Wrap-up RL

RL II slide

Midterm 2

Topics

- Logic
- Planning
- MDPs
- RL
- Probability (but not Bayes Nets)

See Piazza for details

AI: Representation and Problem Solving

 $P(\chi_3 \mid \chi_2)$

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Omega Pizzeria!

What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

Probability Notation

Notation and conventions in this course

$$P(B = +b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(A = a, B = +b, C)$$

$$P(+b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(a, +b, C) = \sum_{a} P(a, +b, C)$$

Random variables:

- Capitalized
 - Represents all potential outcomes
 - e.g. *C*
- Outcomes (values):
 - lower case
 - e.g. +b, a_1 , a_2 , a_3
- Variables for values:
 - lower case
 - **■** E.g. *a*

Probability Notation

Notation and conventions in this course

$$P(B = +b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(A = a, B = +b, C)$$

$$P(+b, C) = \sum_{a \in \{a_1, a_2, a_3\}} P(a, +b, C)$$

Partitions

For each random variable

- Discrete outcomes
- Disjoint outcomes
- Accounts for entire event space
- Not always binary

Discrete Random Variables

(and their domains)

A
$$\in \{a_1, a_2, a_3\}$$
 \leftarrow Catergolical

 $B \in \{+b, -b\}$ \leftarrow Bernoulli

 $C \in \{+c, -c\}$

Event space

Marginal distribution

$$A \in \{a_1,a_2,a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

Joint distribution

$$A \in \{a_1, a_2, a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

$$P(a_3, -b, -c)$$

$$M \in \{m_1, m_2\}$$
 $S \in \{s_1, s_2\}$
 $R \in \{r_1, r_2\}$
 $M \in \{r_1, r_2\}$
 $M \in \{r_1, r_2\}$
 $M \in \{r_1, r_2\}$

Conditional distribution

$$M \in \{m_1, m_2\}$$

 $S \in \{s_1, s_2\}$
 $R \in \{r_1, r_2\}$

Conditional distribution

$$P(M,S \mid r_2)$$

$$M \in \{m_1, m_2\}$$

 $S \in \{s_1, s_2\}$
 $R \in \{r_1, r_2\}$

Conditional distribution

$$P(A, B \mid + c)$$

$$A \in \{a_1, a_2, a_3\}$$

 $B \in \{+b, -b\}$
 $C \in \{+c, -c\}$

Conditional distribution

$$P(A, B \mid -c)$$

$$A \in \{a_1, a_2, a_3\}$$

$$B \in \{+b, -b\}$$

$$C \in \{+c, -c\}$$

$$(\alpha_2, -b)$$
 -c

definitely

Which of the following probability tables sum to one? Select all that apply.

i.
$$P(A \mid b)$$

ii.
$$P(A,b,C)$$

iii.
$$P(A,C \mid b)$$

iv.
$$P(a,c \mid b)$$

$$V. P(a \mid B, C)$$

vi.
$$P(c \mid A)$$

Which of the following probability tables sum to one? Select all that apply.

```
i. P(A | b)
ii. P(A,b,C)
iii. P(A,C | b)
iv. P(a,b | c)
v. P(a | B,C)
vi. P(c | A)
```

How many valid equations can we compose using:

$$P(x)$$
, $P(y)$, $P(x,y)$, $P(x|y)$, $P(y|x)$ and $=$, \times , \div

First one: P(x|y) = P(x,y)/P(y)

- A) 2
- B) 4
- C) 7
- D) > 7
- E) Other

At most one use per probability term

e.g. Not
$$P(x) = P(x)$$

Must be different

e.g. Cannot also use

$$P(x,y)/P(y) = P(x|y)$$

Also (less meaningful):
$$P(y) = P(y|x)P(x) / P(x|y)^{(x2)}$$

$$P(y|x) / P(x|y) = P(y)/P(x)$$

How many valid equations can we compose using:

$$P(x)$$
, $P(y)$, $P(x,y)$, $P(x|y)$, $P(y|x)$ and $=$, \times , \div

First one:
$$P(x|y) = P(x,y)/P(y)$$

 $P(y|x) = P(x,y)/P(x)$
 $P(x,y) = P(y|x)P(x)$
 $P(x,y) = P(x|y)P(y)$
 $P(y|x)P(x) = P(x|y)P(y)$
E) Other $P(x|y) = P(x|y)P(y)/P(x)$
 $P(x|y) = P(x|y)P(y)/P(x)$

At most one use per probability term e.g. Not P(x) = P(x)

Must be different e.g. Cannot also use P(x,y)/P(y) = P(x|y)

Probability Tools Summary

Our toolbox

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Product Rule

$$P(B|A)P(A) = P(A|B)P(B)$$

3. Bayes' theorem

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

4. Chain Rule

$$P(X_1, ..., X_N) = \prod_{n=1}^N P(X_n \mid X_1, ..., X_{n-1})$$

What is the probability of getting a slice with:

- 1) No mushrooms
- 2) Spinach and no mushrooms
- 3) Spinach, when asking for slice with no mushrooms
- Mushrooms
- Spinach
- No spinach
- No spinach and mushrooms
- No spinach when asking for no mushrooms
- No spinach when asking for mushrooms
- Spinach when asking for mushrooms

