
Warm-up as you log in
https://high-level-4.herokuapp.com/experiment

https://rachit-dubey.github.io/humanRL_website/

https://high-level-4.herokuapp.com/experiment
https://rachit-dubey.github.io/humanRL_website/

AI: Representation and Problem Solving

Reinforcement Learning II

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning

Online Learning
Model-based Learning

Model-Based Learning
Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode: a sequence of states
actions and rewards sampled
from the environment

Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) =
T(C, east, D) =
T(C, east, A) =
…

R(s,a,s’).
R(B, east, C) =
R(C, east, D) =
R(D, exit, x) =

…

Episode 1

Example: Model-Based Learning

Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Expected Age

Goal: Compute expected age of 15-281 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning

Online Learning
Model-free Learning
Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

▪ Input: a fixed policy (s)
▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ Goal: learn the state values

In this case:

▪ Learner is “along for the ride”

▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning! You actually take actions in the world

Simple Passive Learning: Direct Evaluation

Goal: Compute values for each state under 

Idea: Average together observed sample values

▪ Act according to 

▪ Every time you visit a state, write down what
the sum of discounted rewards turned out to be

▪ Average those samples

This is called direct evaluation

Pieces Available Take 1 Take 2

2 0 100

3 2 0

4 75 2

5 4 68

6 5 6

7 60 5

Example: Direct Evaluation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

What’s good about direct evaluation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T, R

▪ It eventually computes the correct average
values, using just sample transitions

What bad about it?

▪ It wastes information about state connections

▪ Each state must be learned separately

▪ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Online Learning
Model-free Learning
Passive Reinforcement Learning
Temporal Difference Learning

Why Not Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

Key question: How can we do this update to V without knowing T and R?
▪ In other words, how to we take a weighted average without knowing the

weights?

(s)

s

s, (s)

s, (s),s’

s’

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning
Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Temporal Difference Learning

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

Exponential Moving Average

Exponential moving average
▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume:  = 1,
α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Example: Temporal Difference Learning

Assume:  = 1,
α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:

Idea: learn Q-values, not values

Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Model-Free Learning

Model-free (temporal difference) learning
▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’

𝑉𝜋 𝑠 ← 𝑉𝜋(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

Temporal Difference Learning

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝜋 𝑠′

𝑉𝜋 𝑠 ← 1 − 𝛼 𝑉𝜋 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

2

Quick Calculus Quiz

𝑓 𝑥 =
1

2
𝑦 − 𝑥 2

What is
𝑑𝑓

𝑑𝑥
?

Gradient Descent
Goal: find 𝑥 that minimizes 𝑓(𝑥)

1. Start with initial guess, 𝑥0

2. Update 𝑥 by taking a step in the direction that 𝑓(𝑥) is changing
fastest (in the negative direction) with respect to x:

 𝑥 ← 𝑥 − 𝛼∇𝑥𝑓, where 𝛼 is the step size or learning rate

3. Repeat until convergence

TD goal: find value(s), V, that minimizes difference between sample(s)
and V

 𝑉 ← 𝑉 − 𝛼∇𝑉𝐸𝑟𝑟𝑜𝑟

𝑓 𝑥 =
1

2
𝑦 − 𝑥 2

𝑑𝑓

𝑑𝑥
= −(𝑦 − 𝑥)

𝐸𝑟𝑟𝑜𝑟(𝑉) =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉 2

𝑉𝜋 𝑠 ← 𝑉𝜋(𝑠) + 𝛼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

Temporal Difference Learning

Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 + 𝛾 𝑉𝜋 𝑠′

𝑉𝜋 𝑠 ← 1 − 𝛼 𝑉𝜋 𝑠 + (𝛼) 𝑠𝑎𝑚𝑝𝑙𝑒

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 − 𝛼∇𝐸𝑟𝑟𝑜𝑟Same update: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

2

Poll 1

Which converts TD values into a policy?

