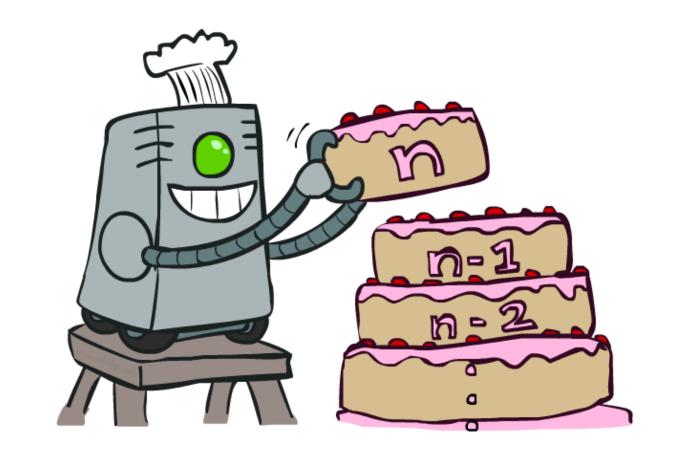
k = 11





k = 100





Value Iteration

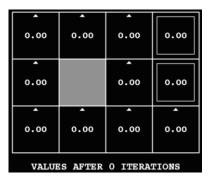
Value Iteration

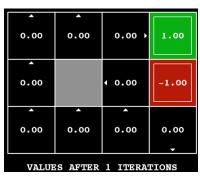
Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

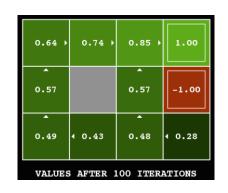
Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

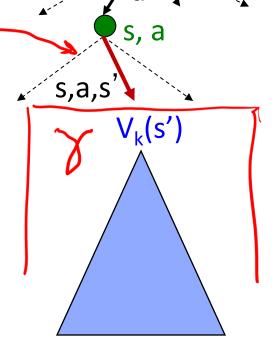
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[\underbrace{R(s, a, s')}_{\downarrow} + \gamma V_{k}(s') \right]$$

Repeat until convergence









Poll 1

def update States()
for s in 5

Iteration? for a in acts

What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions

I: O(|S||A|)

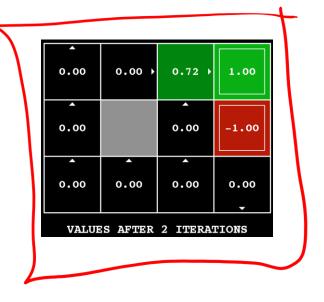
 \rightarrow II: $O(|S|^2|A|)$

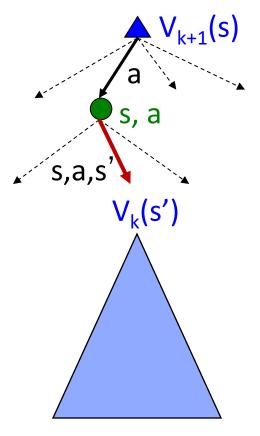
III: $O(|S||A|^2)$

IV: $O(|S|^2|A|^2)$

 $V: O(|S|^2)$

0.00	0.00	0.00 →	1.00
0.00		∢ 0.00	-1.00
0.00	0.00	0.00	0.00
VALUE	S AFTER	1 ITERA	rions





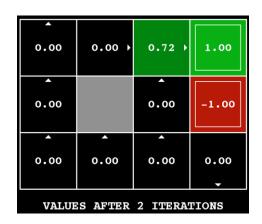
for s' in S

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Poll 1

What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions



I: O(|S||A|)

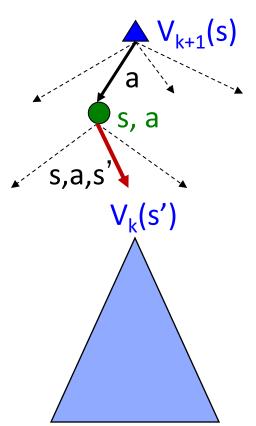
II: $O(|S|^2|A|)$

III: $O(|S||A|^2)$

IV: $O(|S|^2|A|^2)$

 $V: O(|S|^2)$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



Value Iteration

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

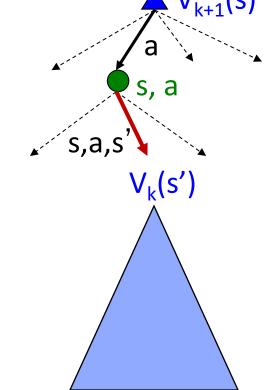
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Complexity of each iteration: O(S²A)

Theorem: will converge to unique optimal values

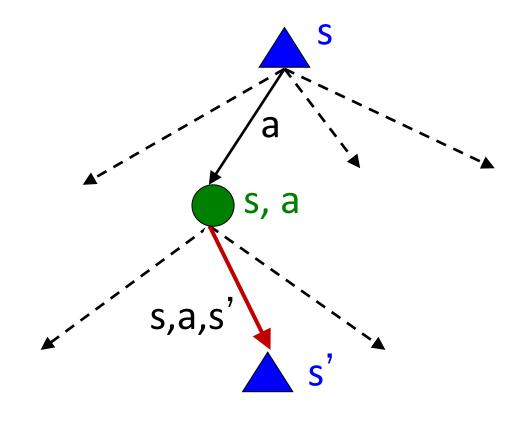
- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do



Optimal Quantities

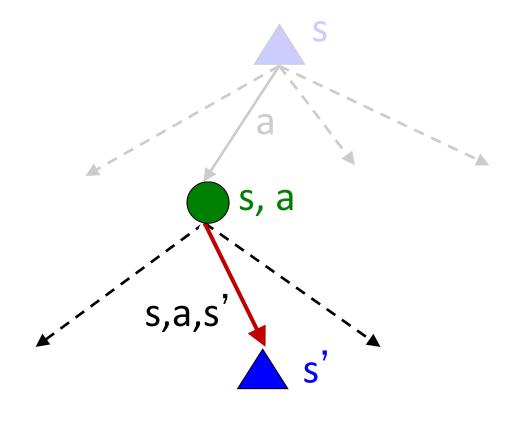
The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally



Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally



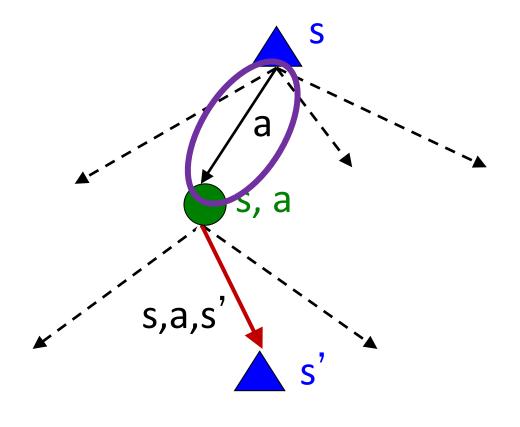
Optimal Quantities

The value (utility) of a state s:

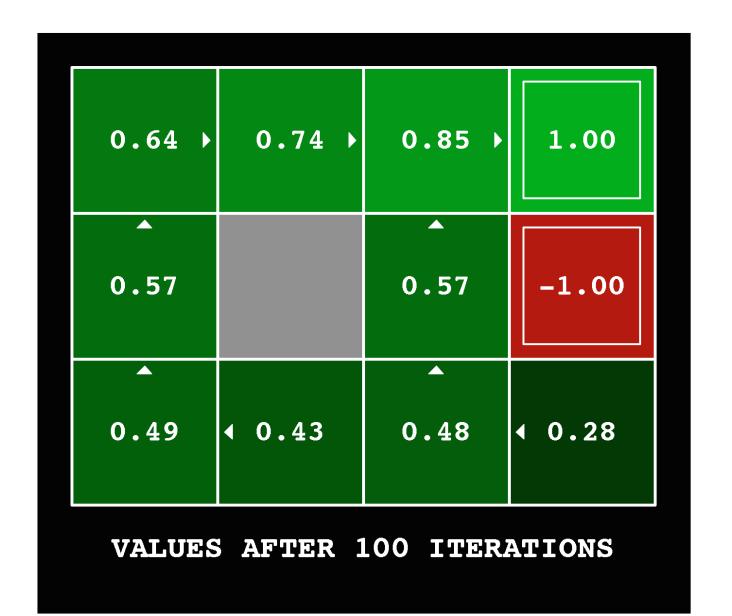
V*(s) = expected utility starting in s and acting optimally

■ The value (utility) of a q-state (s,a):

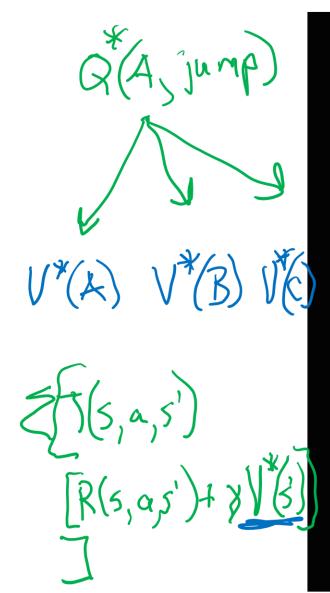
Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

