Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

a Goal Technique A
Compute V*, Q*, n* Value / policy iteration
Evaluate a fixed policy & Policy evaluation
N /
Unknown MDP: Model-Based Unknown MDP: Model-Free
/Goal Technique N Goal Technique A
Compute V¥, Q*, t* VI/Pl on approx. MDP Compute V*, Q*, t* Q-learning

\Eval fixed policy & PE on approx. MDP 9 Eval fixed policy & TD/Value Learning

J

Wrap up MDPs
Switch to MDP Il slides

Al: Representation and Problem Solving

Reinforcement Learning

Instructor: Pat Virtue
Slide credits: CMU Al and http://ai.berkeley.edu

MDP Notation

Standard expectimax: V(s) = m&axz P(s'|s,a)V(s")

Bellman equations: V*(s) = mcellxz P(s'|s,a)[R(s,a,s") + yV*(s")]

S/
Value iteration: Vier1(s) = mc?xz P(s'|s,a)[R(s,a,s") + yVi(s")], Vs

S/

Q-iteration: Qr+1(s,a) = 2 P(s'|s,a)[R(s,a,s") +y max Qr(s’,a)], Vs,a

S/
Policy extraction: my(s) = argflnaxz P(s'|s,a)[R(s,a,s") + yV(s')], Vs

S/
Policy evaluation: VE(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yViF(s)], Vs
S/

Policy improvement: Tnew(s) = argmax E P(s'ls,a)[R(s,a,s") +yV™oud(s)], Vs
a
S/

Poll (unused)

Which of the following are used in policy iteration?

A. Value iteration:

B. Q-iteration:
C. Policy extraction:

D. Policy evaluation:

E. Policy improvement:

Vi () = mgxz P(s'|s,)[R(s,a,s") +YVe(s)], Vs
Qrss(s, @) = zsz;(sws, D[R(s,a,5) +y max Qu(s',a)], Vs,a
7, (s) = arg;n:\;(z P(s'ls,)[R(s,a,s") +WV(s)], Vs
Vier1(s) = Z P(s'|s,m(s))[R(s,m(s),s") +yVg(s)], Vs

Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVToia(s")], Vs
a
S/

Poll (unused)

Which of the following are used in policy iteration?

A. Value iteration:

B. Q-iteration:
C. Policy extraction:

v/ b. Policy evaluation:

\/ E. Policy improvement:

Vi () = mgxz P(s'|s,)[R(s,a,s") +YVe(s)], Vs
Qrss(s, @) = zsz;(sws, D[R(s,a,5) +y max Qu(s',a)], Vs,a
7, (s) = arg(rln:;(z P(s'ls,)[R(s,a,s") +WV(s)], Vs
Vier1(s) = Z P(s'|s,m(s))[R(s,m(s),s") +yVg(s)], Vs

Thew(S) = argmax E P(s'|s,a)[R(s,a,s") + yVToia(s")], Vs
a
S/

Poll (unused)

Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?
A V*(s) =max), P(s'|s,a)[R(s,a,s") + yV*(s')]

B. V*(s) = R(s) + ymfoS,P(S’IS, a)V*(s")
C V*(s) = maax[R(s, a)+y X P(s'|s,a)V*(s’)

D. Q*(s,a) =R(s,a) +y X, P(s'ls,a) max Q*(s’, a’)

Poll (unused)

Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?
W/ A V*(s) =max Y P(s'|s,a)[R(s,a,s") + yV*(s")]

v/ B V*(s) =R(s) + ymfoS,P(S’IS, a)V*(s")
Vv e V*(s) = max[R(s,a) +y Xs P(s'ls, a)V*(s")

v/ D Q*(s,a) = R(s,a) + vy Xs P(s'ls,a) max Q*(s’, a’)

Reinforcement learning
What if we didn’t know P(s’|s,a) and R(s,a,s’)?