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

A) Value iteration:

B) Q-iteration:

C) Policy extraction:

E) Policy improvement:

D) Policy evaluation:

TD update: 𝑉𝜋 𝑠 = 𝑉𝜋(𝑠) + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

F) None of the above

MDP/RL Notation
𝑉 𝑠 = max

𝑎
෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 max
𝑎′

𝑄𝑘(𝑠′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

𝑉𝜋 𝑠 = 𝑉𝜋(𝑠) + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′

 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

Value (TD) learning:

Q-Learning

We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a) (Why?)

▪ So keep a running average

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy -- even if
you’re acting suboptimally!

This is called off-policy learning

Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Overview: MDPs and Reinforcement Learning

Known MDP: Offline Solution

Value Iteration / Policy Iteration

Model-Based Model-Free

Estimate MDP T(s,a,s') and R(s,a,s')
from samples of environment

Passive Reinforcement Learning
▪ Direct Evaluation (simple)
▪ TD Learning

Active Reinforcement Learning
▪ Q-Learning

Unknown MDP: Online Learning

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)]

Exploration vs. Exploitation

How to Explore?

Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)
▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?

▪ You do eventually explore the space, but keep
thrashing around once learning is done

▪ One solution: lower  over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Demo Q-learning – Manual Exploration – Bridge Grid

Exploration Functions

When to explore?
▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

Exploration function
▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Exploration Functions

When to explore?
▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

Exploration function
▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

𝑓 𝑢, 𝑛 = 𝑢 + 𝑘/(𝑛 + 1)

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update: 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 [𝑟 + 𝛾max
𝑎′

 𝑓(𝑄 𝑠′, 𝑎′ , 𝑁 𝑠′, 𝑎′) − 𝑄 𝑠, 𝑎]

Regular Q-Update: 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼 [𝑟 + 𝛾max
𝑎′

 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Demo Q-learning – Exploration Function – Crawler

Regret

Even if you learn the optimal policy, you
still make mistakes along the way!

Regret is a measure of your total mistake
cost: the difference between your
(expected) rewards, including youthful
suboptimality, and optimal (expected)
rewards

Minimizing regret goes beyond learning to
be optimal – it requires optimally learning
to be optimal

Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Approximate Q-Learning
What happens when we change Candy Grab to start with 1000 pieces?

Pieces Available Take 1 Take 2

2 0% 100%

3 2% 0%

4 75% 2%

5 4% 68%

6 5% 6%

7 60% 5%

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about
every single state!

▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

Instead, we want to generalize:

▪ Learn about some small number of training states
from experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)
▪ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

▪ Vw(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

▪ Qw(s,a) = w1f1(s,a) + w2f2(s,a) + … + wnfn(s,a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in
value!

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a) +   [r + γ maxa’ Q

 (s’,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +   [r + γ maxa’ Q
 (s’,a’) - Q(s,a)] Qw(s,a)/wi

 = wi +   [r + γ maxa’ Q
 (s’,a’) - Q(s,a)] fi(s,a)

Quick Calculus Quiz

𝐸𝑟𝑟𝑜𝑟(𝑤) =
1

2
𝑦 − 𝑤𝑓 𝑥

2

What is
𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑤
?

Last time

𝐸𝑟𝑟𝑜𝑟 𝑥 =
1

2
𝑦 − 𝑥 2

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑥
= −(𝑦 − 𝑥)

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a) +   [r + γ maxa’ Q

 (s’,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +   [r + γ maxa’ Q
 (s’,a’) - Q(s,a)] Qw(s,a)/wi

 = wi +   [r + γ maxa’ Q
 (s’,a’) - Q(s,a)] fi(s,a)

𝑄𝒘 𝑠, 𝑎 = 𝑤1𝑓1 𝑠, 𝑎 + 𝑤2𝑓2 𝑠, 𝑎

𝜕𝑄

𝜕𝑤2
=

𝐸𝑟𝑟𝑜𝑟 𝑤 =
1

2
𝑦 − 𝑤𝑓 𝑥

2

𝑑𝐸𝑟𝑟𝑜𝑟

𝑑𝑤
= − 𝑦 − 𝑤𝑓 𝑥 𝑓(𝑥)

Updating a linear value function

Original Q learning rule tries to reduce prediction error at s, a:
▪ Q(s,a)  Q(s,a) +   [r + γ maxa’ Q

