Warm-up as you log in

https://high-level-4.herokuapp.com/experiment

i -‘Z 3 Tl
L R

https://rachit-dubey.github.io/humanRL website/

https://high-level-4.herokuapp.com/experiment
https://rachit-dubey.github.io/humanRL_website/

Al: Representation and Problem Solving

Reinforcement Learning |

Instructor: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

"

Estimate MDP T(s,a,s') and R(s,a,s’)
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
" Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

\- Q-Learning /

Model-based Learning

Model-Based Learning

Model-Based Idea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

= Count outcomes s’ for each s, a
= Normalize to give an estimate of T'(s, a, s’)
= Discover each R(s,a,s’) when we experience (s, a, s’)

Step 2: Solve the learned MDP
" For example, use value iteration, as before

Example: Model-Based Learning

Input Policy &

g B, east, C, -1

Episode: a sequence of states
actions and rewards sampled
from the environment

Observed Episodes (Training)

Episode 1

~
C, east, D, -1

Assume:y=1

D, exit, x, +10

N /

Episode 3

/E, north, C, -1)

C,east, D, -1

D, exit, X, +1O/

\

Episode 2

g B, east, C, -1

\

~

C, east, D, -1
D, exit, x, +10

J

Episode 4

\

g E, north, C, -1

~
C, east, A, -1

Learned Model

A, exit, X, '10/

T(s,a,s")
4 T(B, east, C) = A
T(C, east, D) =
T(C, east, A) =
_ -)
R(s,a,s")
4 R(B, east, C) =)
R(C, east, D) =
R(D, exit, x) =
N /

Example: Model-Based Learning

Input Policy m

Assume: vy =1

Observed Episodes (Training)

Episode 1

\

g B, east, C, -1

~
C, east, D, -1

D, exit, X, +1OJ

Episode 3

\

/E, north, C, -1

~

C,east, D, -1

D, exit, X, +1OJ

Episode 2

\

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

\

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) = 1.00

T(C, east, D) = 0.75
T(C, east, A) =0.25

o

~

)

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1

R(D, exit, x) =+10
N

~

)

Example: Expected Age

Goal: Compute expected age of 15-281 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a, a,, ... Q]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Pla) = num(a) Z Why does this
N 1 ?
E[A] ~ — Zﬂi work? Because
. N ?_ samples appear
E[A] ~ Z P(a)-a ' with the right

\ g / \ frequencies.

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

"

Estimate MDP T(s,a,s') and R(s,a,s’)
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
" Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

\- Q-Learning /

Model-free Learning
Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

" [nput: a fixed policy nt(s)

=" You don’t know the transitions T(s,a,s’)
=" You don’t know the rewards R(s,a,s’)

® Goal: learn the state values

In this case:

" Learner is “along for the ride”

" No choice about what actions to take
" Just execute the policy and learn from experience

" This is NOT offline planning! You actually take actions in the world

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under «

|dea: Average together observed sample values Pieces Available
2 0 100

" Act accordingto

= Every time you visit a state, write down what 3 2 0
the sum of discounted rewards turned out to be 4 75 7

" Average those samples 5 4 68
6 5 6

This is called direct evaluation . 60 c

Example: Direct Evaluation

Input Policy &

Observed Episodes (Training)

Episode 1

: B, east, C, -1

Assume: vy =1

N

C, east, D, -1
D, exit, x, +10

~

/

Episode 3

: E, north, C, -1

N

C,east, D, -1
D, exit, x, +10

~

Episode 2

: B, east, C, -1

/

N

C, east, D, -1
D, exit, x, +10

~

/

Episode 4

: E, north, C, -1

N

C, east, A -1
A, exit, x,-10

~

/

Output Values

Problems with Direct Evaluation

What’s good about direct evaluation?
" [t’s easy to understand
" [t doesn’t require any knowledge of T, R

" [t eventually computes the correct average
values, using just sample transitions

What bad about it?

® |t wastes information about state connections

= Each state must be learned separately
" So, it takes a long time to learn

Output Values

If Band E both go to C
under this policy, how can
their values be different?

