
Warm-up as you walk in: Grid World

AI: Representation and Problem Solving

Markov Decision Processes II

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Outline
MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Rewards

▪ Walk-through of super-simple value iteration

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Value iteration convergence

▪ Bellman equations

▪ Policy Extraction

▪ Method 2) Policy Iteration

A B C D E

MDP Example: Racing

MDP Example: Racing
A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

1.0

Slow
(r=1)

Fast
(r=2)

0.5

0.5

0.5 Fast
(r=-10)

Slow
(r=1)

1.0

0.5

Racing Search Tree

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎) 𝑉(𝑠′)

Recursive Expectimax

Now with rewards:

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠′ + 𝑉 𝑠′

a

s

s, a

s,a,s’

s’

Simple Deterministic Example
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state
A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝑉 𝑠′

Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

Simple Deterministic Example

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝑉𝑘 𝑠′

▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

Utilities of Sequences

Utilities of Sequences
What preferences should an agent have over reward sequences?

More or less?

Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

It’s reasonable to maximize the sum of rewards

It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

How to discount?

▪ Each time we descend a level, we
multiply in the discount once

Why discount?

▪ Sooner rewards probably do have
higher utility than later rewards

▪ Also helps our algorithms converge

▪ Important: use 0 <  < 1

Poll

What is the value of this ordered sequence of
rewards [2,4,8] with 𝛾 = 0.5?

A. 3

B. 6

C. 7

D. 14

Bonus: What is the value of [8,4,2] with 𝛾 = 0.5?

Discounting
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑉𝑘 𝑠′

For  = 1, what is the optimal policy?

For  = 0.1, what is the optimal policy?

For which  are West and East equally good when in state D?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

Discounting
▪ Actions: B, C, D: East, West

▪ Actions: A, E: Exit

▪ Transitions: deterministic

▪ Rewards only for transitioning to terminal state

𝑉𝑘+1 𝑠 = max
𝑎

𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑉𝑘 𝑠′

For  = 1, what is the optimal policy?

For  = 0.1, what is the optimal policy?

For which  are West and East equally good when in state D?

A B C D E

T (Terminal)

R(A, Exit, T) = 10 R(A, Exit, T) = 1

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States
Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

Recursive definition of value:

a

s

s, a

s,a,s’
s’

Racing Search Tree

Racing Search Tree

We’re doing way too much work
with expectimax!

Problem: States are repeated
▪ Idea: Only compute needed quantities

once

Problem: Tree goes on forever
▪ Idea: Do a depth-limited computation,

but with increasing depths until
change is small

▪ Note: deep parts of the tree eventually
don’t matter if γ < 1

Time-Limited Values

Key idea: time-limited values

Define Vk(s) to be the optimal value of s if the game ends in k
more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

Computing Time-Limited Values

Value Iteration

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

1.0

Slow
(R=1)

Fast
(R=2)

0.5

0.5

0.5 Fast
(R=-10)Slow

(R=1)

1.0

0.5

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

...

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Poll 1
What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions

I: 𝑂(|𝑆||𝐴|)

II: 𝑂(𝑆 2|𝐴|)

III: 𝑂(|𝑆| 𝐴 2)

IV: 𝑂(𝑆 2 𝐴 2)

V: 𝑂(𝑆 2)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Poll 1
What is the complexity of each iteration in Value Iteration?

S -- set of states; A -- set of actions

I: 𝑂(|𝑆||𝐴|)

II: 𝑂(𝑆 2|𝐴|)

III: 𝑂(|𝑆| 𝐴 2)

IV: 𝑂(𝑆 2 𝐴 2)

V: 𝑂(𝑆 2)

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Value Iteration

Start with V0(s) = 0: no time steps left means an expected reward sum of zero

Given vector of Vk(s) values, do one ply of expectimax from each state:

Repeat until convergence

Complexity of each iteration: O(S2A)

Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

[Demo: gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

[Demo: gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

[Demo: gridworld values (L9D1)]

a

s

s, a

s,a,s’

s’

Gridworld Values V*

Gridworld: Q*

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

a

s

s, a

s,a,s’

s’

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

a

s

s, a

s,a,s’

s’

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

a

s

s, a

s,a,s’

s’

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’

MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Standard expectimax:

Value Iteration

Bellman equations characterize the optimal values:

Value iteration computes them:

Value iteration is just a fixed point solution method

a

s

s, a

s,a,s’

Value Iteration Convergence

How do we know the Vk vectors are going to converge?

