Warm-up as you walk in: Grid World

0

1

2

3

N J.J

For starting state s=(2,2), fill in
actions, probabilities, and next states

Al: Representation and Problem Solving

Markov Decision Processes |

7 (5)— a

Instructor: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu

Outline

MDP Setup
\,-/Expectimax: State, actions,/rlon-deterministic transition functions

= 3 Rewards
[|

Walk-through of super-simple value iteration

= Discounting, vy A B C D

—

Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Bellman equations

=" Policy Extraction
= Method 2) Policy Iteration J

MDP Example: Racing

MDP Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

: 1.0
Going faster gets double reward 0.5 Fast

Slow

Overheated

1.0

Racing Search Tree

Recursive Expectimax

Vis) = maXE P(s'|s,a) V(s") w
a v
Now with rewards:

V(s) = mC?XZE(SllS, a) [5(5, a,S’)‘ + V(S’ﬂ

Simple Deterministic Example
= Actions: B, C, D: East, West
= Actions: A, E: Exit
" Transitions: deterministic
BRewards only for transitioning to terminal state

VO = R0 V@] [(5) 6

R(A,

A;-Q O } T (Terminal)

3
)=

Exit, T) =10 > \R(ﬁ, Exit, T) =_£

A B C D E
O 0,0 O

[— V(A\

L\/’]_—(_SB/() J0+0 0+0 o+ 070];@
(83 V(E)
\S/ il
o| € g 1)
s'=(=

T (Terminal)

Simple Deterministic Example

R(A, Exit, T) =10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

Viey1(s) = max[R(s, a,5") + Vi (s')]

\/ \/k-\—] GX

\.O

L LIK<5‘) \(K@I)

T (Terminal)

Simple Deterministic Example

R(A, Exit, T) =10 R(A, Exit, T) =1
= Actions: B, C, D: East, West
= Actions: A, E: Exit

" Transitions: deterministic
= Rewards only for transitioning to terminal state

Vier1(s) = max[R(s,a,s") + Vi(s")] A B C D E
) T A B C > L
V"(q_fo v e V, 0 06 0 0 O o
V (A \/ (8) V. o\o/{oo o/ozl
Frt| (= “ g /=0 \/’Z_ O 10 16 \I/)

D |
TD \f Al 3 0 10 1010 1

Utilities of Sequences

—G—‘===?-

Utilities of Sequences

What preferences should an agent have over reward sequences?

More orless? [1,2,2] or [2,3,4]

Now or later? [0,0,1] or [1,0,0]

Discounting

It’s reasonable to maximize the sum of rewards X:: 0.4
It’s also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially

N/ L
©V 9 &

1 yo I-v=09)+ ~2 = 08|

Worth Now Worth Next Step Worth In Two Steps

Discounting

How to discount?

= Each time we descend a level, we
multiply in the discountonce ___=>

Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge
= Important: userO <y<l1

Poll

What is the value of this ordered sequence of
rewards [2,4,8] with y = 0.57?

;2,3/0 + L/J‘ + gzO\
Q) FY05 F 305"
Jd o+ 2L T

Bonus: What is the value of [8,4,2] withy = 0.5?

>
w

g

T (Terminal)

Discounting

. R(A, Exit, T) = 10 R(A, Exit, T) = 1
= Actions: B, C, D: East, West
= Actions: A, E: Exit _

" Transitions: deterministic
= Rewards only for transitioning to terminal state

A B C D E :
Vier1(s) = mC?X[R(S, a,s') + yle(s’)J] V)((s)= V}\O\X(PG%S@%— 4 VF*‘(‘)]

Fory =1, what is the optimal policy?

Fory =0.1, what is the optimal policy?

For which y are West and East equally good when in state D?

Discounting
= Actions: B, C, D: East, West
= Actions: A, E: Exit

T (Terminal)

\R(A, Exit, T) =1

R(A, Exit, T) ?