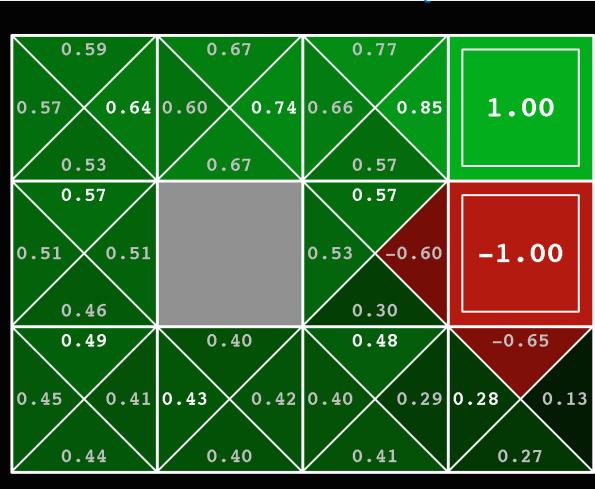


Gridworld Values V*



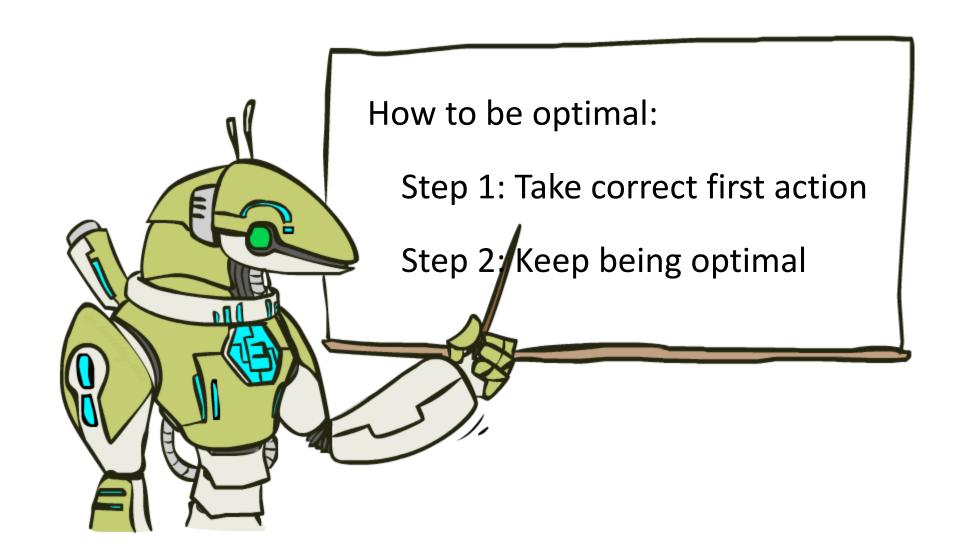
Gridworld: Q*



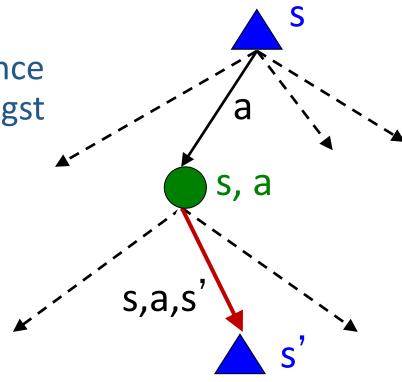


 $= \max_{\alpha} Q(s, \alpha)$

Q-VALUES AFTER 100 ITERATIONS

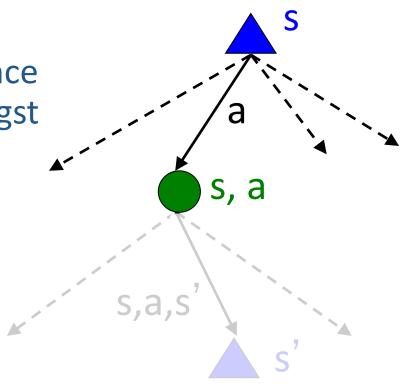


Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values



Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

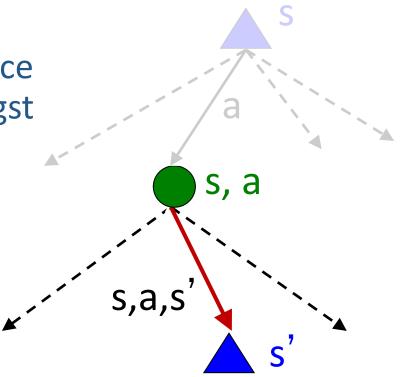
$$V^*(s) = \max_a Q^*(s, a)$$



Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

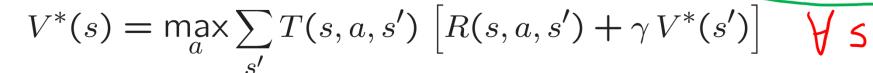
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$



These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$\bigvee(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \bigvee(s')]$$

Value iteration:
$$\bigvee_{k+1} (s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \bigvee_{k} (s')], \quad \forall \, s$$

Value Iteration

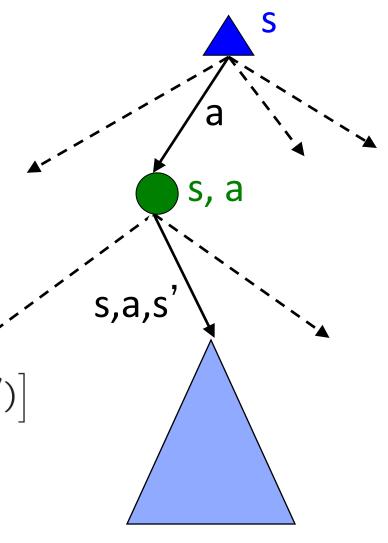
Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method



Value Iteration Convergence

How do we know the V_k vectors are going to converge?

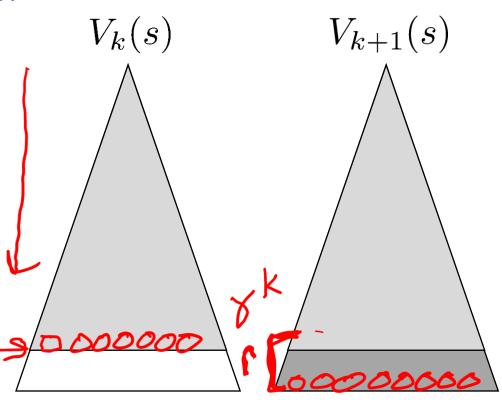
Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

Case 2: If the discount is less than 1

■ Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees

■ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros

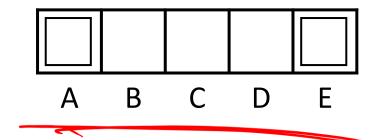
- That last layer is at best all R_{MAX}
- It is at worst R_{MIN}
- But everything is discounted by y^k that far out
- So V_k and V_{k+1} are at most γ^k max | R | different
- So as k increases, the values converge



Outline

MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
 - Walk-through of super-simple value iteration
- Discounting, γ



Solving MDPs

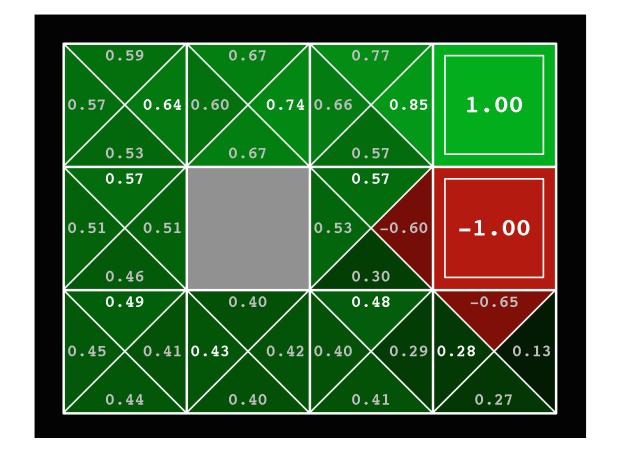
- Method 1) Value iteration
 - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration

Solved MDP! Now what?

What are we going to do with these values??

$$V^*(s)$$

 $Q^*(s,a)$



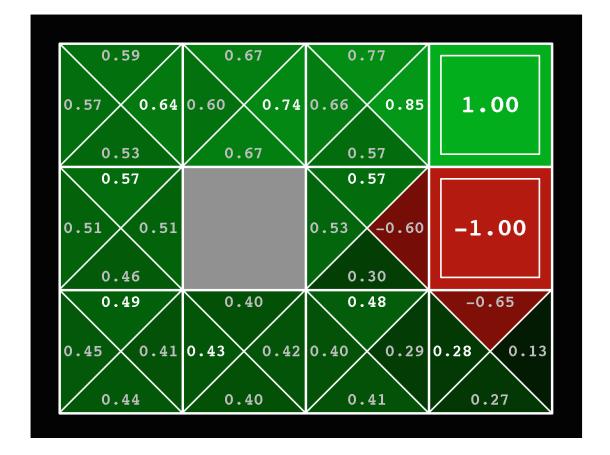
Poll 2

17(5)→a

If you need to extract a policy, would you rather have

A) Values, B) Q-values?

