Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Goal Technique

Compute V^* , Q^* , π^* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique Compute V*, Q*, π^* VI/PI on approx. MDP Eval fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

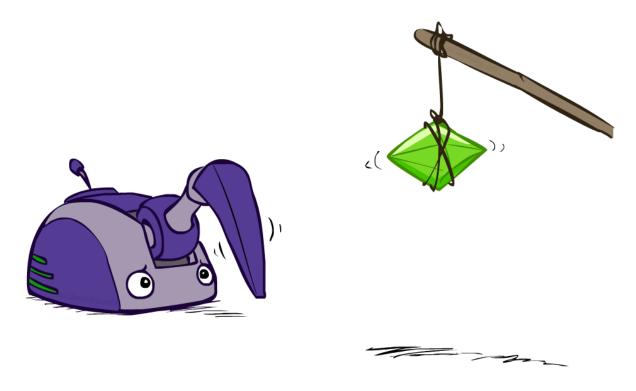
Eval fixed policy π TD/Value Learning

Wrap up MDPs

Switch to MDP II slides

AI: Representation and Problem Solving

Reinforcement Learning



Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s} P(s'|s,a)V(s')$$

Bellman equations:
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Which of the following are used in policy iteration?

A. Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

B. Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'}^{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

C. Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

D. Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s \in \mathbb{R}$$

E. Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Which of the following are used in policy iteration?

A. Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

B. Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'}^{s} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

C. Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

✓ D. Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

✓ E. Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \forall s$$

Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

A.
$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$$

B.
$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

C.
$$V^*(s) = \max_{a} [R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^*(s')]$$

D.
$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^*(s',a')$$

Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

$$\checkmark$$
 A. $V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')]$

$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a) V^*(s')$$

$$V^*(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^*(s')]$$

$$\bigvee D. \ Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^*(s',a')$$

Reinforcement learning

What if we didn't know P(s'|s,a) and R(s,a,s')?

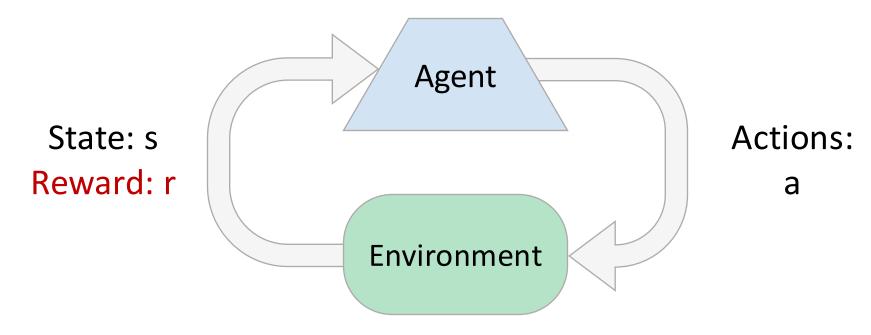
Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$
Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [P(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [P(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s'$$

Reinforcement Learning



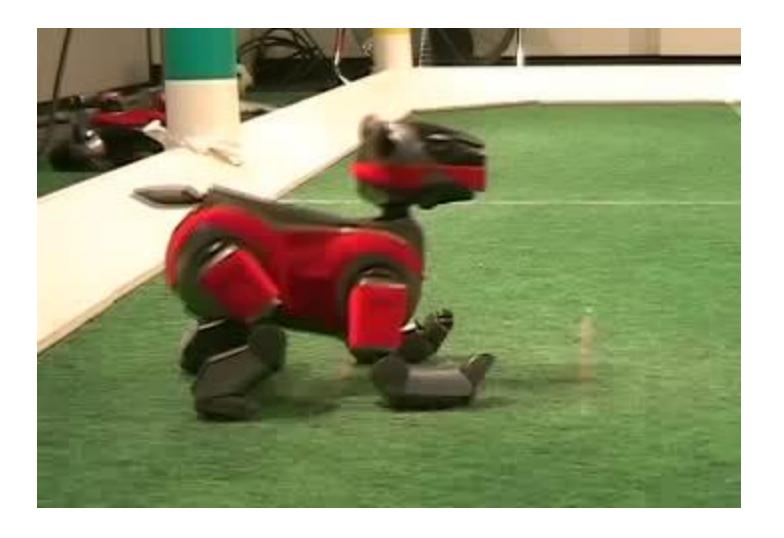
Basic idea:

