Al: Representation and Problem Solving Bayes Nets: Independence

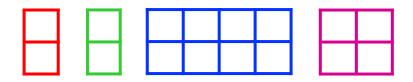
Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

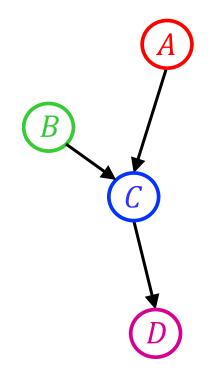
Bayesian Networks

One node per random variable Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node))



Bayes net



P(A, B, C, D) = P(A) P(B) P(C|A, B) P(D|C)

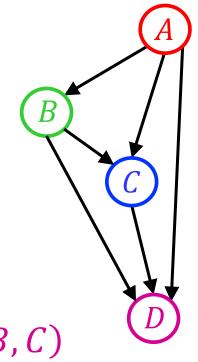
Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, \dots, X_N) = \prod_i P(X_i | Parents(X_i))$$

Bayesian Networks

One node per random variable Directed-Acyclic-Graph

One CPT per node: P(node | *Parents*(node))



P(A, B, C, D) = P(A) P(B|A) P(C|A, B) P(D|A, B, C)

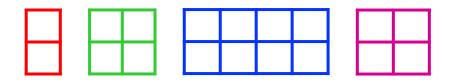
Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, \dots, X_N) = \prod_i P(X_i | Parents(X_i))$$

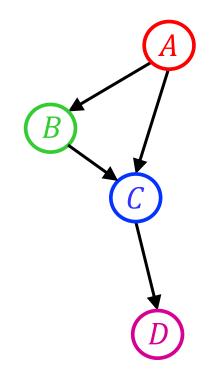
Bayesian Networks

One node per random variable Directed-Acyclic-Graph

One CPT per node: P(node | *Parents*(node))



Bayes net



P(A, B, C, D) = P(A) P(B|A) P(C|A, B) P(D|C)

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, \dots, X_N) = \prod_i P(X_i | Parents(X_i))$$

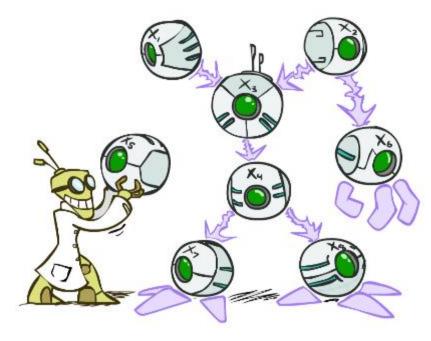
Bayes' Nets: Big Picture

Two problems with using full joint distribution tables as our probabilistic models:

- Usually, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)

- A type of probabilistic graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions



Graphical Model Notation

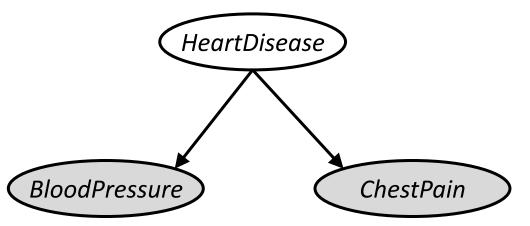
Nodes: variables (with domains)

- Can be assigned (observed) or unassigned (unobserved)
- We'll shade node to indicate observed variables
- Observed does not mean Variable = true
 Observed just means that we will have the value for that variable

Edges

- Indicate "direct influence" between variables
- Absence of edges: encode conditional independence

For now: imagine that arrows mean direct causation (in general, they don't!)