=" Transitions: deterministic

= Rewards only for transitioning to terminal state
Vir1(s) = max[R(s,a,s") +y Vi (s)]
a

Fory =1, what is the optimal policy?
—

C [70]

Fo that is the optlmal policy?
s
15 ¥ 00 v ° .
Tij A JC

A

B

C

D

E

Exit &=3 &9 =3 EXiT

[

/0

/0

/0

/

by & &— &

0.0)=

JOL] (D)]or]]
bt & S, = g5t
= O-D. \DVA p \=0d

For which y are West and East equally good when in state D? ([oi\

Solving MDPs

Optimal Quantities

= The value (utility) of a state s:

_—= V\s) = expected utility starting in s and sis a
acting optimally state
. C?(j) (s,a)isa
* The value (utility) of a g-state (s,a): g-state

Q"(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

(s,a,s’) is a
transition

" The optimal policy:

optimal action from state s 6\(31”\4 X & [@(5)4)5‘) + N V(5)§l
o\ s'

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2

Discount = 0.9
Living reward =0

Snapshot of Demo — Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
D nt=0.9
Living reward =0

Values of States

Fundamental operation: compute the (expectimax) value of a state
" Expected utility under optimal action

= Average sum of (discounted) rewards
" This is just what expectimax computed!

Recursive definition of value:

V*(S) . maax Q*(S, a) A/,/

Q*(s,a) => T(s,a, s L]:E(s, a, s’)_—l—;yv*(s’)]

V*(s) = mC?XZT(S, a,s’) {R(s,a, ") + ’)/V*(S,)}

Racing Search Tree

Racing Search Tree

We’re doing way too much work
with expectimax!

Problem: States are repeated

= |dea: Only compute needed quantities
once

Problem: Tree goes on forever

= |dea: Do a depth-limited computation,
but with increasing depths until
change is small

= Note: deep parts of the tree eventually
don’t matterif y<1

LIEETUIE TR L

I

LIEEINEL

LIEEImEL]

Time-Limited Values

Key idea: time-limited values

Define V,(s) to be the optimal value of s if the game ends in k
more time steps
= Equivalently, it’s what a depth-k expectimax would give from s

o > A
e

[Demo — time-limited values (L8D6)]

Computing Time-Limited Values

11'51“?

A T O W WY

IIIIIIIIIIIIIIIIIIIII

ﬁ ﬁ ﬁ ﬁ

Hhih“ THTTLL

i =) = | - |
Q‘/ o
Vis(@) V(@)] { ®/ \&]
d 70\ T X X
el e e | (D 2 0 e & ee s e &
A LA A A LANAL A A
- |
=)

L

llllllll

Hhih“

VT O

llllllllllllll

THTTRLLL

AR R
1

A |

lllllllllllll

THUIRILL

Value lteration

Example: Value Iteration

2.5

. ‘(ff'”,d
Wi [2
e
Assume no discount!
{ S N\ ek Vig1(s) + maXZT(S a,s) R(s a,s) +~vVi(s)]
Vo 0 0

0 s/ ;7\\,[

K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

il
ND

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

1.00

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

A

Cridworld Display

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

0.51 »| 0.72 »| 0.84) 1.00

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

o6

Cridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

7

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

9

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < maxZT(s a,s) {R(s a, :C—I—fy\/k(s)}
o /—\) <

7
Repeat until convergence X s,a,s

VALUES AFTER O ITERATIONS VALUES AFTER 1 ITERATIONS

VALUES AFTER 2 ITERATIONS VALUES AFTER 100 ITERATIONS

PO” 1 (BQQ u‘)da‘x;ji’ﬁd@i(\

[A

What is the complexity of each iteration in Value lteration? 7L0 rooA o 6f5
S -- set of states; A -- set of actions ‘Faf 5 1n§S

A \\Vk+1(5)
: O(ISI1A]) R

~211: 0(|S|?|A)) 5,2

i 0(|S||A4]2)
IV: 0(S|2|A[%) Vils)
V: 0(|S1%)

) Vig1(s) < maaxZT(s, a,s) {R(s,a, s+ 'ka(sl)}

Poll 1

What is the complexity of each iteration in Value lteration?
S -- set of states; A -- set of actions

1 O(]S||4])

| n:o(Is1?14) | 2
1 0(|S|1A4]%)
IV: 0(|S|]Al?)
V: 0(|S]%)