- All learning is based on observed samples of rewards and next states!
- Receive feedback in the form of rewards
- Must (learn to) act so as to maximize expected rewards

Example: Learning to Walk

Initial

Example: Learning to Walk



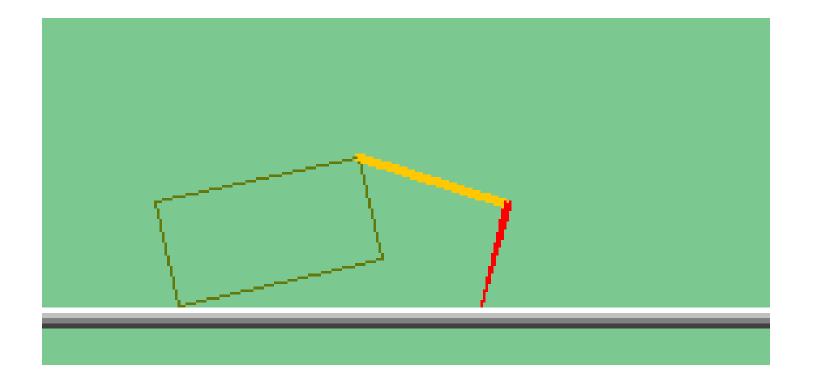
Finished

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]

[Video: TODDLER – 40s]

The Crawler!



Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):

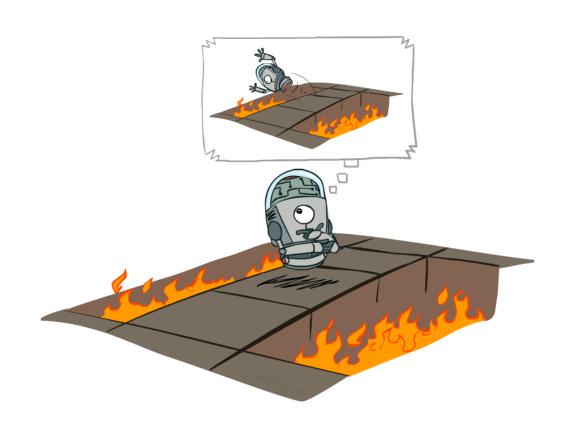
- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a,s')
- A reward function R(s,a,s')

Still looking for a policy $\pi(s)$

New twist: don't know T or R

- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)



Offline Solution (Known MDP)

Online Learning (Unknown MDP)

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Unknown MDP: Online Learning

Model-Based

Estimate MDP T(s,a,s') and R(s,a,s') from samples of environment

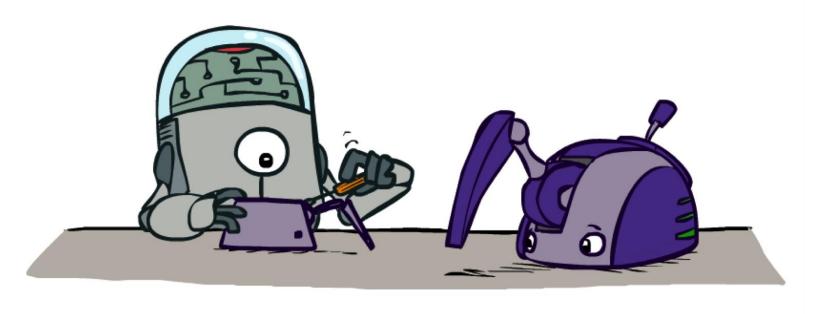
Model-Free

Passive Reinforcement Learning

- Direct Evaluation (simple)
- TD Learning

Active Reinforcement Learning

Q-Learning



Online Learning Model-based Learning

Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')