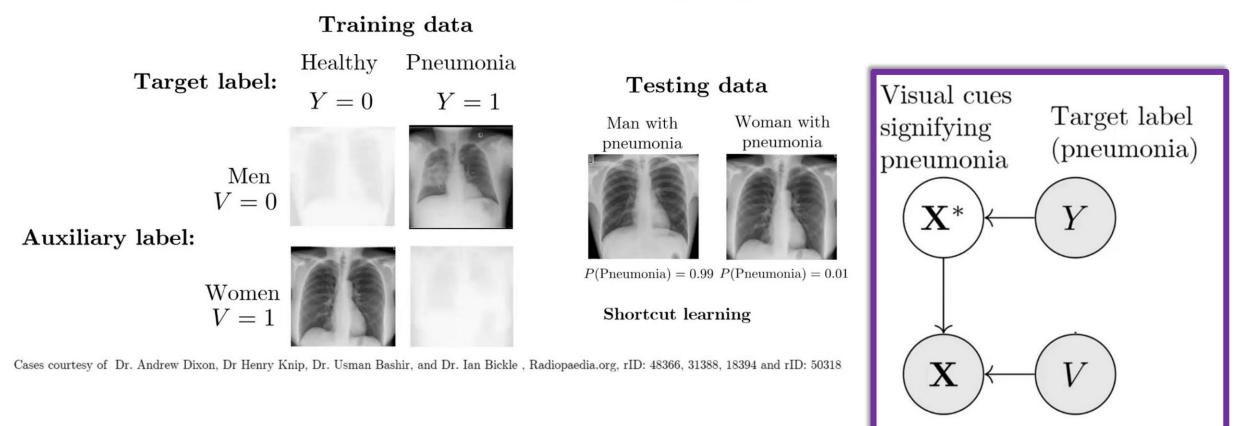
Maggie Makar, University of Michigan

https://mymakar.github.io/

Assistant Professor Computer Science and Engineering University of Michigan

Causally-motivated shortcut removal using auxiliary labels M. Makar, B. Packer, D. Moldovan, D. Blalock, Y. Halpern, A. D'Amour AlStats 2022 [paper]

Pneumonia detection under biased sampling



X-ray

pixels

Auxiliary label

(sex)

Causally-motivated shortcut removal using auxiliary labels M. Makar, B. Packer, D. Moldovan, D. Blalock, Y. Halpern, A. D'Amour AlStats 2022 [paper]