Passive Reinforcement Learning
Temporal Difference Learning

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
" Each round, replace V with a one-step-look-ahead layer over V

Voi(s) =0 [(s)

Vit 1(s) <= > T(s,m(s), sH[R(s,7(s),s") + Vi (s))] X,s;"i’t/(s),s’

s/ A s

» This approach fully exploited the connections between the states
" Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?

" [n other words, how to we take a weighted average without knowing the
weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

ka_|_1(3) — ZT(S, 7(s),s)[R(s,7(s),s") + 'kaW(s')]

S
Idea: Take samples of outcomes s’ (by doing the action!) and average

sample1 = R(s,m(s), 3’1) -+ nykﬂ(sll)

samples = R(s,7(s),s5) + YV (s5)

samplen = R(s,7(s), sp,) + Vi (s,)

rewind time to get sample
after sample from state s.

1
Vkﬂ—l—l (5) « g Z sample; Almost! But we can’t
)

Temporal Difference Learning

. : S
Big idea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s/, r) (s)
" Likely outcomes s’ will contribute updates more often s, 7(s)
Temporal difference learning of values A ¢

= Policy still fixed, still doing evaluation!
" Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~V7(s")

Update to V(s):

Temporal Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience a transition (s, a, s’, r) (s)
= Likely outcomes s’ will contribute updates more often s, T(s)
Temporal difference learning of values A ¢

= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,n(s),s") +~V7™(s)
Update to V(s): VT(s) + (1 —a)V"(s) + (a)sample

Same update: V7T (s) «+ V™(s) 4+ a(sample — V7 (s))

Exponential Moving Average

Exponential moving average
" The running interpolation update: Tn=(1—a) Tn_1+a-z,

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
1+(1-ao)+(1—a)?+...

i‘ﬂ —
= Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Example: Te

States

Assume: y =1,
a=1/2

mporal Di

‘erence Learning

Observed Transitions

[B, east, C, -2] [C, east, D, -2 J

11,0 | o

Example: Temporal Difference Learning

States Observed Transitions
[B, east, C, -2] [C, east, D, -2 J

ool o]

Assume: y =1,
a=1/2 VT(s) + (1= a)V7™(s) + o |R(s,m(s),s) + 4V (s)]

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s’) {R(s, a,s) + *)/V(s’)]

ldea: learn Q-values, not values
Makes action selection model-free too!

Model-Free Learning

Model-free (temporal difference) learning
= Experience world through episodes

(S, CL,T', S/, CL,,T,, 8//7 CL”,T'H, S//// .

= Update estimates each transition (s, a,r,s’)

" Over time, updates will mimic Bellman updates

)

Temporal Difference Learning

Big idea: learn from every experience! .
= Update V(s) each time we experience a transition (s, a, s, r)

= Likely outcomes s’ will contribute updates more often n(s)

s, 1t(s)
Temporal difference learning of values
= Policy still fixed, still doing evaluation! A s

= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = r +y V™(s')
Update to V(s): Vi(s) « (1 —a) V™(s) + (a) sample
Same update: VT(s) « V™(s) + a[sample — V™(s)]

1
Same update: V™(s) « V™(s) — aVError Error = 2 (sample — V’T(s))2

Quick Calculus Quiz
f@) =@y —x)?

d
What is —f?

dx

1
Gradient Descent fl) = —x)?

Goal: find x that minimizes f(x) df

1. Start with initial guess, xg i Caatd

2. Update x by taking a step in the direction that f (x) is changing
fastest (in the negative direction) with respect to x:

x < x —aV,f,where «a is the step size or learning rate
3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s)
and V

1
E = le — V)2
V <V — aVy,Error rror(V) > (sample = V)

Temporal Difference Learning

Big idea: learn from every experience! .
= Update V(s) each time we experience a transition (s, a, s/, r)

= Likely outcomes s’ will contribute updates more often n(s)

s, 1t(s)
Temporal difference learning of values
= Policy still fixed, still doing evaluation! A s

= Move values toward value of whatever successor occurs: running average
Sample of V(s): sample = r +y V™(s')
Update to V(s): Vi(s) « (1 —a) V™(s) + (a) sample
Same update: VT(s) « V™(s) + a[sample — V™(s)]

1
Same update: V™(s) « V™(s) — aVError Error = 2 (sample — V’T(s))2

Poll 1

TD update: Ve(s) = V(s) +alr+yV™(s") — V(s)]

Which converts TD values into a policy?

