Warm-up as you log in

<https://high-level-4.herokuapp.com/experiment>

https://rachit-dubey.github.io/humanRL_website/

AI: Representation and Problem Solving Reinforcement Learning II

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Unknown MDP: Online Learning

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s') from samples of environment

Passive Reinforcement Learning

- Direct Evaluation (simple)
- TD Learning

Active Reinforcement Learning

■ Q-Learning

Online Learning Model-based Learning

Model-Based Learning

Model-Based Idea:

- **EXTER** Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- **E** Normalize to give an estimate of $\widehat{T}(s, a, s')$
- **Discover each** $\widehat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

■ For example, use value iteration, as before

Example: Model-Based Learning

Episode: a sequence of states actions and rewards sampled from the environment

Example: Model-Based Learning

Input Policy π

Observed Episodes (Training) Learned Model

 $Assume: \gamma = 1$

Example: Expected Age

Goal: Compute expected age of 15-281 students

Without P(A), instead collect samples $[a_1, a_2, ... a_{N}]$

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Unknown MDP: Online Learning

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s') from samples of environment

Passive Reinforcement Learning

- Direct Evaluation (simple)
- TD Learning

Active Reinforcement Learning

■ Q-Learning

Online Learning

Model-free Learning Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy $\pi(s)$
- \blacksquare You don't know the transitions $T(s,a,s')$
- \blacksquare You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

- \blacksquare Act according to π
- \blacksquare Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Problems with Direct Evaluation

What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T , R
- It eventually computes the correct average values, using just sample transitions

What bad about it?

- It wastes information about state connections
- Each state must be learned separately
- So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Model-free Learning Passive Reinforcement Learning Temporal Difference Learning

Online Learning

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy: ■ Each round, replace V with a one-step-look-ahead layer over V

$$
V_0^{\pi}(s) = 0
$$

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]
$$

 $\pi(s)$

 $s, \pi(s)$

s '

s

■ This approach fully exploited the connections between the states ■ Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?

 \blacksquare In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$
V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]
$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$
sample_1 = R(s, \pi(s), s_1') + \gamma V_k^{\pi}(s_1')
$$

$$
sample_2 = R(s, \pi(s), s_2') + \gamma V_k^{\pi}(s_2')
$$

$$
\cdots
$$

$$
sample_n = R(s, \pi(s), s_n') + \gamma V_k^{\pi}(s_n')
$$

$$
V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_i sample_i
$$

Almost! But we can't rewind time to get sample after sample from state s.

Temporal Difference Learning

Big idea: learn from every experience!

- Update $V(s)$ each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

 $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Sample of V(s):

Update to V(s):

Temporal Difference Learning

Big idea: learn from every experience!

- Update $V(s)$ each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$
sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')
$$

Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha) sample$
Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

Exponential moving average

■ The running interpolation update:

$$
\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n
$$

■ Makes recent samples more important:

$$
\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}
$$

■ Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

0

States

B, east, C, -2 0 0 0 8 0 -1 0 8 0 -1 3 8 C, east, D, -2

0

0

Observed Transitions

Assume:
$$
\gamma = 1
$$
,
 $\alpha = 1/2$

Example: Temporal Difference Learning

States

Assume: $\gamma = 1$, $α = 1/2$

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg \max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$

Idea: learn Q-values, not values Makes action selection model-free too!

Model-Free Learning

Model-free (temporal difference) learning

Experience world through episodes

$$
(s,a,r,s',a',r',s'',a'',r'',s''' \ldots)
$$

- **Update estimates each transition** (s, a, r, s')
- Over time, updates will mimic Bellman updates

Temporal Difference Learning

Big idea: learn from every experience!

- **Update V(s) each time we experience a transition (s, a, s', r)**
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = r + \gamma V^{\pi}(s')$

Update to V(s):

Same update:

 $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[\text{sample} - V^{\pi}(s) \right]$ $V^{\pi}(s) \leftarrow (1-\alpha) V^{\pi}(s) + (\alpha)$ sample

$$
\pi(s) \sum_{s, \pi(s)}^{s}
$$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$ $Error$

$$
ror = \frac{1}{2} \left(sample - V^{\pi}(s) \right)^2
$$

Quick Calculus Quiz

$$
f(x) = \frac{1}{2}(y - x)^2
$$

What is $\frac{df}{dx}$ dx ?