Viet1(s) < mGQXZT(s, a,s) {R(s,a, s+ 'ka(s')}

S

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S, a,s) {R(s,a, s + q/Vk(s')}

S

Repeat until convergence e

e

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values /
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do &——

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

[Demo: gridworld values (L9D1)]

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

[Demo: gridworld values (L9D1)]

Optimal Quantities

" The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

= The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

» The optimal policy: ar9 M A X
n"(s) = optimal action from state s O\

[Demo: gridworld values (L9D1)]

Gridworld Values V*

VALUES AFTER 100 ITERATIONS

The Bellman Equations

How to be optimal:

i& Step 1: Take correct first action
(e
\

Step 2§Keep being optimal

ONN=$

Nt
=

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s, a)

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

Q*(s,a) =) T(s,a, s [R(S, a,s’) + *ﬂ/*(s’)]

The Bellman Equations

Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = max Q*(s,a)
Q*(s,a) = ZT(S, a,s) [R(S, a,s’) + ’)/V*(S,)]

— V*(s) = maXZT(S a,s) [R(s a,s’) —I—q/V*(S')} V <

These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

MDP Notation

Standard expectimax:
Bellman equations:

Value iteration:

V(s) = maxz P(s'|s,a)V(s")

Yas) = maxz: P(s'|s,a)[R(s,a,s") + yI/QS’)
I@S) maxz P(s'|ls,a)[R(s,a,s") +y@s)],

Vs

Value lteration

Bellman equations characterize the optimal values:

V() = max 3 T(s.a,) [Rls,a) + VD] ¥

Value iteration computes them: o

Viet1(s) mngT(s, a,s’) {R(s,a, s + nyk(sl)}

S

Value iteration is just a fixed point solution method

Value Iteration Convergence J,

How do we know the V, vectors are going to converge?

Vie(s) Vit1(s)
Case 1: If the tree has maximum depth M, then V,, r
holds the actual untruncated values

r"ﬁ
Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees \L

* The difference is that on the bottom layer, V,,, has actual
rewards while V| has zeros 4/

" That last layer is at best all R,y — A L0eC0C
= |tis at worst/ Ry, f - /

= But everything is discounted by y* that far out

= SoV, and V,,, are at most y* max|R| different 0 & '\{ £ \

= So as k increases, the values converge

Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

= Walk-through of super-simple value iteration

= Discounting, vy '?K vf Aﬁﬁ& A B C D

Solving MDPs
= Method 1) Value iteration \/\/
= Value iteration convergence

= Bellman equations /
—=® Policy Extraction \/ — 9y

! = Method 2) Policy Iteration

Solved MDP! Now what?

What are we going to do with these values??

1.00

ST

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?
= |t’s not obvious!

We need to do a mini-expectimax (one step)

7*(s) = arg gnaXZT(s, a,s)[R(s,a,s’) + ’YV*(S,):L)

—

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let’s imagine we have the optimal g-values:

How should we act?
=" Completely trivial to decide!

m*(s) = argmaxQ*(s,a)

Important lesson: actions are easier to select from g-values than values!

—

Value Iteration Notes

Value iteration repeats the Bellman updates:

Viet1(8) < mC?XZT(s,a,, s [R(s,a, ") + 'ka(s’)}

S

Things to notice when running value iteration:

= |t’s slow — O(S?A) per iteration
o J)
" The “max” at each state rarely changes

* The optimal policy appears before the values converge (but we
don’t know that the policy is optimal until the values converge)

[Demo: value iteration (L9D2)]

K

0

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

0.72 » 1.00

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

1.00

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

A

Cridworld Display

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

0.51 »| 0.72 »| 0.84) 1.00

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

o6

Cridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

7

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

9

Cridworld Display

0.40 Pl 0.47

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

0.48 |« 0.41

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Outline

MDP Setup
" Expectimax: State, actions, non-deterministic transition functions
= Rewards

= Walk-through of super-simple value iteration

= Discounting, ¥ é< v¥ . A B C D
Solving MDPs

= Method 1) Value iteration
= Value iteration convergence

= Bellman equations

* Policy Extraction /
= Method 2) Policy Iteration

Policy Iteration

Two Methods for Solving MDPs

Value iteration + policy extraction

= Step 1: Value iteration: calculate values for all states by running one
ply of the Bellman equations using values from previous iteration
until convergence