0.64	0.74	0.85	1.00
0.57		0.57	-1.00
0.49	√ 0.43	0.48	∢ 0.28

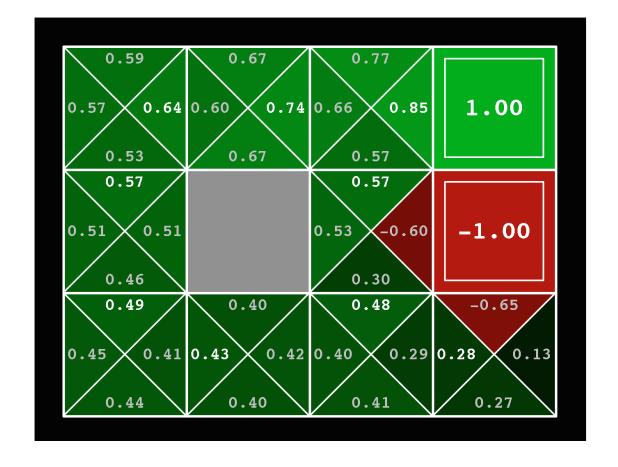


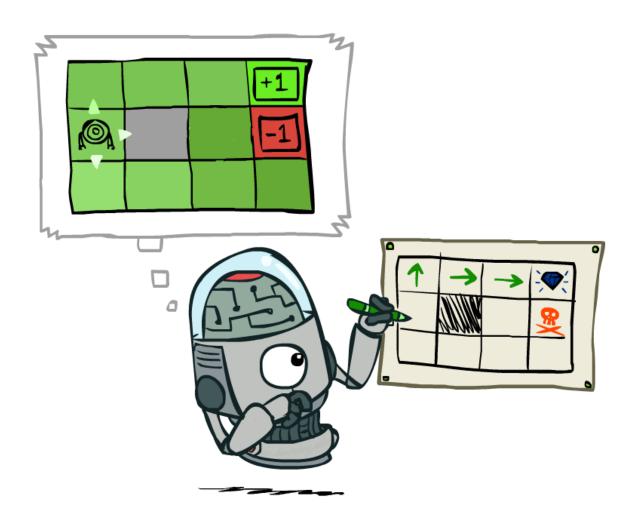
Poll 2

If you need to extract a policy, would you rather have

A) Values, B) Q-values ?

0.64 →	0.74 →	0.85 →	1.00
•		•	
0.57		0.57	-1.00
•		•	
0.49	◆ 0.43	0.48	◆ 0.28





Policy Extraction

Computing Actions from Values

Let's imagine we have the optimal values V*(s)

How should we act?

It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

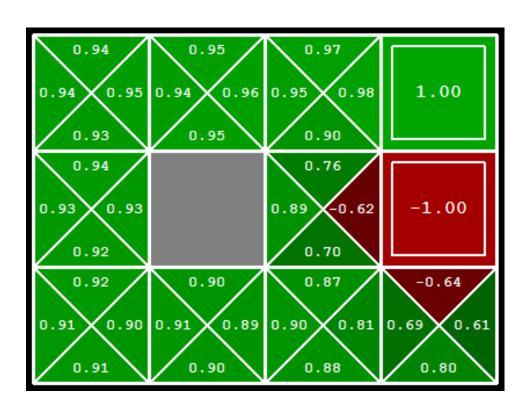
Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

How should we act?

Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$



Important lesson: actions are easier to select from q-values than values!

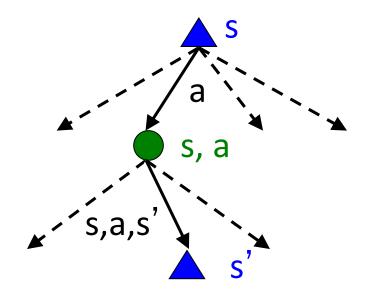
Value Iteration Notes

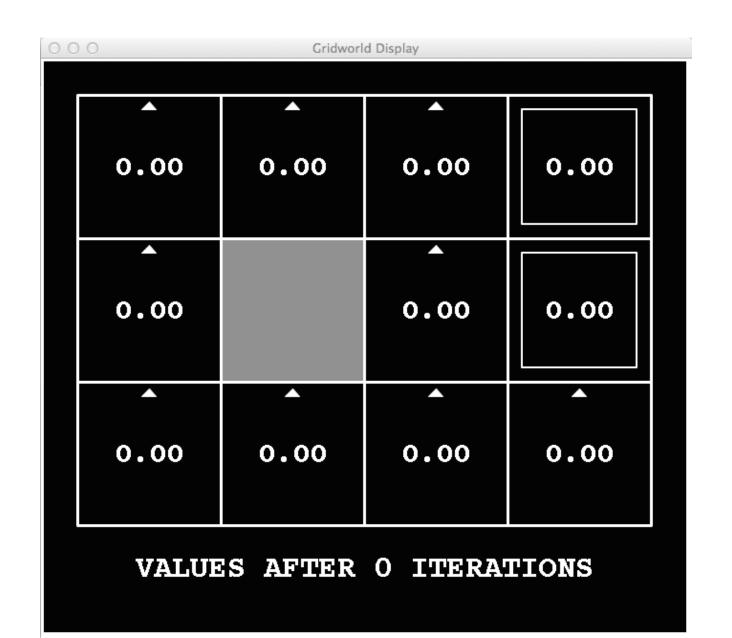
Value iteration repeats the Bellman updates:

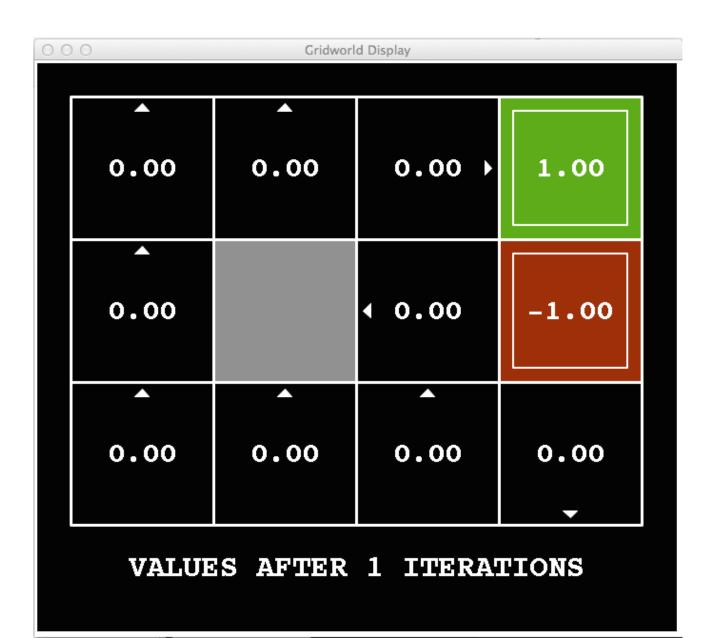
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