A) Value iteration: Vier1(s) = mcrzle P(s'|s,a)[R(s,a,s") + yVi(s")], Vs
B) Q-iteration: Qr+1(s,a) = ZSIIJ(S’IS, a)[R(s,a,s’) + y max Qr(s’,a)], Vs,a
C) Policy extraction: my(s) = arggl;xz P(s'|s,a)[R(s,a,s") + yV(s')], Vs
D) Policy evaluation: VE . (s) = z P(SS’IIS,n(s))[R(s, n(s),s") +yVZE(s')], Vs
S7

E) Policy improvement: m,,, (s) = argmaxz P(s'|s,a)[R(s,a,s") + yVToida(s")], Vs
a
S/

F) None of the above

MDP/RL Notation

Standard expectimax: V(s) = mgxz P(s'|s,a)V(s")
Bellman equations: V*(s) = mc?xsi P(s'|s,a)[R(s,a,s") +yV*(s)]
Value iteration: Vir1(s) = mg;’z P(s'|s,a)[R(s,a,s’) + yVi(s)], Vs
S7

Q-iteration: Qr+1(s,a) = Z P(s'|s,a)[R(s,a,s") +v max Qr(s’,a)], Vs,a
Policy extraction: my(s) = argm:\;(z P(s'|s,a)[R(s,a,s") +yV(s')], Vs

a !
Policy evaluation: VE,(s) = Z P(SS’IS, (s))[R(s, m(s),s") + yViF(s')], Vs

S7
Policy improvement: Tnew(s) = al‘gcrlnaxz P(s'ls,a)[R(s,a,s') + yV™oa(s")], Vs

S7

Value (TD) learning: VTi(s) = V() +alr+yV™(s') — VT (s)]

Q-learning: Q(s,a) = Q(s,a) +a[r+vy max Q(s',a") — Q(s,a)]

Q-Learning

We'd like to do Q-value updates to each Q-state:
Qt1(s,a) = ST (s,a,8) | R(s,a,8) +9 maxQu(s',a)

" But can’t compute this update without knowing T, R

Instead, compute average as we go
" Receive a sample transition (s,a,r,s’)
" This sample suggests

Q(s,a) ~ 1 +ymaxQ(s', a’)
a
" But we want to average over results from (s,a) (Why?)
» So keep a running average

Q(s,a) — (1 —a)Q(s,a) + (a) |7 + 7 max Q(s',a’)

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

This is called off-policy learning

Caveats:
" You have to explore enough

" You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Overview: MDPs and Reinforcement Learning
Known MDP: Offline Solution

[Value Iteration / Policy Iteration }

Unknown MDP: Online Learning

Model-Based

-~

&

Estimate MDP T(s,a,s') and R(s,a,s’)
from samples of environment

~

Model-Free

/Passive Reinforcement Learning \
" Direct Evaluation (simple)
= TD Learning

Active Reinforcement Learning

\- Q-Learning /

Demo Q-Learning Auto Cli

.~

- Grid

[Demo: Q-learning — auto — cliff grid (L11D1)]

Exploration vs. Exploitation

b7

GRAND

T
0
=5

How to Explore?