= Step 2: Policy extraction: compute policy by running one ply of the
Bellman equations using values from value iteration

Policy iteration

= Step 1: Policy evaluation: calculate values for some fixed policy (not
optimal values!) until convergence

= Step 2: Policy improvemerﬁ:/update policy by running one ply of the
Bellman equations using values from policy evaluation
" Repeat steps until policy converges

Policy Evaluation

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation: Fixed Policies

Normally: Do the optimal action Fixed policy: Do what 7t says to do

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy 1t(s), then the tree would be simpler
— only one action per state

= ... though the tree’s value would depend on which policy we fixed

Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of
a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy &:

\@“s) = expected sum of discounted rewards starting
in s and following m

Recursive relation (one-step look-ahead / Bellman
equation):

Vo (s) = > T(s,m(s),s)[R(s,7(s),s") + V] (s)]

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo'(s) =0
Vi 1(s8) < ZT(S, 7(s),s)[R(s,m(s),s") + V(5]
Z—

Efficiency: O(S?) per iteration

ldea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with your favorite linear system solver

Policy Improvement

>/ =~/ G-
J Y - [

2]
5

>

i

Policy Iteration:

Evaluation: For fixed current policy &, find values with policy evaluation:
" [terate until values converge:

ka_i_l(s) — Y T(s,m;(s), s") {R(s, mi(s),s) + V;ji(sl)}

Improvement: For fixed values, get a better policy using policy extraction
" One-step look-ahead:
mi1(s) = argmax 3 T(s,a,s) |R(s,a,s") +4V7i(s")|

S

Policy iteration
" |t’s still optimal!
" Can converge faster under some conditions

Two Methods for Solving MDPs

Value iteration + policy extraction
= Step 1: Value iteration:
Vier1(s) = max Yo P(s'|s,a)[R(s,a,s") +yV,(s")], Vs until convergence
= Step 2: Policy extraction:
my(s) = argmax)., P(s'|s,a)[R(s,a,s") + yV(s')], Vs
a

Policy iteration
= Step 1: Policy evaluation:
VE1(s) =Y P(s'|s,m(s))[R(s,m(s),s") + yViF(s")], Vs until convergence
= Step 2: Policy improvement:
Thew(S) = argmax .., P(s'|s,a)|R(s,a,s’) + yV™old(s")], Vs
a

= Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing
(all optimal values)

— . .
In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

Nm—

In policy iteration:

= We do several passes that update values with fixed policy (each pass is fast because we
consider only one action, not all of them; however we do many passes)

= After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)
" The new policy will be better (or we’re done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

" Compute optimal values: use value iteration or policy iteration

=" Compute values for a particular policy: use policy evaluation

* Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

" They basically are — they are all variations of Bellman updates

" They all use one-step lookahead expectimax fragments

* They differ only in whether we plug in a fixed policy or max over actions

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
~— Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

MDP Notation

Standard expectimax:
Bellman equations:
Value iteration:
Q-iteration:

Policy extraction:
Policy evaluation:

Policy improvement:

V(s) = mC?XZ P(s'ls,a)V(s") O O O

Ve(s) = mc?xz P(s'ls,)[R(s,a,s") + yV*(s")]

Verr(s) = maaiz P(s'ls,)[R(s,a,s") + ¥V (sD], Vs
Qrss(s,a) = Zszla(sws, D[R(s,a,5) +ymax 0u(s',a)], ¥s,a
7, (s) = argcrlnzsalxz P(s'ls,)[R(s,a,s") +yV(s)], Vs
VEa(s) =) PG Is ()R, (), 8) +YVEGD], Vs

T[new(s) = argmaxz P(S, |S) a) [R(S, a, S,) + VVﬂOld (S,)]) V S
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V*(s) = mc?xz P(s'|s,a)[R(s,a,s") + yV*(s")]
Value iteration: Vier1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi,(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a)], Vs,a
S7
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
S/
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + yViF(s')], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