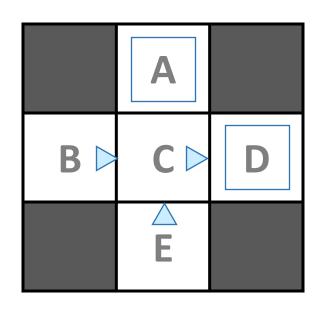
Step 2: Solve the learned MDP

For example, use value iteration, as before

Example: Model-Based Learning

Episode: a sequence of states actions and rewards sampled from the environment

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

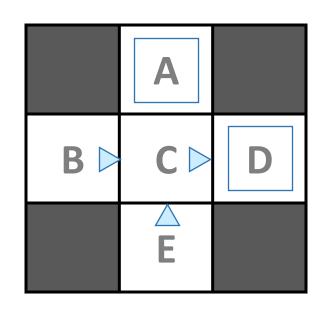
$$\widehat{T}(s,a,s')$$
T(B, east, C) =
T(C, east, D) =
T(C, east, A) =

$$\widehat{R}(s,a,s')$$

R(B, east, C) = R(C, east, D) = R(D, exit, x) = ...

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\frac{\widehat{T}(s, a, s')}{\widehat{T}(s, a, s')}$$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

 $\widehat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

...

Example: Expected Age

Goal: Compute expected age of 15-281 students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Why does this work? Because samples appear with the right frequencies.

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Unknown MDP: Online Learning

Model-Based

Estimate MDP T(s,a,s') and R(s,a,s') from samples of environment

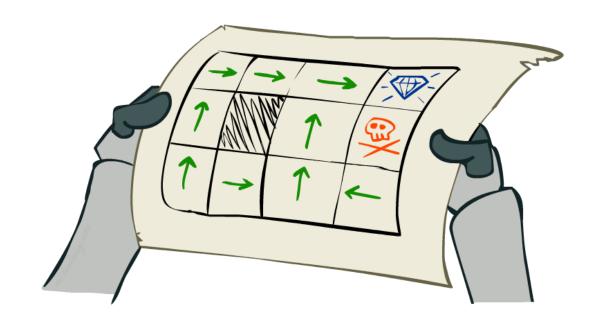
Model-Free

Passive Reinforcement Learning

- Direct Evaluation (simple)
- TD Learning

Active Reinforcement Learning

Q-Learning



Online Learning

Model-free Learning Passive Reinforcement Learning

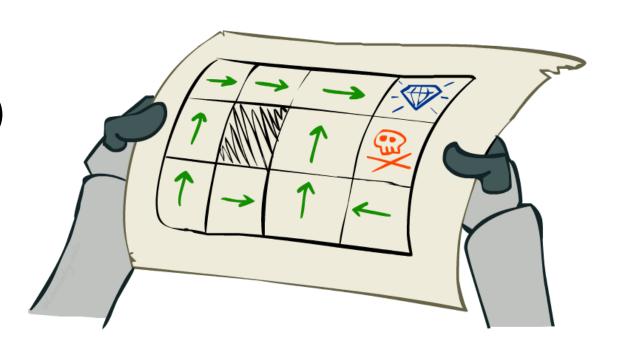
Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy $\pi(s)$
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.



Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

This is called direct evaluation

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

• Act according to π

Every time you visit a state, write down what the sum of

discounted rewards turned out to be

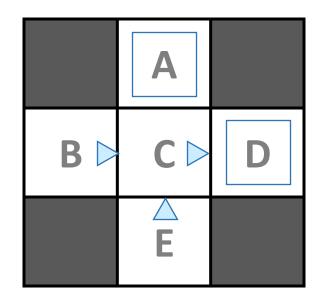
Average those samples

This is called direct evaluation

Pieces Available	Take 1	Take 2
2	0%	100%
3	2%	0%
4	75 %	2%
5	4%	68%
6	5%	6%
7	60%	5%

Example: Direct Evaluation

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
+8 B	+4 C	+10 D
	E -2	

Problems with Direct Evaluation

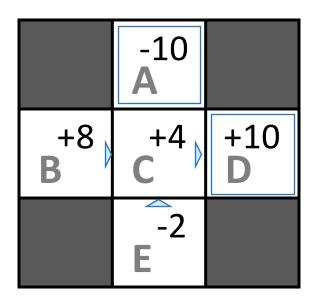
What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