Several schemes for forcing exploration
» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability ¢, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

" One solution: lower € over time
" Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Demo Q-learning — Manual Exploration — Bridge Grid

Exploration Functions

When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.]

flu,n) =u+k/n
Regular Q-Update: Q(s,a) <o R(s,a,s") +ymaxQ(s',a’)

Modified Q-Update: Q(s,a) <o R(s,a,s") +ymax f(Q(s",a"), N(s',a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Exploration Functions

When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

fun)=u+k/(n+1)
Regular Q-Update: Q(s,a) = Q(s,a) + a [r + ymax Q(s',a’) — Q(s,a)]

Modified Q-Update: Q(s,a) = Q(s,a) + a [r + ymax f(Q(s’,a’),N(s",a")) —Q(s,a)]

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Demo Q-learning — Exploration Function — Crawler

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal — it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Approximate Q-Learning

What happens when we change Candy Grab to start with 1000 pieces?

Pieces Available

2 0% 100%
3 2% 0%
4 75% 2%
5 4% 68%
6 5% 6%
7 60% 5%

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn about
every single state!

" Too many states to visit them all in training
" Too many states to hold the g-tables in memory

Instead, we want to generalize:

" Learn about some small number of training states
from experience

= Generalize that experience to new, similar situations

" This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)

= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

= Example features:
= Distance to closest ghost
" Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
" |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a g function (or value
function) for any state using a few weights:

"V, (s) =w,f(s) + w,f,(s) +... +w,f (s)
" Q,(s,a) =w,f,(s,a) + w,f,(s,a) +...+w_f (s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
" Q(s,a) « Qfs,a) + a-[r+ymax, Q(s,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
"W, « W+ a-[r+ymax, Q(s,a’)-Qs,a)] 0Q(s,a)/ow.
= w;+ o [r+ymax, Q(s’,a’) - Q(s,a)] fi(s,a)

Last time

Quick Calculus Quiz

, Error(x) = %(y — x)?
1
Error(w) = - (y — wf(x))

dError
dx

== —x)
dError

What is ?

dw

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
" Qs,a) « Qfs,a) + a-[r+ymax, Q(s,a’)-Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
"W, « W+ a-[r+ymax, Q(s,a’) - Qs,a)] 0Q(s,a)/ow,
= w;+ o [r+ymax, Q(s’,a’) - Q(s,a)]fi(s,a)

Qw(s,a) = wifi(s,a) + wyf5(s, a) Error(w) = %(y ~wf(x))"
90 _ dE
ow, = (v~ wf@)f ()

dw

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
" Q(s,a) « Qfs,a) + a-[r+ymax, Q(s,a’)-Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:
"W, « W+ a-[r+ymax, Q(s,a’) - Qs,a)] 0Q(s,a)/ow,
= w;+ o [r+ymax, Q(s’,a’) - Q(s,a)]fi(s,a)

Qualitative justification:
= Pleasant surprise: increase weights on +ve features, decrease on —ve ones
» Unpleasant surprise: decrease weights on +ve features, increase on —ve ones

Approximate Q-Learning

[Q(s,a) = w1 f1(s,a)Fwsfa(s,)+ . ~+wnfals, a) j

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
T Q(Sa (L)
Q(s,a) — Q(s,a) + «[difference] Exact Q’s

w; <— W; —I— QY [difference] fi(S, CL) Approximate Q'S

difference = [7" + v max Q(s',a")
a

Intuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4'OfDOT(Sa CL) —]..OfGST(S,CL)

fDOT(S: NORTH) = 0.5

fasT(s, NORTH) =1.0

~

a = NORTH
r = —500

/

O(s, NORTH) = 41
r + v max Q(s',a’) = —500

a

0

Q(Sla) =0

[difference — —501 >

wpor — 4.0+ a[-501]0.5
wagr +— —1.04+ a[-501] 1.0

Q(87 a‘) — 30fDOT(S, a) o 3OfGST(87 CL) [Demo: approximate Q-

learning pacman (L11D10)]

Recent Reinforcement Learning Milestones

TDGammon

1992 by Gerald Tesauro, IBM
4-ply lookahead using V(s) trained from 1,500,000 games of self-play
3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:

» Plays approximately at parity with world champion
" Led to radical changes in the way humans play backgammon

sample = r + y max, Q,, (s’,a’)

Deep Q—Networks Q,,(s,a): Neural network
Deep Mind, 2015

Used a deep learning network to represent Q:
" [nputis last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

Convglution Convglution Fully cgnnected Fully cgnnected

No input:

VL N

"\

«\\ D
Ao

*\| I

o |

] \\

. [¢]

"\""II &

\
. \\

—

')

+

«

G

Z’PR(—EJ«N—)A}
++Q+Q+Q+0+0+0+
@] (@] (@] (@] (@] (@] (@] (@]

D ¥
B B
B X
B ¥

‘-(: .