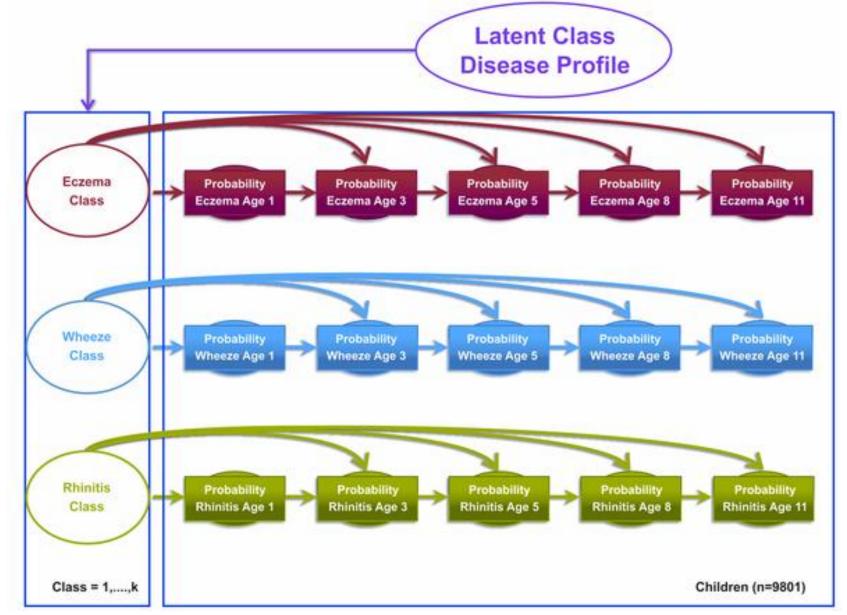
Danielle Belgrave, Microsoft Research

GSK

Vice President AI/ML GSK

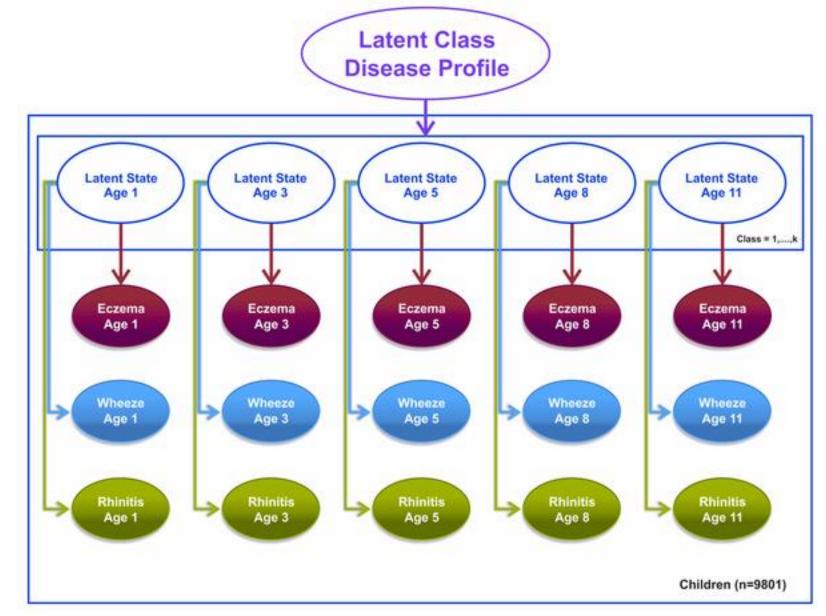
https://www.daniellebelgrave.com

Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies Danielle Belgrave, et al. *PLOS Medicine*, 2014 <u>https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748</u>



Danielle Belgrave, et al. PLOS Medicine, 2014

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748



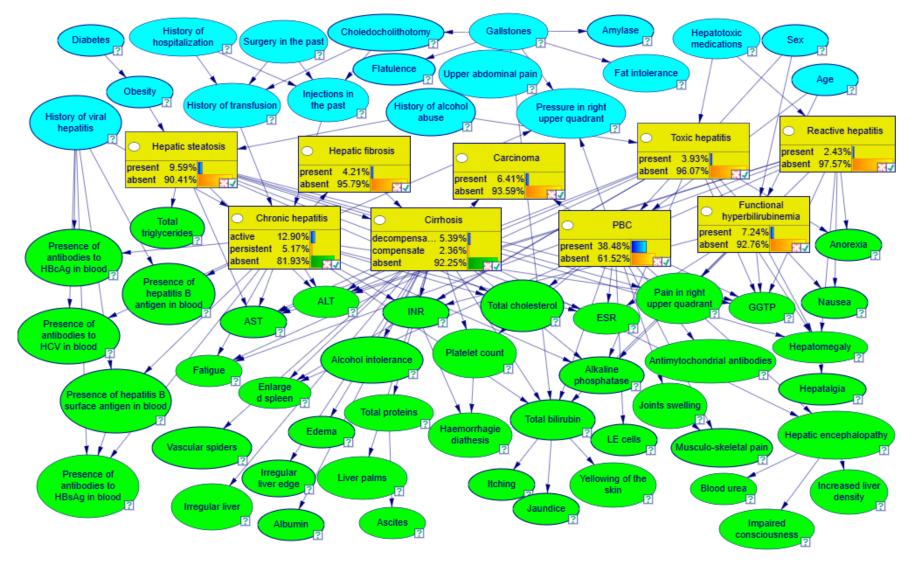
Danielle Belgrave, et al. *PLOS Medicine*, 2014 <u>https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748</u>