MDP Notation

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: Ve(s) = mc?xz P(s'ls,a)[R(s,a,s") + yV*(s")]
Value iteration: Vierr1(s) = maa;Z P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
Q-iteration: Qr+1(s,a) = zSP(S’IS, a)[R(s,a,s") + y max Q,(s',a")], Vs,a
57
Policy extraction: my(s) = argcrlnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
57
Policy evaluation: Vi (s) = z P(s'|s,m(s))[R(s,m(s),s") + YV (s")], Vs
S7

Policy improvement: Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yV™oud(s")], Vs
a
S/

	Slide 1: Warm-up as you walk in: Grid World
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Outline
	Slide 4: MDP Example: Racing
	Slide 5: MDP Example: Racing
	Slide 6: Racing Search Tree
	Slide 7: Recursive Expectimax
	Slide 8: Simple Deterministic Example
	Slide 9: Simple Deterministic Example
	Slide 10: Simple Deterministic Example
	Slide 11: Utilities of Sequences
	Slide 12: Utilities of Sequences
	Slide 13: Discounting
	Slide 14: Discounting
	Slide 15: Poll
	Slide 16: Discounting
	Slide 17: Discounting
	Slide 20: Solving MDPs
	Slide 21: Optimal Quantities
	Slide 22: Snapshot of Demo – Gridworld V Values
	Slide 23: Snapshot of Demo – Gridworld Q Values
	Slide 24: Values of States
	Slide 25: Racing Search Tree
	Slide 26: Racing Search Tree
	Slide 27: Time-Limited Values
	Slide 28: Computing Time-Limited Values
	Slide 29: Value Iteration
	Slide 30: Example: Value Iteration
	Slide 31: k=0
	Slide 32: k=1
	Slide 33: k=2
	Slide 34: k=3
	Slide 35: k=4
	Slide 36: k=5
	Slide 37: k=6
	Slide 38: k=7
	Slide 39: k=8
	Slide 40: k=9
	Slide 41: k=10
	Slide 42: k=11
	Slide 43: k=12
	Slide 44: k=100
	Slide 45: Value Iteration
	Slide 46: Value Iteration
	Slide 47: Poll 1
	Slide 48: Poll 1
	Slide 49: Value Iteration
	Slide 50: Optimal Quantities
	Slide 51: Optimal Quantities
	Slide 52: Optimal Quantities
	Slide 53: Gridworld Values V*
	Slide 54: Gridworld: Q*
	Slide 55: The Bellman Equations
	Slide 56: The Bellman Equations
	Slide 57: The Bellman Equations
	Slide 58: The Bellman Equations
	Slide 59: The Bellman Equations
	Slide 60: MDP Notation
	Slide 61: Value Iteration
	Slide 62: Value Iteration Convergence
	Slide 63: Outline
	Slide 64: Solved MDP! Now what?
	Slide 65: Poll 2
	Slide 66: Poll 2
	Slide 67: Policy Extraction
	Slide 68: Computing Actions from Values
	Slide 69: Computing Actions from Q-Values
	Slide 70: Value Iteration Notes
	Slide 71: k=0
	Slide 72: k=1
	Slide 73: k=2
	Slide 74: k=3
	Slide 75: k=4
	Slide 76: k=5
	Slide 77: k=6
	Slide 78: k=7
	Slide 79: k=8
	Slide 80: k=9
	Slide 81: k=10
	Slide 82: k=11
	Slide 83: k=12
	Slide 84: k=100
	Slide 85: Outline
	Slide 86: Policy Iteration
	Slide 87: Two Methods for Solving MDPs
	Slide 88: Policy Evaluation
	Slide 89: Example: Policy Evaluation
	Slide 90: Example: Policy Evaluation
	Slide 91: Policy Evaluation: Fixed Policies
	Slide 92: Policy Evaluation: Utilities for a Fixed Policy
	Slide 93: Policy Evaluation
	Slide 94: Policy Improvement
	Slide 95: Policy Iteration:
	Slide 96: Two Methods for Solving MDPs
	Slide 97: Comparison
	Slide 98: Summary: MDP Algorithms
	Slide 99: MDP Notation
	Slide 100: MDP Notation
	Slide 101: MDP Notation
	Slide 102: MDP Notation