Value iteration: Vies1(S) = maxzm [BesrerT) +yVi(sN], Vs
Q-iteration: Qr+1(s,a) = ZW [Rls=erT) + y max Qr(s’,a)], Vs,a
Policy extraction: Ty (s) = arg;naxzwrs,’a)[&@o,—u,’s") +yV(s)], Vs
Policy evaluation: Vi .(s) = Z M[W + yVE(s)], Vs

57

Policy improvement: e, (s) = argmaxzm[w +yVmd(s)], Vs
a
S/

Reinforcement Learning

Agent

State: s Actions:
Reward: r a

Environment

Basic idea:

= All learning is based on observed samples of rewards and next states!
= Receive feedback in the form of rewards

= Must (learn to) act so as to maximize expected rewards

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

m

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):
= Aset of statess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

\ e s

Still looking for a policy m(s) el overheated

New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

«%

Offline Solution Online Learning
(Known MDP) (Unknown MDP)

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

"

Estimate MDP T(s,a,s') and R(s,a,s’)
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
" Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

\- Q-Learning /

Model-based Learning

Model-Based Learning

Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

= Count outcomes s’ for each s, a
= Normalize to give an estimate of T'(s, a, s’)
= Discover each R(s,a,s’) when we experience (s, a, s’)

Step 2: Solve the learned MDP
" For example, use value iteration, as before

Example: Model-Based Learning

Input Policy &

Episode: a sequence of states
actions and rewards sampled
from the environment

Observed Episodes (Training)

Episode 1

g B, east, C, -1

Assume:y=1

\

~

C, east, D, -1
D, exit, x, +10

J

Episode 3

\

/E, north, C, -1

~

C,east, D, -1

D, exit, X, +10/

Episode 2

g B, east, C, -1

\

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

\

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

Learned Model

J

T(s,a,s")
4 T(B, east, C) = A
T(C, east, D) =
T(C, east, A) =
_ -)
R(s,a,s")
4 R(B, east, C) =)
R(C, east, D) =
R(D, exit, x) =
NG /

Example: Model-Based Learning

Input Policy m

Observed Episodes (Training)

Episode 1

g B, east, C, -1

Assume:y=1

\

C, east, D, -1

D, exit, x, +10

~

J

Episode 3

\

/E, north, C, -1

C,east, D, -1
D, exit, x, +1

~

Episode 2

g B, east, C, -1

\

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

0

\

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

Learned Model

T(s,a,s")

4 T(B, east, C) = 1.00

T(C, east, D) = 0.75
T(C, east, A) =0.25

J

o

~

)

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10

o

~

)

Example: Expected Age

Goal: Compute expected age of 15-281 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a, a,, ... Q]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Pla) = num(a) Z Why does this
N 1 ?
E[A] ~ — Zﬂi work? Because
. N ?_ samples appear
E[A] ~ Z P(a)-a ' with the right

\ g / \ frequencies.

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

"

Estimate MDP T(s,a,s') and R(s,a,s’)
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
" Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

\- Q-Learning /

Model-free Learning
Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

" [nput: a fixed policy nt(s)

=" You don’t know the transitions T(s,a,s’)
=" You don’t know the rewards R(s,a,s’)

® Goal: learn the state values

In this case:

" Learner is “along for the ride”

" No choice about what actions to take
" Just execute the policy and learn from experience

" This is NOT offline planning! You actually take actions in the world.

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under «

|dea: Average together observed sample values
= Act accordingto m

" Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples

This is called direct evaluation

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under «

|dea: Average together observed sample values

= Act accordingto m

" Every time you visit a state, write down what the sum of
discounted rewards turned out to be

= Average those samples Riecesiuaiiable

2 0% 100%

This is called direct evaluation > B e
4 75% 2%
5 4% 68%
6 5% 6%
7 60% 5%

Example: Direct Evaluation

Input Policy &

Observed Episodes (Training)

Episode 1

: B, east, C, -1

Assume: vy =1

N

C, east, D, -1
D, exit, x, +10

~

/

Episode 3

: E, north, C, -1

N

C,east, D, -1
D, exit, x, +10

~

Episode 2

: B, east, C, -1

/

N

C, east, D, -1
D, exit, x, +10

~

/

Episode 4

: E, north, C, -1

N

C, east, A -1
A, exit, x,-10

~

/

Output Values

Problems with Direct Evaluation

What’s good about direct evaluation?
" [t’s easy to understand
" [t doesn’t require any knowledge of T, R

" [t eventually computes the correct average
values, using just sample transitions

What bad about it?

® |t wastes information about state connections

= Each state must be learned separately
" So, it takes a long time to learn

Output Values

If Band E both go to C
under this policy, how can
their values be different?