Characteristic	MAAS Coho	ort	ALSPAC Cohort	ALSPAC Cohort		Joint MAAS and ALSPAC Cohort	
	n/Total	Percent	n/Total	Percent	n/Total	Percent	
Gender (Female)	617/1,136	54.3	4,212/8,665	48.61	4,829/9,801	49.3	
Eczema							
Age 1 y	383/1,077				<i>n</i> /Total		Percent
Age 3 y	355/1,061				/// TOLAI		Percent
Age 5 y	340/1,050						
Age 8 y	285/1,027	Gender	(Female)		617/1,136		54.3
Age 11 y	216/924				·		
Wheeze		Eczema					
Age 1 y	300/1,087						
Age 3 y	257/1,095	Age 1 y			383/1,077		35.6
Age 5 y	238/1,056	, ge i j			505, 1707 /		0010
Age 8 y	185/1,024	Age 3 y			355/1,061		33.5
Age 11 y	173/916	rige 5 y			555/1,001		55.5
Rhinitis	0 (0 4 2	Age 5 y			340/1,050		32.4
Age 1 y	8/943	Age J y			5-0,1,050		JZ. T
Age 3 y	49/1,075				205/1027		27.8
Age 5 y Age 8 y	292/1,039	Age 8 y			285/1,027		27.0
	297/1,027	A			21 < 102		
Age 11 y	321/927	Age 11 y			216/924		23.4

Danielle Belgrave, et al. PLOS Medicine, 2014

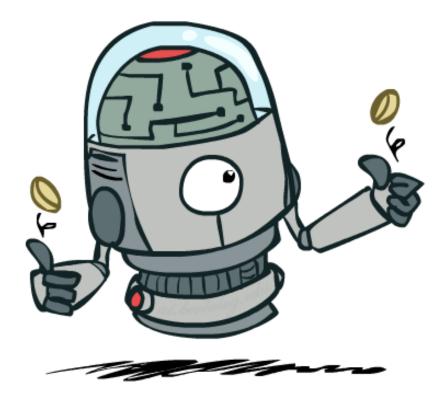
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748

Example: Liver Disorders



https://demo.bayesfusion.com/bayesbox.html

Independence



Independence

Two variables X and Y are *independent* if $\forall x, y \quad P(x, y) = P(x) P(y)$

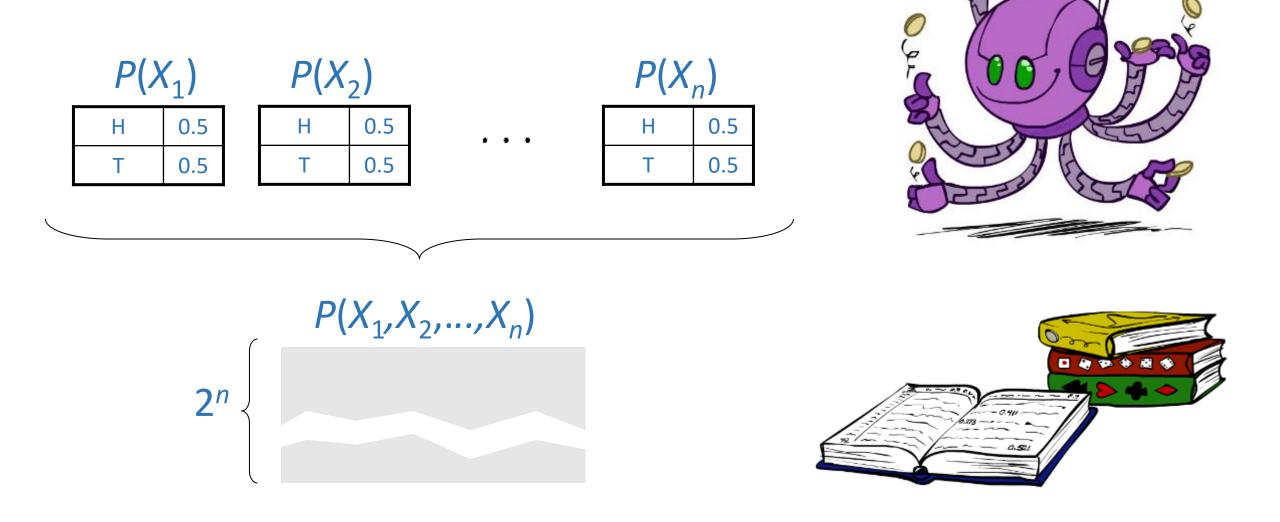
- This says that their joint distribution *factors* into a product of two simpler distributions
- Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form: $\forall x, y P(x | y) = P(x)$ or $\forall x, y P(y | x) = P(y)$

Example: two dice rolls R_1 and R_2 $P(R_1=5, R_2=5) = P(R_1=5) P(R_2=5) = 1/6 \times 1/6 = 1/36$

$$P(R_2=5 | R_1=5) = P(R_2=5)$$

Example: Independence

n fair, independent coin flips:



Are T and W independent?

