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One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴  𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵  𝑃 𝐷 𝐶  

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 = ෑ

𝑖

𝑃 𝑋𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 
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Bayes’ Nets: Big Picture
Two problems with using full joint distribution tables as 
our probabilistic models:

▪ Usually, the joint is WAY too big to represent explicitly

▪ Hard to learn (estimate) anything empirically about 
more than a few variables at a time

Bayes nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)

▪ A type of probabilistic graphical models

▪ We describe how variables locally interact

▪ Local interactions chain together to give global, 
indirect interactions



Graphical Model Notation
Nodes: variables (with domains)

▪ Can be assigned (observed) or unassigned 
(unobserved)

▪ We'll shade node to indicate observed variables

▪ Observed does not mean 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒 
Observed just means that we will have the value 
for that variable

Edges

▪ Indicate “direct influence” between variables

▪ Absence of edges: encode conditional 
independence

For now: imagine that arrows mean direct 
causation (in general, they don’t!)

HeartDisease

ChestPainBloodPressure

Weather
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Example: Liver Disorders

https://demo.bayesfusion.com/bayesbox.html

https://demo.bayesfusion.com/bayesbox.html


Independence



Two variables X and Y are independent if

                    x,y       P(x, y) = P(x) P(y)

▪ This says that their joint distribution factors into a product of two simpler 
distributions

▪ Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:
                x,y P(x | y) = P(x)   or     x,y P(y | x) = P(y)

  

Example: two dice rolls R1 and R2

P(R1=5, R2=5) = P(R1=5) P(R2=5)  =  1/6 x 1/6  =  1/36

P(R2=5 | R1=5)   =   P(R2=5)

Independence



Example: Independence
n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n 



Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃1 𝑇, 𝑊

𝑃(𝑇)

𝑃(𝑊)

Are T and W independent?



Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃 𝑇, 𝑊 𝑃 𝑇 𝑃(𝑊) 

𝑃(𝑇)

𝑃(𝑊)

Are T and W independent?

No



Model 2: rain affects traffic

Example: Traffic
Variables:

▪ R: rain or not

▪ T: traffic or not

Model 1: independence

Why is an agent using model 2 better?

R

T

R

T



Conditional Independence
Absolute (unconditional) independence very rare (why?)

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

X is conditionally independent of Y given Z

      if and only if: 

                x,y,z       P(x | y, z) = P(x | z)

      or, equivalently, if and only if

                x,y,z       P(x, y | z) = P(x | z) P(y | z)



Independence Rules

Independence

       If A and B are independent, then:

Conditional independence

       If A and B are conditionally

       independent given C, then:

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵) 
𝑃 𝐴 ∣ 𝐵 = 𝑃 𝐴  
𝑃 𝐵 ∣ 𝐴 = 𝑃 𝐵  

𝑃 𝐴, 𝐵 ∣ 𝐶 = 𝑃 𝐴 ∣ 𝐶 𝑃(𝐵 ∣ 𝐶) 
𝑃 𝐴 ∣ 𝐵, 𝐶 = 𝑃 𝐴 ∣ 𝐶  
𝑃 𝐵 ∣ 𝐴, 𝐶 = 𝑃 𝐵 ∣ 𝐶  



Conditional Independence
P(Traffic, Rain, Umbrella)

If it's rainining, the probability that there is traffic doesn't 
depend on whether see an umbrella:

▪ P(+traffic | +umbrella, +rain) = P(+traffic | +rain)

The same independence holds if it's not raining:

▪ P(+traffic | +umbrella, -rain) = P(+traffic| -rain)

Traffic is conditionally independent of Umbrella given Rain:

▪ P(Traffic | Umbrella, Rain) = P(Traffic | Rain)

Equivalent statements:

▪ P(Umbrella | Traffic , Rain) = P(Umbrella | Rain)

▪ P(Umbrella, Traffic | Rain) = P(Umbrella | Rain) P(Traffic | Rain)

▪ One can be derived from the other easily



Poll 2
Match the product of CPTs to the Bayes net.

I.

II.

III.

𝐴

𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴 𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴 𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵



Common local releationships within a Bayes net

Conditional Independence Semantics

𝑅

𝑇 𝑈
𝑆 𝐹 𝐴

𝑅 𝐻

𝑇

Causal Chain Common Cause Common Effect



Causal Chain
Fire, Smoke, Alarm

▪ Causal story to create Bayes net

▪ Assumptions

▪ Joint distribution



Common Cause

Chain rule:

  P(x1, x2,…, xn) = 
i
 P(xi | x1,…, xi-1)

Trivial decomposition:

  P(Rain, Traffic, Umbrella) =

With assumption of conditional independence:

  P(Raint, Traffic, Umbrella) =

Bayes nets / graphical models help us express             
conditional independence assumptions

𝑅

𝑇 𝑈



Common Cause

Chain rule:

  P(x1, x2,…, xn) = 
i
 P(xi | x1,…, xi-1)