Icons: CC, https://openclipart.org/detail/296791/pizza-slice

You can answer all of these questions:

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

_ /	•	1
P(W = 1a	$i \wedge l$
		J

			<u>*</u>
Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(Weather winter)?
$P(W = sun Winter)$ $= \frac{0.1 + 0.05}{0.1 + 0.15 + 0.20}$
0,120.15
-0.1+0.05+0.15+0.20
Ep(winter, t, 54n)
Z S p (winter, t, w)
- P(winter, sun)
P (winter)

Season	Temp	Weather	P(S, T, W)
summer	hot	sun /	0,30
summer	hot	rain	0.05
summer	zold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20
	summer summer summer winter winter winter	summer hot summer cold summer cold winter hot winter hot winter cold	summer hot sun summer cold sun summer cold rain winter hot sun winter hot sun winter cold sun winter cold sun

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Additional Probability Tools

Marginalization (law of total probability) (summing out)

$$P(A) = \sum_{b} \sum_{c} P(A, b, c)$$

Normalization

$$P(B \mid a) = \frac{P(a, B)}{P(a)}$$

$$P(B \mid a) \propto P(a, B)$$

$$P(B \mid a) = \frac{1}{z}P(a, B)$$

$$Z = P(a) = \sum_{b} P(a, b)$$

$$P(A,B) = Z P(AB,c)$$

Joint distributions are the best!

Two tools to go from joint to query

1. Definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

2. Law of total probability (marginalization, summing out)

$$P(A) = \sum_{b} P(A, b)$$

$$P(Y \mid U, V) = \sum_{x} \sum_{z} P(x, Y, z \mid U, V)$$

Two tools to go from joint to query

Joint: $P(H_1, H_2, Q, E)$

Query: $P(Q \mid e)$

1. Definition of conditional probability

$$P(Q|e) = \frac{P(Q,e)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q,e) = \sum_{h_1} \sum_{h_2} P(h_1, h_2, Q, e)$$

$$P(e) = \sum_{q} \sum_{h_1} \sum_{h_2} P(h_1, h_2, q, e)$$

P(Weather)?

P(Weather | winter)?

P(Weather | winter, hot)?

Season	Temp	Weather	P(S, T, W)
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Joint distributions are the best!

Problems with joints

- We aren't given the joint table
 - Usually some set of conditional probability tables

Two tools to construct joint distribution

1. Product rule

$$P(A,B) = P(A \mid B)P(B)$$

$$P(A,B) = P(B \mid A)P(A)$$

2. Chain rule

$$P(X_1, X_2, ..., X_n) = \prod_i P(X_i \mid X_1, ..., X_{i-1})$$

$$P(A,B,C) = P(A)P(B|A)P(C|A,B)$$
 for ordering A, B, C

$$P(A,B,C) = P(A)P(C \mid A)P(B \mid A,C)$$
 for ordering A, C, B

$$P(A,B,C) = P(C)P(B \mid C)P(A \mid C,B)$$
 for ordering C, B, A

Binary random variables

- Fire
- Smoke
- Alarm

$$P(F,S,A) = P(F)P(S|F)P(A|F,S)$$

$$P(+f,+5,+a) = P(+f)P(+s|+f)P(+a|+f,+s)$$

Variables

B: Burglary

A: Alarm goes off

M: Mary calls

John calls

■ E: Earthquake!

A.

5 choose 5

= P(B)P(A1B)P(M/BA)P(J/BAM)P(E/BAM)

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Process to go from (specific) conditional probability tables to query

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule
- 2. Answer query from joint
 - 1. Definition of conditional probability
 - 2. Law of total probability (marginalization, summing out)

Answer Any Query from Condition Probability Tables

Bayes' rule as an example

Given: P(E|Q), P(Q) Query: P(Q|e)

- 1. Construct the joint distribution
 - 1. Product Rule or Chain Rule

$$P(E,Q) = P(E|Q)P(Q)$$

- 2. Answer query from joint
 - 1. Definition of conditional probability

$$P(Q \mid e) = \frac{P(e,Q)}{P(e)}$$

2. Law of total probability (marginalization, summing out)

$$P(Q \mid e) = \frac{P(e,Q)}{\sum_{q} P(e,q)}$$

Bayesian Networks

One node per random variable

DAG

One CPT per node: P(node | *Parents*(node))

Bayes net

$$P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B,C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

Build Bayes Net Using Chain Rule

Binary random variables

- Smoke
- Alarm

Question

Variables

■ B: Burglary

■ A: Alarm goes off

■ M: Mary calls

■ J: John calls

■ E: Earthquake!

Biver Belyes Met, write the joint distribution?

= P(B | M) P(A | B M) P(J | A E B M) P(E | ABM) P(M)

Answer Any Query from Bayes Net

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

Conditional Probability Tables and Chain Rule

Problems

- Huge
 - n variables with d values
 - d^n entries
- We aren't given the right tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Do We Need the Full Chain Rule?

Binary random variables

- Fire
- Smoke
- Alarm ← Jmoke

$$P(F,S,A) = P(F) P(S|F) P(A|S)$$

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

Answer Any Query from Condition Probability Tables

P(A) P(B|A) P(C|A) P(D|C) P(E|C)

$$P(X_1, ..., X_N) = \prod_{i} P(X_i | Parents(X_i))$$