P(T)

$P_1(T,W)$			
Т	W	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Т	Ρ
hot	0.5
cold	0.5

P(W)		
	W	Ρ
	sun	0.6
	rain	0.4

Poll 1

Are T and W independent?

No

P(T,W)			
Т	W	Ρ	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

P(T)			
Т	Р		
hot	0.5		
cold	0.5		

P(T)P(W)

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Traffic

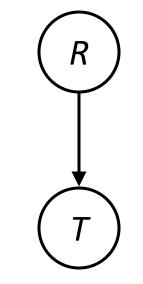
Variables:

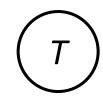
- R: rain or not
- T: traffic or not

Model 1: independence



Model 2: rain affects traffic





Why is an agent using model 2 better?

Conditional Independence

Absolute (unconditional) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

X is conditionally independent of Y given Z if and only if: $\forall x,y,z \quad P(x \mid y, z) = P(x \mid z)$

or, equivalently, if and only if $\forall x,y,z \quad P(x, y \mid z) = P(x \mid z) P(y \mid z)$

Independence Rules

Independence

If A and B are independent, then:

$$P(A,B) = P(A)P(B)$$
$$P(A \mid B) = P(A)$$
$$P(B \mid A) = P(B)$$

Conditional independence

If A and B are conditionally

independent given C, then:

 $P(A, B \mid C) = P(A \mid C)P(B \mid C)$ $P(A \mid B, C) = P(A \mid C)$ $P(B \mid A, C) = P(B \mid C)$

Conditional Independence

P(Traffic, Rain, Umbrella)

If it's rainining, the probability that there is traffic doesn't depend on whether see an umbrella:

P(+traffic | +umbrella, +rain) = P(+traffic | +rain)

The same independence holds if it's not raining:

P(+traffic | +umbrella, -rain) = P(+traffic | -rain)

Traffic is *conditionally independent* of Umbrella given Rain:

P(Traffic | Umbrella, Rain) = P(Traffic | Rain)

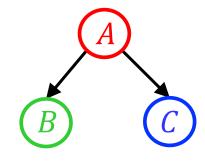
Equivalent statements:

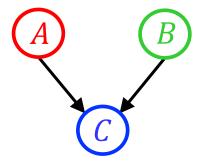
- P(Umbrella | Traffic , Rain) = P(Umbrella | Rain)
- P(Umbrella, Traffic | Rain) = P(Umbrella | Rain) P(Traffic | Rain)
- One can be derived from the other easily

Match the product of CPTs to the Bayes net.

С

P(A) P(B|A) P(C|A)





|. P(A) P(B|A) P(C|B) P(A) P(B|A) P(C|A)

P(A) P(B) P(C|A,B)

P(A) P(B) P(C|A,B)