Gradient Descent

Goal: find x that minimizes $f(x)$

1. Start with initial guess, x_0

$$
\frac{df}{dx} = -(y - x)
$$

2. Update x by taking a step in the direction that $f(x)$ is changing fastest (in the negative direction) with respect to x:

 $x \leftarrow x - \alpha \nabla_x f$, where α is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s) and V $E r$ 1

$$
V \leftarrow V - \alpha \nabla_V Error
$$

$$
ror(V) = \frac{1}{2} (sample - V)^2
$$

$$
f(x) = \frac{1}{2}(y - x)^2
$$

Temporal Difference Learning

Big idea: learn from every experience!

- Update V(s) each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often

Temporal difference learning of values

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = r + \gamma V^{\pi}(s')$

Update to V(s):

Same update:

 $V^{\pi}(s) \leftarrow (1-\alpha) V^{\pi}(s) + (\alpha)$ sample

$$
\pi(s) \sum_{s, \pi(s)}^s
$$

 $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha \left[\text{sample} - V^{\pi}(s) \right]$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) - \alpha \nabla Error$ $Error$ 1 2 $sample-V^{\pi}(s)$ 2 Poll 1

TD update:
$$
V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V^{\pi}(s') - V^{\pi}(s)]
$$

Which converts TD values into a policy?

A) Value iteration:
$$
V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')] , \forall s
$$

\nB) Q-iteration:
$$
Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \forall s, a
$$

\nC) Policy extraction:
$$
\pi_V(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')] , \forall s
$$

\nD) Policy evaluation:
$$
V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')] , \forall s
$$

\nE) Policy improvement:
$$
\pi_{new}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_{total}(s')], \forall s
$$

\nF) None of the above

MDP/RL Notation

Standard expectimax:

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:

Value (TD) learning:

Q-learning:

$$
V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')
$$

\n
$$
V^*(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V^*(s')]
$$

\n
$$
V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_k(s')], \forall s
$$

\n
$$
Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \forall s, a
$$

\n
$$
\pi_V(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V(s')], \forall s
$$

\n
$$
V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s
$$

\n
$$
\pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma V_{total}(s')], \forall s
$$

\n
$$
V^{\pi}(s) = V^{\pi}(s) + \alpha [r + \gamma V_{max} Q(s', a') - Q(s, a)]
$$

 $\overline{a'}$

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
$$

■ But can't compute this update without knowing T, R

Instead, compute average as we go

- Receive a sample transition (s,a,r,s')
- This sample suggests

$$
Q(s, a) \approx r + \gamma \max_{s'} Q(s', a')
$$

- But we want to average over results from (s,a) (Why?)
- **So keep a running average**

$$
Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)\left[r + \gamma \max_{a'} Q(s', a')\right]
$$

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Caveats:

- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Unknown MDP: Online Learning

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s') from samples of environment

Passive Reinforcement Learning

- Direct Evaluation (simple)
- TD Learning

Active Reinforcement Learning

■ Q-Learning

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)]

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration

- \blacksquare Simplest: random actions (ϵ -greedy)
	- \blacksquare Every time step, flip a coin
	- \blacksquare With (small) probability ε , act randomly
	- \blacksquare With (large) probability 1- ε , act on current policy
- Problems with random actions?
	- You do eventually explore the space, but keep thrashing around once learning is done
	- \blacksquare One solution: lower ε over time
	- Another solution: exploration functions

Demo Q-learning – Manual Exploration – Bridge Grid

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

■ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$
f(u, n) = u + k/r
$$

Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

■ Note: this propagates the "bonus" back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

■ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

 $f(u, n) = u + k/(n + 1)$

Modified Q-Update: $Q(s, a) = Q(s, a) + \alpha [r + \gamma$ mąx $\overline{a'}$ $f(Q(s', a'), N(s', a')) - Q(s, a)$ Regular Q-Update: $Q(s, a) = Q(s, a) + \alpha [r + \gamma$ max $\overline{a'}$ $Q(s', a') - Q(s, a)]$

■ Note: this propagates the "bonus" back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Demo Q-learning – Exploration Function – Crawler

Regret

Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Approximate Q-Learning

What happens when we change Candy Grab to start with 1000 pieces?

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!