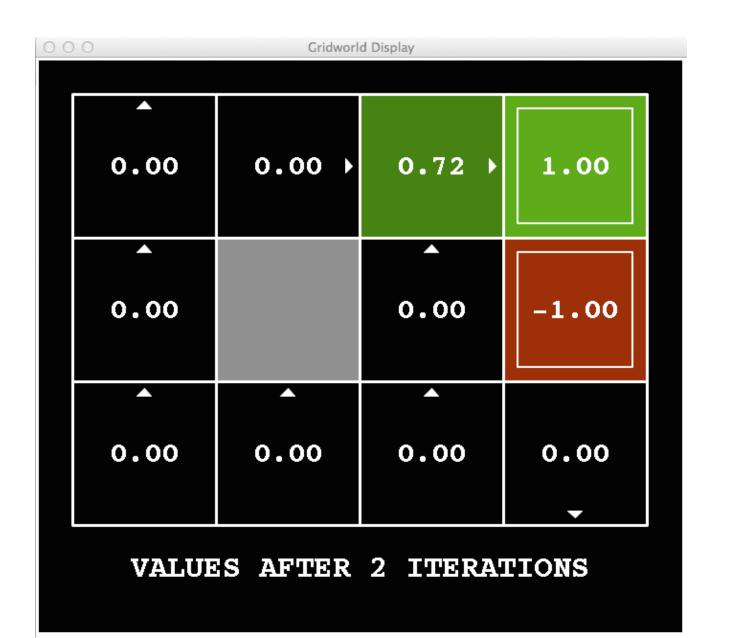
Things to notice when running value iteration:

- It's slow O(S²A) per iteration
- The "max" at each state rarely changes
- The optimal policy appears before the values converge (but we don't know that the policy is optimal until the values converge)