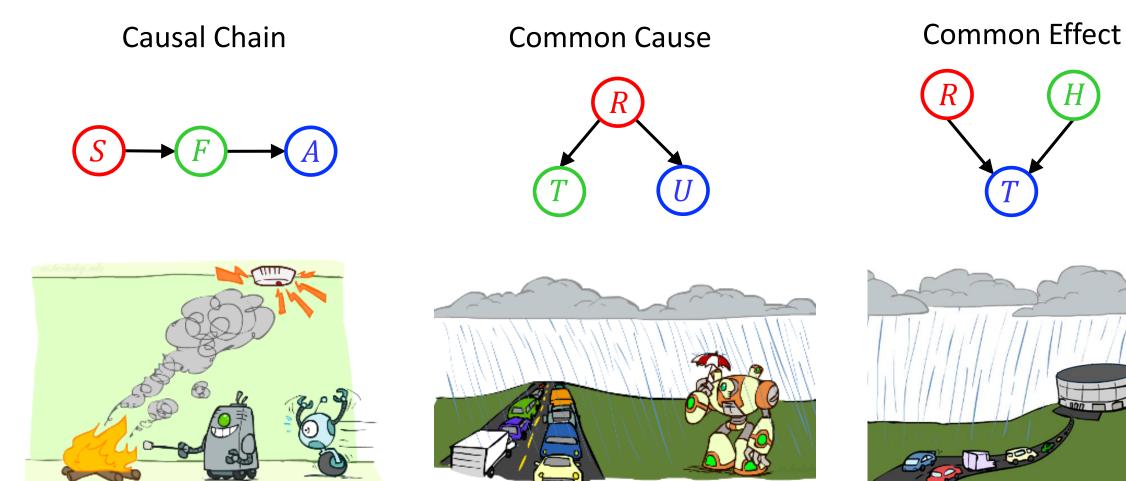
P(A) P(B|A) P(C|B)P(A) P(B) P(C|A,B)Ш.

P(A) P(B|A) P(C|A)

P(A) P(B|A) P(C|B)

Conditional Independence Semantics

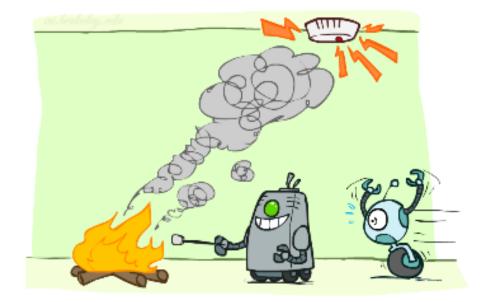
Common local releationships within a Bayes net



Causal Chain

Fire, Smoke, Alarm

Causal story to create Bayes net

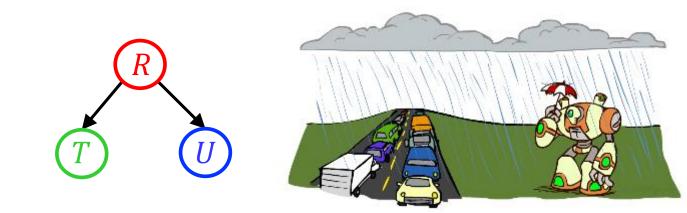


- Assumptions
- Joint distribution

Common Cause

Chain rule:

 $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$



Trivial decomposition: *P*(*Rain, Traffic, Umbrella*) =

With assumption of conditional independence: *P*(*Raint, Traffic, Umbrella*) =

Common Cause

Chain rule:

 $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$

Trivial decomposition:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence: P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Common Effect

Trivial decomposition:

Chain rule:

 $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$

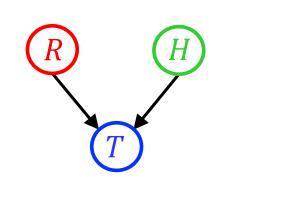
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

With assumption of conditional independence: *P*(*Rain, Hockey, Traffic*) =

Common Effect

Chain rule:

 $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$



Trivial decomposition:

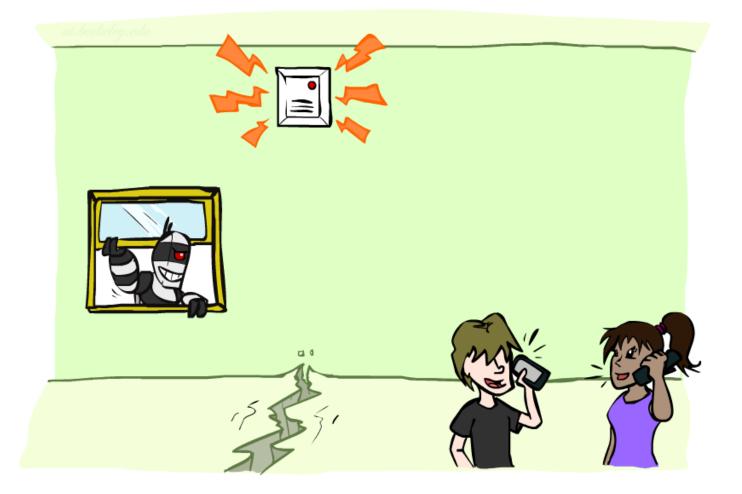
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