 (s’,a’) - Q(s,a)]

Instead, we update the weights to try to reduce the error at s, a:

▪ wi  wi +   [r + γ maxa’ Q
 (s’,a’) - Q(s,a)] Qw(s,a)/wi

 = wi +   [r + γ maxa’ Q
 (s’,a’) - Q(s,a)] fi(s,a)

Qualitative justification:

▪ Pleasant surprise: increase weights on +ve features, decrease on –ve ones

▪ Unpleasant surprise: decrease weights on +ve features, increase on –ve ones

Approximate Q-Learning

Q-learning with linear Q-functions:

Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that

were on: disprefer all states with that state’s features

Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Recent Reinforcement Learning Milestones

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
▪ Plays approximately at parity with world champion

▪ Led to radical changes in the way humans play backgammon

Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
▪ Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

65
Image: Deep Mind

sample = r + γ maxa’ Qw
 (s’,a’)

Qw(s,a): Neural network

66

Im
ag

es
: O

p
en

 A
I,

 A
ta

ri

OpenAI Gym
2016+

Benchmark problems for learning agents

https://gym.openai.com/envs

Images: Open AI

AlphaGo, AlphaZero
Deep Mind, 2016+

Autonomous Vehicles?

	Slide 1: Warm-up as you log in
	Slide 2: AI: Representation and Problem Solving
	Slide 3: Overview: MDPs and Reinforcement Learning
	Slide 4: Online Learning Model-based Learning
	Slide 5: Model-Based Learning
	Slide 6: Example: Model-Based Learning
	Slide 7: Example: Model-Based Learning
	Slide 8: Example: Expected Age
	Slide 9: Overview: MDPs and Reinforcement Learning
	Slide 10: Online Learning Model-free Learning Passive Reinforcement Learning
	Slide 11: Passive Reinforcement Learning
	Slide 12: Simple Passive Learning: Direct Evaluation
	Slide 13: Example: Direct Evaluation
	Slide 14: Problems with Direct Evaluation
	Slide 15: Online Learning Model-free Learning Passive Reinforcement Learning Temporal Difference Learning
	Slide 16: Why Not Use Policy Evaluation?
	Slide 17: Sample-Based Policy Evaluation?
	Slide 18: Temporal Difference Learning
	Slide 19: Temporal Difference Learning
	Slide 20: Exponential Moving Average
	Slide 21: Example: Temporal Difference Learning
	Slide 22: Example: Temporal Difference Learning
	Slide 23: Problems with TD Value Learning
	Slide 24: Model-Free Learning
	Slide 25: Temporal Difference Learning
	Slide 26: Quick Calculus Quiz
	Slide 27: Gradient Descent
	Slide 28: Temporal Difference Learning
	Slide 29: Poll 1
	Slide 30: MDP/RL Notation
	Slide 31: Q-Learning
	Slide 32: Q-Learning Properties
	Slide 33: Overview: MDPs and Reinforcement Learning
	Slide 34: Demo Q-Learning Auto Cliff Grid
	Slide 35: Exploration vs. Exploitation
	Slide 36: How to Explore?
	Slide 37: Demo Q-learning – Manual Exploration – Bridge Grid
	Slide 39: Exploration Functions
	Slide 40: Exploration Functions
	Slide 41: Demo Q-learning – Exploration Function – Crawler
	Slide 42: Regret
	Slide 43: Approximate Q-Learning
	Slide 44: Approximate Q-Learning
	Slide 45: Generalizing Across States
	Slide 46: Example: Pacman
	Slide 50: Feature-Based Representations
	Slide 51: Linear Value Functions
	Slide 52: Updating a linear value function
	Slide 53: Quick Calculus Quiz
	Slide 54: Updating a linear value function
	Slide 55: Updating a linear value function
	Slide 56: Approximate Q-Learning
	Slide 57: Example: Q-Pacman
	Slide 63: Recent Reinforcement Learning Milestones
	Slide 64: TDGammon
	Slide 65: Deep Q-Networks
	Slide 66:
	Slide 67: OpenAI Gym
	Slide 68: AlphaGo, AlphaZero
	Slide 69: Autonomous Vehicles?