Passive Reinforcement Learning
Temporal Difference Learning

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
" Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0 [(s)

Vit 1(s) <= > T(s,m(s), sH[R(s,7(s),s") + Vi (s))] X,s;"i’t/(s),s’

s/ A s

» This approach fully exploited the connections between the states
" Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?

" [n other words, how to we take a weighted average without knowing the
weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

ka_|_1(3) — ZT(S, 7(s),s)[R(s,7(s),s") + 'kaW(s')]

S
Idea: Take samples of outcomes s’ (by doing the action!) and average

sample1 = R(s,m(s), 3’1) -+ nykﬂ(sll)

samples = R(s,7(s),s5) + YV (s5)

samplen = R(s,7(s), sp,) + Vi (s,)

rewind time to get sample
after sample from state s.

1
Vkﬂ—l—l (5) « g Z sample; Almost! But we can’t
)

Temporal Difference Learning

. . S
Big idea: learn from every experience! s
: : . , (s
= Update V(s) each time we experience a transition (s, a, s/, r)
= Likely outcomes s’ will contribute updates more often s, i(s)
Temporal difference learning of values ANEY

= Policy still fixed, still doing evaluation!
" Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~V7(s")

Update to V(s):

Temporal Difference Learning

S
Big idea: learn from every experience! (s)

= Update V(s) each time we experience a transition (s, a, s, r)

" Likely outcomes s’ will contribute updates more often s, (s)
Temporal difference learning of values A S

= Policy still fixed, still doing evaluation!
" Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,n(s),s") +~V7™(s)
Update to V(s): VT(s) + (1 —a)V"(s) + (a)sample

Same update: V7T (s) «+ V™(s) 4+ a(sample — V7 (s))

Exponential Moving Average

Exponential moving average
" The running interpolation update: Tn=(1—a) Tn_1+a-z,

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
1+(1-ao)+(1—a)?+...

i‘ﬂ —
= Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Example: Te

States

Assume: y =1,
a=1/2

mporal Di

‘erence Learning

Observed Transitions

[B, east, C, -2] [C, east, D, -2 J

11,0 | o

Example: Temporal Difference Learning

States Observed Transitions
[B, east, C, -2] [C, east, D, -2 J

ool o]

Assume: y =1,
a=1/2 VT(s) + (1= a)V7™(s) + o |R(s,m(s),s) + 4V (s)]

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s’) {R(s, a,s) + *)/V(s’)]

ldea: learn Q-values, not values
Makes action selection model-free too!

	Slide 1: Overview: MDPs and Reinforcement Learning
	Slide 2: Wrap up MDPs
	Slide 3: AI: Representation and Problem Solving
	Slide 4: MDP Notation
	Slide 5: Poll (unused)
	Slide 6: Poll (unused)
	Slide 7: Poll (unused)
	Slide 8: Poll (unused)
	Slide 9: Reinforcement learning
	Slide 10: Reinforcement Learning
	Slide 11: Example: Learning to Walk
	Slide 13: Example: Learning to Walk
	Slide 15: Example: Toddler Robot
	Slide 16: The Crawler!
	Slide 17: Demo Crawler Bot
	Slide 18: Reinforcement Learning
	Slide 19: Offline (MDPs) vs. Online (RL)
	Slide 20: Overview: MDPs and Reinforcement Learning
	Slide 21: Online Learning Model-based Learning
	Slide 22: Model-Based Learning
	Slide 23: Example: Model-Based Learning
	Slide 24: Example: Model-Based Learning
	Slide 25: Example: Expected Age
	Slide 26: Overview: MDPs and Reinforcement Learning
	Slide 27: Online Learning Model-free Learning Passive Reinforcement Learning
	Slide 28: Passive Reinforcement Learning
	Slide 29: Simple Passive Learning: Direct Evaluation
	Slide 30: Simple Passive Learning: Direct Evaluation
	Slide 31: Example: Direct Evaluation
	Slide 32: Problems with Direct Evaluation
	Slide 33: Online Learning Model-free Learning Passive Reinforcement Learning Temporal Difference Learning
	Slide 34: Why Not Use Policy Evaluation?
	Slide 35: Sample-Based Policy Evaluation?
	Slide 36: Temporal Difference Learning
	Slide 37: Temporal Difference Learning
	Slide 38: Exponential Moving Average
	Slide 39: Example: Temporal Difference Learning
	Slide 40: Example: Temporal Difference Learning
	Slide 41: Problems with TD Value Learning