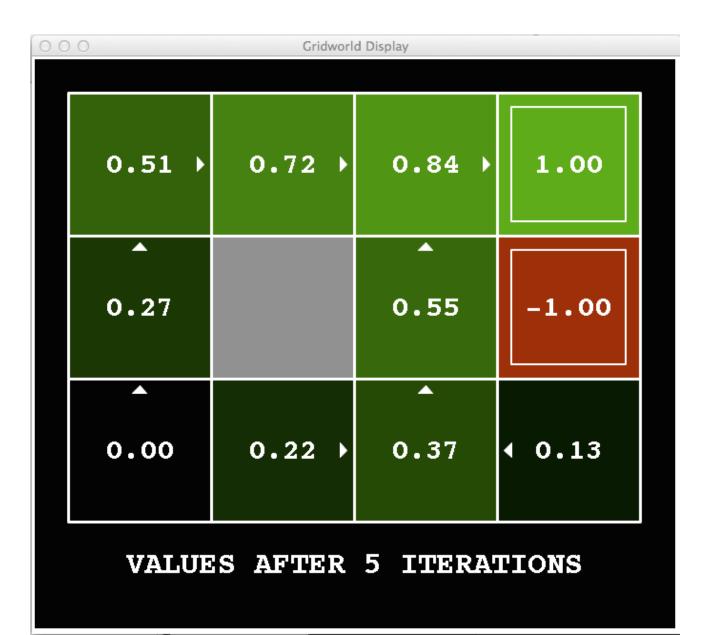


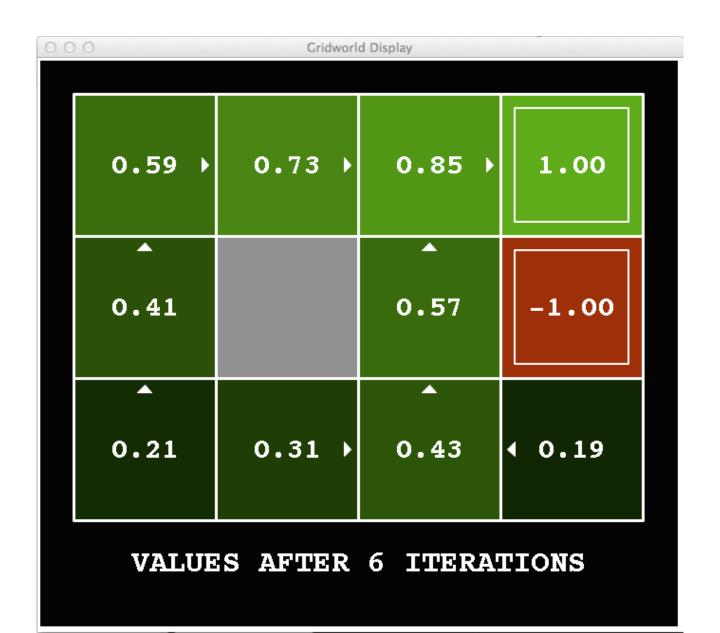


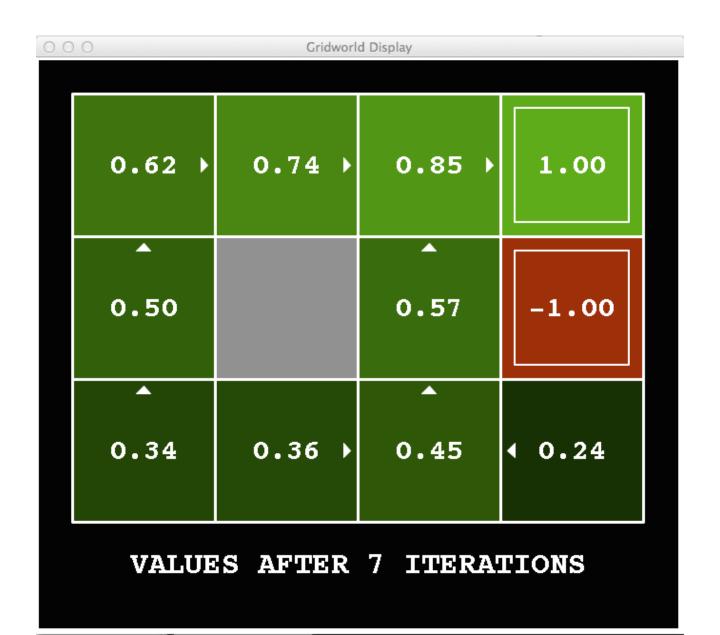


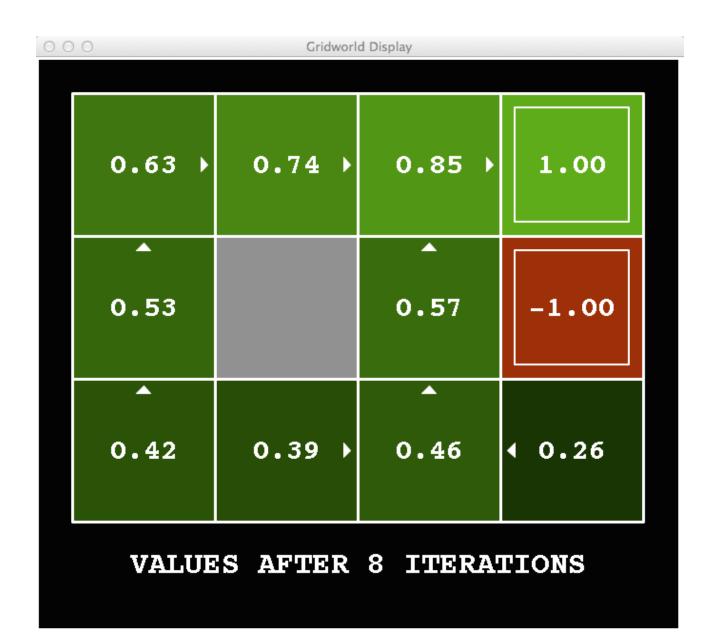


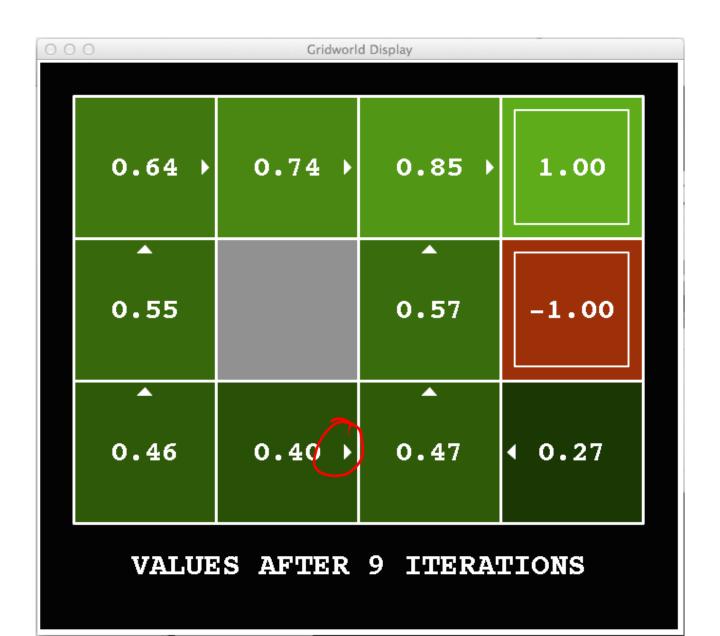




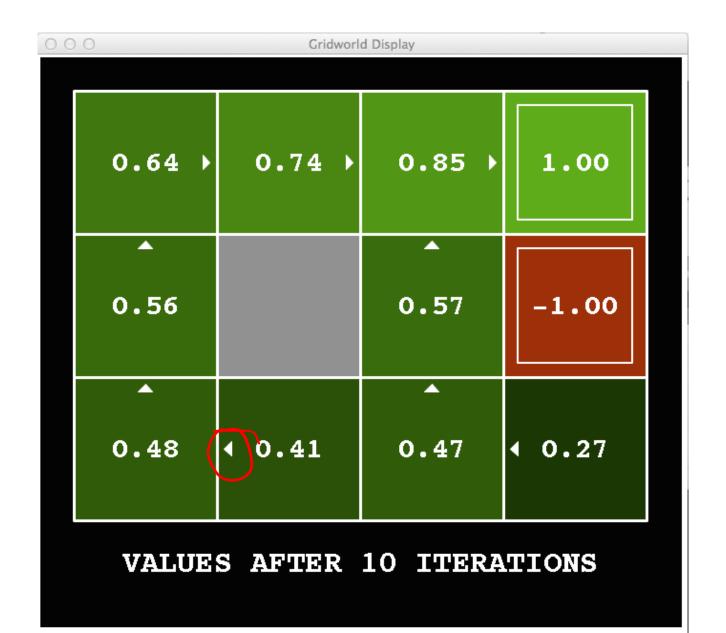


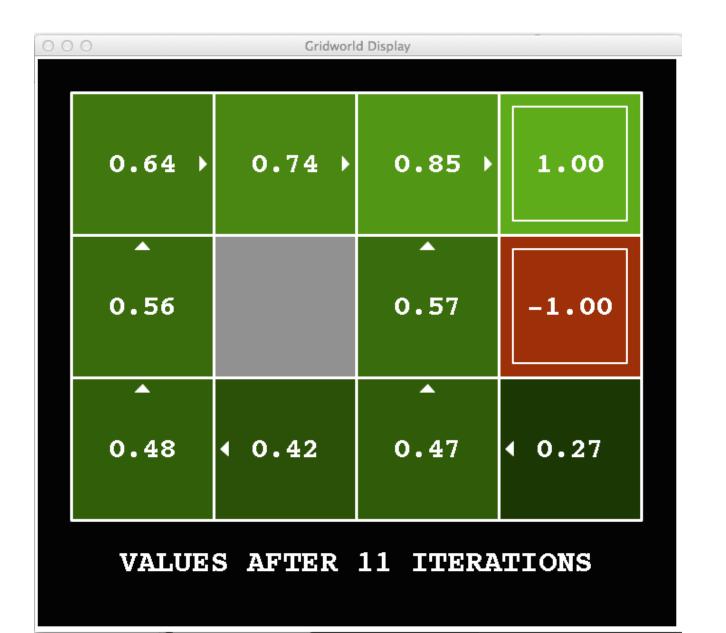


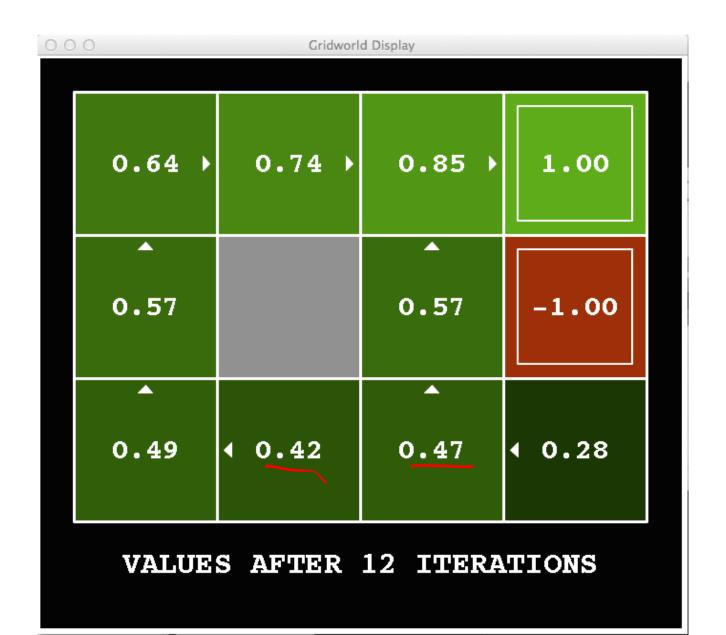


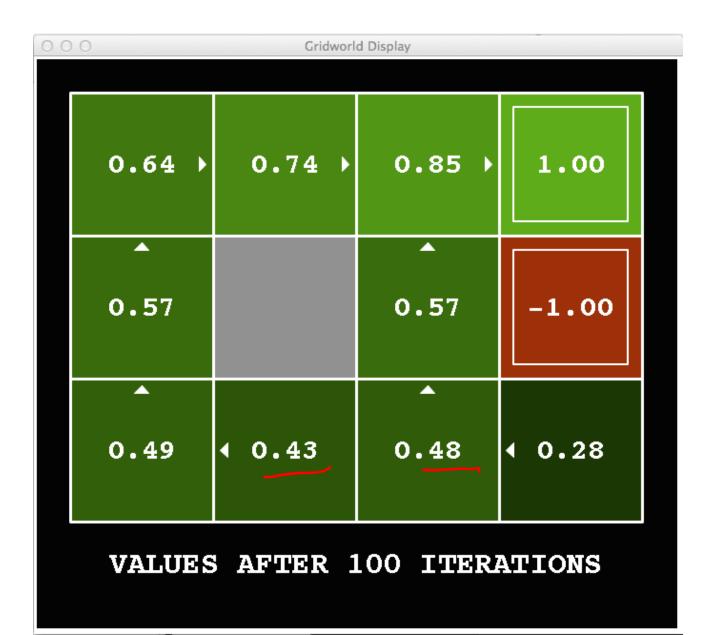


k = 10





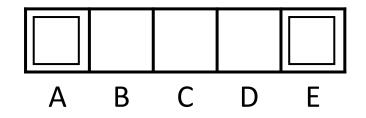




Outline

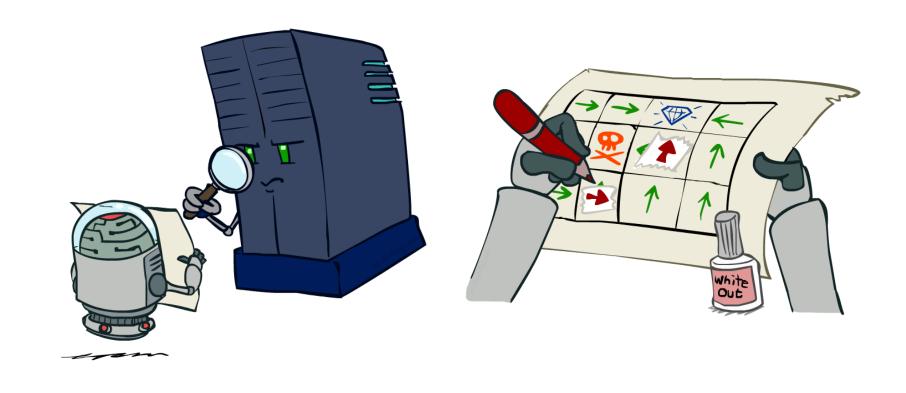
MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
 - Walk-through of super-simple value iteration