- Too many states to visit them all in training
- Too many states to hold the q-tables in memory

Instead, we want to generalize:

- Learn about some small number of training states from experience
- **E** Generalize that experience to new, similar situations
- This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D5)] [Demo: Q-learning – pacman – tiny – silent train (L11D6)] [Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Feature-Based Representations

Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
	- Distance to closest ghost
	- **Distance to closest dot**
	- Number of ghosts
	- 1 / (dist to dot)²
	- Is Pacman in a tunnel? $(0/1)$
	- \blacksquare …… etc.
	- Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$
V_w(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)
$$

$$
Q_w(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + ... + w_n f_n(s,a)
$$

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a: \blacksquare Q(s,a) \leftarrow Q(s,a) + $\alpha \cdot [r + \gamma \text{ max}_{a'} Q(s', a') - Q(s, a)]$

Instead, we update the weights to try to reduce the error at s, a: \bullet **w**_i \leftarrow **w**_i + α · [$r + \gamma$ max_a' Q(s',a') - Q(s,a)] $\partial Q_w(s,a)/\partial w_i$ = w_i + α · [r + γ max_{a'} Q(s',a') - Q(s,a)] f_i(s,a)

Quick Calculus Quiz

$$
Error(w) = \frac{1}{2}(y - wf(x))^2
$$

What is $\frac{dError}{dw}$ dw ? Last time $Error(x) =$ 12 $y-x)^2$

$$
\frac{dError}{dx} = -(y - x)
$$

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a: \blacksquare Q(s,a) \leftarrow Q(s,a) + $\alpha \cdot [r + \gamma \text{ max}_{a'} Q(s', a') - Q(s, a)]$

Instead, we update the weights to try to reduce the error at s, a: \bullet $w_i \leftarrow w_i + \alpha \cdot [r + \gamma \text{ max}_{a'} Q(s', a') - Q(s, a)] \partial Q_w(s, a) / \partial w_i$ = w_i + α · [r + γ max_{a'} Q(s',a') - Q(s,a)] f_i(s,a)

 $Q_w(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a)$

$$
Error(w) = \frac{1}{2}(y - wf(x))^2
$$

 ∂Q ∂w_2 =

$$
\frac{dError}{dw} = -(y - wf(x))f(x)
$$

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a: \blacksquare Q(s,a) \leftarrow Q(s,a) + $\alpha \cdot [r + \gamma \text{ max}_{a'} Q(s', a') - Q(s, a)]$

Instead, we update the weights to try to reduce the error at s, a:

- \bullet $w_i \leftarrow w_i + \alpha \cdot [r + \gamma \text{ max}_{a'} Q(s', a') Q(s, a)] \partial Q_w(s, a) / \partial w_i$
- = w_i + α · [r + γ max_{a'} Q(s',a') Q(s,a)] f_i(s,a)

Qualitative justification:

- Pleasant surprise: increase weights on +ve features, decrease on -ve ones
- Unpleasant surprise: decrease weights on +ve features, increase on -ve ones

Approximate Q-Learning

$$
Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a)
$$

Q-learning with linear Q-functions:

transition =
$$
(s, a, r, s')
$$

\ndifference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
\n $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's
\n $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

Intuitive interpretation:

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

Formal justification: online least squares

Example: Q-Pacman

$$
Q(s,a) = 4.0f_{DOT}(s,a) - 1.0f_{GST}(s,a)
$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

$$
\begin{array}{c}\n\hline\n\text{difference} = -501 & w_{DOT} \leftarrow 4.0 + \alpha \left[-501\right] 0.5 \\
w_{GST} \leftarrow -1.0 + \alpha \left[-501\right] 1.0\n\end{array}
$$

 $Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$

[Demo: approximate Qlearning pacman (L11D10)]

Recent Reinforcement Learning Milestones

TDGammon

- 1992 by Gerald Tesauro, IBM
- 4-ply lookahead using V(s) trained from 1,500,000 games of self-play
- 3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:

- **Plays approximately at parity with world champion**
- Led to radical changes in the way humans play backgammon

Deep Q-Networks

 $sample = r + \gamma \text{ max}_{a'} \text{ Q}_{w} \text{ (s',a')}$ Q**w**(s,a): Neural network

Deep Mind, 2015

Used a deep learning network to represent Q:

■ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

OpenAI Gym

2016+

Benchmark problems for learning agents https://gym.openai.com/envs

Breakout-ram-v0 Maximize score in the game Breakout, with RAM as input

Carnival-v0 Maximize score in the game Carnival, with screen images as input

Images: Open AI

AlphaGo, AlphaZero

Deep Mind, 2016+

Autonomous Vehicles?