Trivial decomposition:

  P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:

  P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes nets / graphical models help us express             
conditional independence assumptions

𝑅

𝑇 𝑈



Common Effect

Chain rule:

  P(x1, x2,…, xn) = 
i
 P(xi | x1,…, xi-1)

Trivial decomposition:

  P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

With assumption of conditional independence:

  P(Rain, Hockey, Traffic) =

Bayes nets / graphical models help us express             
conditional independence assumptions



Common Effect

Chain rule:

  P(x1, x2,…, xn) = 
i
 P(xi | x1,…, xi-1)

Trivial decomposition:

  P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

With assumption of conditional independence:

  P(Rain, Hockey, Traffic) = P(Rain) P(Hockey)    P(Traffic | Rain, Hockey)

Bayes nets / graphical models help us express             
conditional independence assumptions

𝑅 𝐻

𝑇



Example: Alarm Network

Variables
▪ B: Burglary

▪ A: Alarm goes off

▪ M: Mary calls

▪ J: John calls

▪ E: Earthquake!



Example: Alarm Network

Joint distribution factorization example

Generic chain rule
▪ 𝑃 𝑋1 … 𝑋2 = ς𝑖 𝑃 𝑋𝑖  𝑋1 … 𝑋𝑖−1) 

𝑃 𝐵, 𝐸, 𝐴, 𝐽, 𝑀 = 𝑃 𝐵  𝑃 𝐸 𝐵  𝑃 𝐴 𝐵, 𝐸  𝑃 𝐽 𝐵, 𝐸, 𝐴  𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽, 𝑀 = 𝑃 𝐵  𝑃 𝐸  𝑃 𝐴 𝐵, 𝐸  𝑃 𝐽 𝐴  𝑃(𝑀|𝐴)

Bayes nets
▪ 𝑃 𝑋1 … 𝑋2 = ς𝑖 𝑃 𝑋𝑖  𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) 

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴  𝑃 𝐵  𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }



Bayes Net Independence



Answering Independence Questions
▪ Is A independent from E?

▪ Is A independent from E given C?

▪ Is A independent from C given E?

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴 𝐵 𝐶 𝐷 𝐸



Active / Inactive Paths

Question: Are X and Y conditionally independent given 
evidence variables {Z}?
▪ Yes, if X and Y “d-separated” by Z
▪ Consider all (undirected) paths from X to Y
▪ No active paths = independence!

A path is active if each triple is active:
▪ Causal chain A → B → C where B is unobserved (either direction)
▪ Common cause A  B → C where B is unobserved
▪ Common effect (aka v-structure)
 A → B  C where B or one of its descendents is observed
 

All it takes to block a path is a single inactive segment

 

Active Paths Inactive Paths



Bayes Ball

Question: Are X and Y conditionally independent given 
evidence variables {Z}?

 

Thomas Bayes

Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite 
Information in Belief Networks and Influence Diagrams)." Proceedings of the Fourteenth 
conference on Uncertainty in Artificial Intelligence. 1998.

Active Paths Inactive Paths

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Bayes Ball

Question: Are X and Y conditionally independent given 
evidence variables {Z}?

1. Shade in Z

2. Drop a ball at X

3. The ball can pass through any active path and is 
blocked by any inactive path (ball can move either 
direction on an edge)

4. If the ball reaches Y, then X and Y are NOT 
conditionally independent given Z

 

Active Paths Inactive Paths



Bayes Ball

Active Paths Inactive Paths



Poll 3
Is 𝑋1 independent from 𝑋6 given 𝑋2?



Poll 3
Is 𝑋1 independent from 𝑋6 given 𝑋2?

No, the Bayes ball can travel through 𝑋3 and 𝑋5.



Poll 4
Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?



Poll 4
Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?

No, the Bayes ball can travel through 𝑋5 and 𝑋6.



. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

𝑈1 𝑈𝑚

𝑋

Conditional Independence Semantics

Every variable is conditionally independent of its non-descendants given its parents



. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X

𝑈1 𝑈𝑚

𝑋

𝑌𝑛𝑌1

𝑍1𝑗 𝑍𝑛𝑗

Markov blanket

A variable’s Markov blanket consists of parents, children, children’s other parents

Every variable is conditionally independent of all other variables given its Markov blanket



Answer Any Query from Joint Distribution
Joint distributions are the best!

Problems with joints

▪ We aren’t given the joint table

▪ Usually some set of 
conditional probability tables

▪ Huge

▪ 𝑛 variables with 𝑑 values

▪ 𝑑𝑛 entries

 

Joint

Query

𝑃 𝑎 𝑒)



Answer Any Query from Bayes Net

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴  𝑃 𝐷 𝐶  𝑃(𝐸|𝐶)



Next: Answer Any Query from Bayes Net

Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴  𝑃 𝐷 𝐶  𝑃(𝐸|𝐶)
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