- Discounting, γ



Solving MDPs

- Method 1) Value iteration
 - Value iteration convergence
- Bellman equations
- **Policy Extraction**
- Method 2) Policy Iteration



Policy Iteration

Two Methods for Solving MDPs

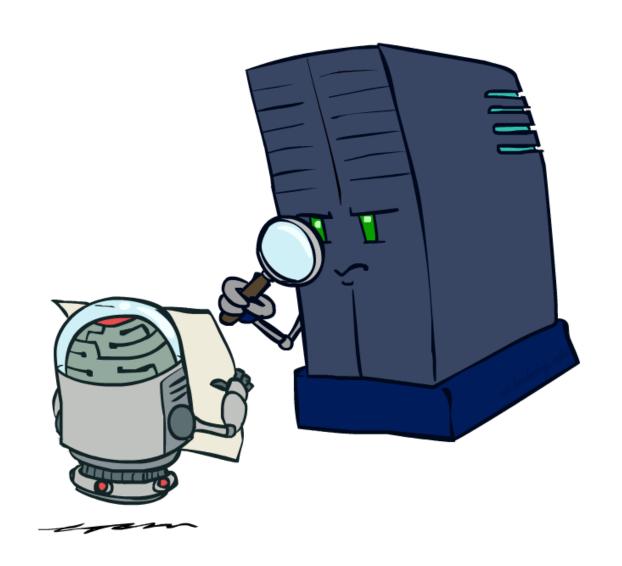
Value iteration + policy extraction

- Step 1: Value iteration: calculate values for all states by running one ply of the Bellman equations using values from previous iteration until convergence
- Step 2: Policy extraction: compute policy by running one ply of the Bellman equations using values from value iteration