Case 1: If the tree has maximum depth M, then VM
holds the actual untruncated values

Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth k+1

expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge

Outline
MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Rewards

▪ Walk-through of super-simple value iteration

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Value iteration convergence

▪ Bellman equations

▪ Policy Extraction

▪ Method 2) Policy Iteration

A B C D E

Solved MDP! Now what?
What are we going to do with these values??

𝑉∗ 𝑠 𝑄∗ 𝑠, 𝑎

Poll 2
If you need to extract a policy, would you rather have

A) Values, B) Q-values?

Poll 2
If you need to extract a policy, would you rather have

A) Values, B) Q-values ?

Policy Extraction

Computing Actions from Values
Let’s imagine we have the optimal values V*(s)

How should we act?

▪ It’s not obvious!

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values
Let’s imagine we have the optimal q-values:

How should we act?

▪ Completely trivial to decide!

Important lesson: actions are easier to select from q-values than values!

Value Iteration Notes
Value iteration repeats the Bellman updates:

Things to notice when running value iteration:

▪ It’s slow – O(S2A) per iteration

▪ The “max” at each state rarely changes

▪ The optimal policy appears before the values converge (but we
don’t know that the policy is optimal until the values converge)

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Outline
MDP Setup

▪ Expectimax: State, actions, non-deterministic transition functions

▪ Rewards

▪ Walk-through of super-simple value iteration

▪ Discounting, 𝛾

Solving MDPs

▪ Method 1) Value iteration

▪ Value iteration convergence

▪ Bellman equations

▪ Policy Extraction

▪ Method 2) Policy Iteration

A B C D E

Policy Iteration

Two Methods for Solving MDPs
Value iteration + policy extraction

▪ Step 1: Value iteration: calculate values for all states by running one
ply of the Bellman equations using values from previous iteration
until convergence

▪ Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration

Policy iteration

▪ Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

▪ Step 2: Policy improvement: update policy by running one ply of the
Bellman equations using values from policy evaluation

▪ Repeat steps until policy converges

Policy Evaluation

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation: Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy (s), then the tree would be simpler
– only one action per state

▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

(s)

s

s, (s)

s, (s),s’
s’

Normally: Do the optimal action Fixed policy: Do what  says to do

Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of
a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy :
V(s) = expected sum of discounted rewards starting

in s and following 

Recursive relation (one-step look-ahead / Bellman
equation):

(s)

s

s, (s)

s, (s),s’
s’

Policy Evaluation
How do we calculate the V’s for a fixed policy ?

Idea 1: Turn recursive Bellman equations into updates

 (like value iteration)

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with your favorite linear system solver

(s)

s

s, (s)

s, (s),s’
s’

Policy Improvement

Policy Iteration:
Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

Improvement: For fixed values, get a better policy using policy extraction

▪ One-step look-ahead:

Policy iteration

▪ It’s still optimal!

▪ Can converge faster under some conditions

Two Methods for Solving MDPs
Value iteration + policy extraction

▪ Step 1: Value iteration:
𝑉𝑘+1 𝑠 = max

𝑎
σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠 until convergence

▪ Step 2: Policy extraction:
𝜋𝑉 𝑠 = argmax

𝑎
σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

Policy iteration

▪ Step 1: Policy evaluation:

𝑉𝑘+1
𝜋 𝑠 = σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘

𝜋 𝑠′] , ∀ 𝑠 until convergence

▪ Step 2: Policy improvement:
𝜋𝑛𝑒𝑤 𝑠 = argmax

𝑎
σ𝑠′ 𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

▪ Repeat steps until policy converges

Comparison
Both value iteration and policy iteration compute the same thing
(all optimal values)