! e

TR
DA

OO OO O S
(SN ESSEEcye]
BT 4

OpenAl Gym

2016+
Benchmark problems for learning agents
https://gym.openai.com/envs

- Ant-v2
3D four-legged robo
Acrobot-v1 o

Swing up a two-link robot

MountainCarContinuous-v0

Drive up a big hill with Humanoid-v2
continuous control Make a 3D two-legged robot

walk

Breakout-ram-v0

Maximize score in the game
Breakout, with RAM as input

FetchPush-v0

Push a block to a goal

Episode 2

HandManipulateBlock-v

Orient a block using a robot

hand

AlphaGo, AlphaZero
Deep Mind, 2016+

{8+ Google DeepMind

L JoL
Challenge Match

8 - 15 March 2016

Autonomous Vehicles?

	Slide 1: Warm-up as you log in
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Overview: MDPs and Reinforcement Learning
	Slide 4: Online Learning Model-based Learning
	Slide 5: Model-Based Learning
	Slide 6: Example: Model-Based Learning
	Slide 7: Example: Model-Based Learning
	Slide 8: Example: Expected Age
	Slide 9: Overview: MDPs and Reinforcement Learning
	Slide 10: Online Learning Model-free Learning Passive Reinforcement Learning
	Slide 11: Passive Reinforcement Learning
	Slide 12: Simple Passive Learning: Direct Evaluation
	Slide 13: Example: Direct Evaluation
	Slide 14: Problems with Direct Evaluation
	Slide 15: Online Learning Model-free Learning Passive Reinforcement Learning Temporal Difference Learning
	Slide 16: Why Not Use Policy Evaluation?
	Slide 17: Sample-Based Policy Evaluation?
	Slide 18: Temporal Difference Learning
	Slide 19: Temporal Difference Learning
	Slide 20: Exponential Moving Average
	Slide 21: Example: Temporal Difference Learning
	Slide 22: Example: Temporal Difference Learning
	Slide 23: Problems with TD Value Learning
	Slide 24: Model-Free Learning
	Slide 25: Temporal Difference Learning
	Slide 26: Quick Calculus Quiz
	Slide 27: Gradient Descent
	Slide 28: Temporal Difference Learning
	Slide 29: Poll 1
	Slide 30: MDP/RL Notation
	Slide 31: Q-Learning
	Slide 32: Q-Learning Properties
	Slide 33: Overview: MDPs and Reinforcement Learning
	Slide 34: Demo Q-Learning Auto Cliff Grid
	Slide 35: Exploration vs. Exploitation
	Slide 36: How to Explore?
	Slide 37: Demo Q-learning – Manual Exploration – Bridge Grid
	Slide 39: Exploration Functions
	Slide 40: Exploration Functions
	Slide 41: Demo Q-learning – Exploration Function – Crawler
	Slide 42: Regret
	Slide 43: Approximate Q-Learning
	Slide 44: Approximate Q-Learning
	Slide 45: Generalizing Across States
	Slide 46: Example: Pacman
	Slide 50: Feature-Based Representations
	Slide 51: Linear Value Functions
	Slide 52: Updating a linear value function
	Slide 53: Quick Calculus Quiz
	Slide 54: Updating a linear value function
	Slide 55: Updating a linear value function
	Slide 56: Approximate Q-Learning
	Slide 57: Example: Q-Pacman
	Slide 63: Recent Reinforcement Learning Milestones
	Slide 64: TDGammon
	Slide 65: Deep Q-Networks
	Slide 66:
	Slide 67: OpenAI Gym
	Slide 68: AlphaGo, AlphaZero
	Slide 69: Autonomous Vehicles?