Policy iteration

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

Policy Evaluation



Example: Policy Evaluation

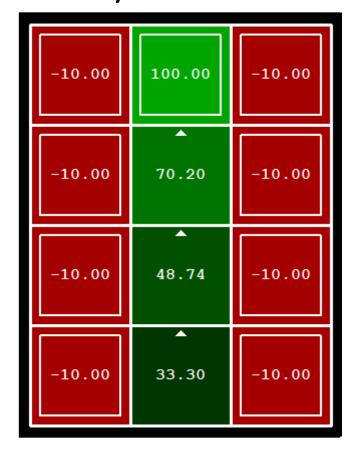
Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

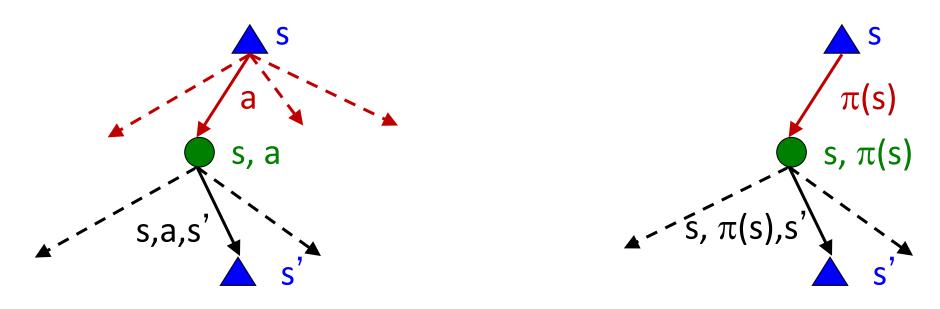
Always Go Forward



Policy Evaluation: Fixed Policies

Normally: Do the optimal action F

Fixed policy: Do what π says to do



Expectimax trees max over all actions to compute the optimal values

If we fixed some policy $\pi(s)$, then the tree would be simpler

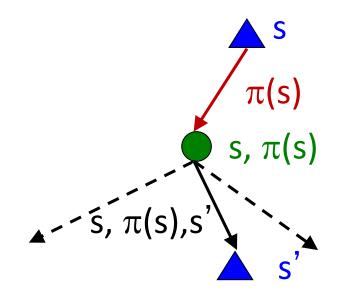
- only one action per state
- ... though the tree's value would depend on which policy we fixed

Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π :

 (π) s) = expected sum of discounted rewards starting in s and following π



Recursive relation (one-step look-ahead / Bellman equation):

$$V_{\text{kal}}^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_{\text{k}}^{\pi}(s')]$$

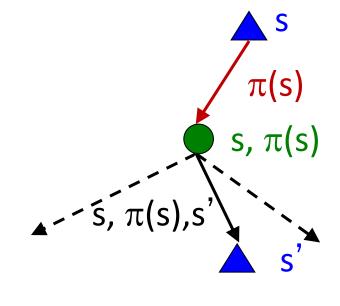
Policy Evaluation

How do we calculate the V's for a fixed policy π ?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

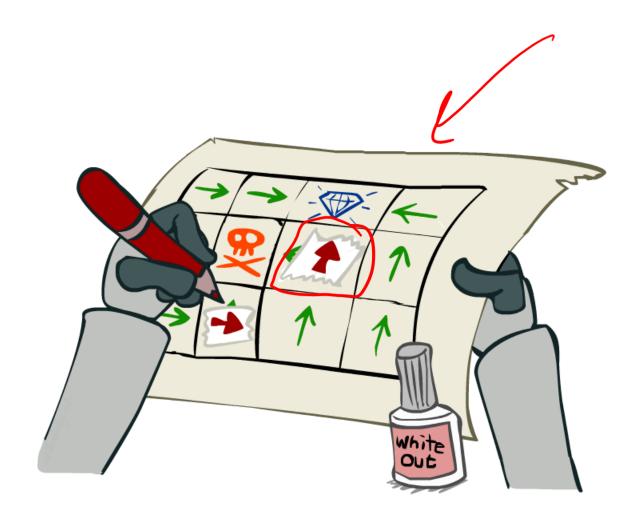


Efficiency: O(S²) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system

Solve with your favorite linear system solver

Policy Improvement



Policy Iteration:

Evaluation: For fixed current policy π , find values with policy evaluation:

Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using policy extraction

One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy iteration

- It's still optimal!
- Can converge faster under some conditions

Two Methods for Solving MDPs

Value iteration + policy extraction

Step 1: Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \forall s \text{ until convergence}$$

Step 2: Policy extraction:

$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \ \forall \ s$$

Policy iteration

Step 1: Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \ \forall \ s \ until \ convergence$$

Step 2: Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \ \forall \ s$$

Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update values with fixed policy (each pass is fast because we consider only one action, not all of them; however we do many passes)
- After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)
- The new policy will be better (or we're done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Standard expectimax:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

Bellman equations:

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s'$$

Q-iteration:

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \, s,a$$

Policy extraction:

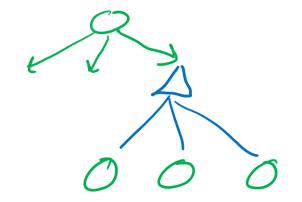
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$



Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{S'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Standard expectimax:
$$V(s) = \max_{a} \sum_{s} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Standard expectimax:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

Bellman equations:

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_{k}(s')], \quad \forall s$$

Q-iteration:

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \, s, a$$

Policy extraction:

$$\pi_{V}(s) = \underset{a}{\operatorname{argmax}} \sum_{S'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s'$$

Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$