In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
▪ We do several passes that update values with fixed policy (each pass is fast because we

consider only one action, not all of them; however we do many passes)

▪ After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)

▪ The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms
So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

MDP Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

	Slide 1: Warm-up as you walk in: Grid World
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Outline
	Slide 4: MDP Example: Racing
	Slide 5: MDP Example: Racing
	Slide 6: Racing Search Tree
	Slide 7: Recursive Expectimax
	Slide 8: Simple Deterministic Example
	Slide 9: Simple Deterministic Example
	Slide 10: Simple Deterministic Example
	Slide 11: Utilities of Sequences
	Slide 12: Utilities of Sequences
	Slide 13: Discounting
	Slide 14: Discounting
	Slide 15: Poll
	Slide 16: Discounting
	Slide 17: Discounting
	Slide 20: Solving MDPs
	Slide 21: Optimal Quantities
	Slide 22: Snapshot of Demo – Gridworld V Values
	Slide 23: Snapshot of Demo – Gridworld Q Values
	Slide 24: Values of States
	Slide 25: Racing Search Tree
	Slide 26: Racing Search Tree
	Slide 27: Time-Limited Values
	Slide 28: Computing Time-Limited Values
	Slide 29: Value Iteration
	Slide 30: Example: Value Iteration
	Slide 31: k=0
	Slide 32: k=1
	Slide 33: k=2
	Slide 34: k=3
	Slide 35: k=4
	Slide 36: k=5
	Slide 37: k=6
	Slide 38: k=7
	Slide 39: k=8
	Slide 40: k=9
	Slide 41: k=10
	Slide 42: k=11
	Slide 43: k=12
	Slide 44: k=100
	Slide 45: Value Iteration
	Slide 46: Value Iteration
	Slide 47: Poll 1
	Slide 48: Poll 1
	Slide 49: Value Iteration
	Slide 50: Optimal Quantities
	Slide 51: Optimal Quantities
	Slide 52: Optimal Quantities
	Slide 53: Gridworld Values V*
	Slide 54: Gridworld: Q*
	Slide 55: The Bellman Equations
	Slide 56: The Bellman Equations
	Slide 57: The Bellman Equations
	Slide 58: The Bellman Equations
	Slide 59: The Bellman Equations
	Slide 60: MDP Notation
	Slide 61: Value Iteration
	Slide 62: Value Iteration Convergence
	Slide 63: Outline
	Slide 64: Solved MDP! Now what?
	Slide 65: Poll 2
	Slide 66: Poll 2
	Slide 67: Policy Extraction
	Slide 68: Computing Actions from Values
	Slide 69: Computing Actions from Q-Values
	Slide 70: Value Iteration Notes
	Slide 71: k=0
	Slide 72: k=1
	Slide 73: k=2
	Slide 74: k=3
	Slide 75: k=4
	Slide 76: k=5
	Slide 77: k=6
	Slide 78: k=7
	Slide 79: k=8
	Slide 80: k=9
	Slide 81: k=10
	Slide 82: k=11
	Slide 83: k=12
	Slide 84: k=100
	Slide 85: Outline
	Slide 86: Policy Iteration
	Slide 87: Two Methods for Solving MDPs
	Slide 88: Policy Evaluation
	Slide 89: Example: Policy Evaluation
	Slide 90: Example: Policy Evaluation
	Slide 91: Policy Evaluation: Fixed Policies
	Slide 92: Policy Evaluation: Utilities for a Fixed Policy
	Slide 93: Policy Evaluation
	Slide 94: Policy Improvement
	Slide 95: Policy Iteration:
	Slide 96: Two Methods for Solving MDPs
	Slide 97: Comparison
	Slide 98: Summary: MDP Algorithms
	Slide 99: MDP Notation
	Slide 100: MDP Notation
	Slide 101: MDP Notation
	Slide 102: MDP Notation