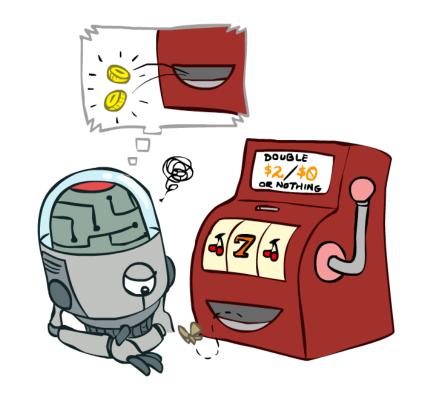
What bad about it?

- It wastes information about state connections
- Each state must be learned separately
- So, it takes a long time to learn

Output Values



If B and E both go to C under this policy, how can their values be different? Online Learning
Model-free Learning



Passive Reinforcement Learning Temporal Difference Learning

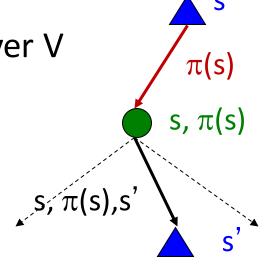
Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:

■ Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'



- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?

■ In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

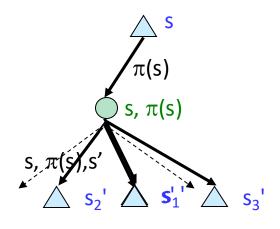
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$
...
$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

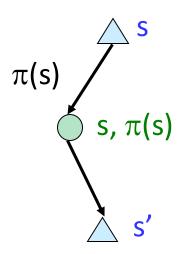


Almost! But we can't rewind time to get sample after sample from state s.

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often



Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

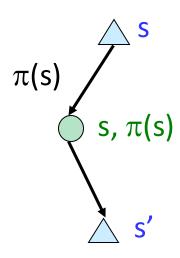
Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often



Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential Moving Average

Exponential moving average

The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Makes recent samples more important:

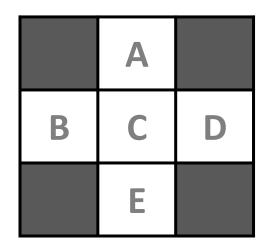
$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

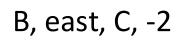
Example: Temporal Difference Learning

States

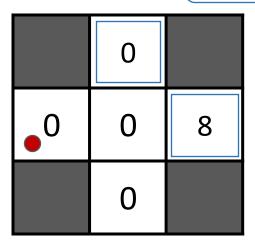


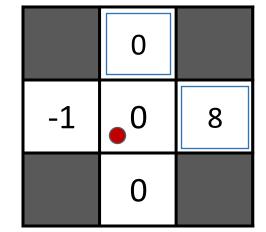
Assume: $\gamma = 1$, $\alpha = 1/2$

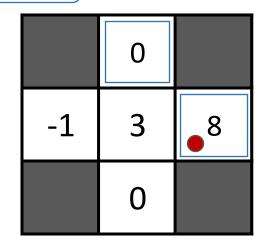
Observed Transitions



C, east, D, -2

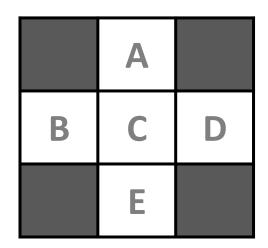






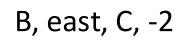
Example: Temporal Difference Learning

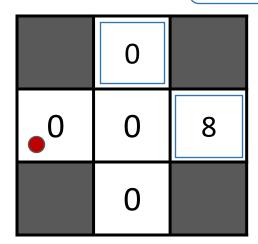
States

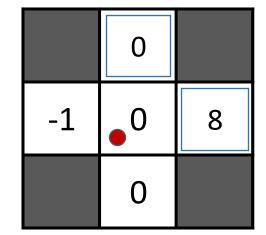


Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions







$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

Idea: learn Q-values, not values

Makes action selection model-free too!