With assumption of conditional independence: *P(Rain, Hockey, Traffic) = P(Rain) P(Hockey) P(Traffic | Rain, Hockey)*

Example: Alarm Network

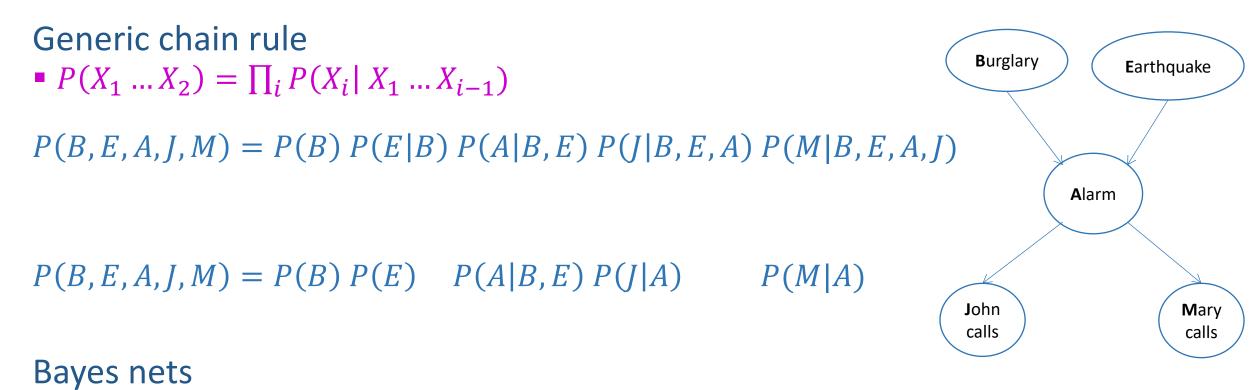
Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!



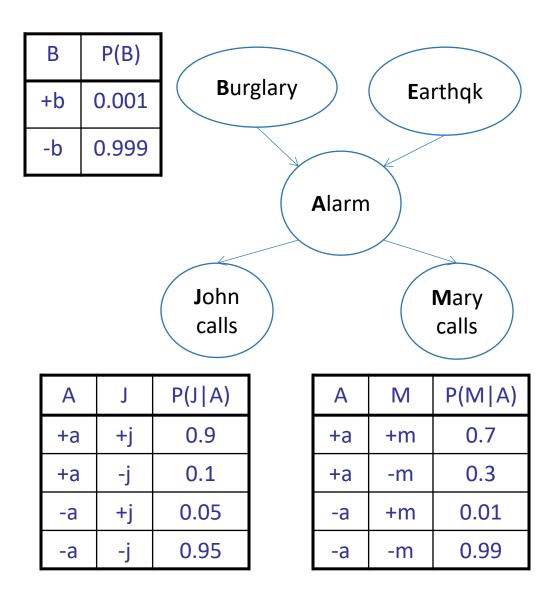
Example: Alarm Network

Joint distribution factorization example

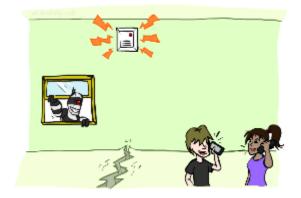


• $P(X_1 \dots X_2) = \prod_i P(X_i | Parents(X_i))$

Example: Alarm Network



E	P(E)
+e	0.002
-е	0.998



В	Ε	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Conditional Independence Semantics

For the following Bayes nets, write the joint P(A, B, C)

- 1. Using the chain rule (with top-down order A,B,C)
- 2. Using Bayes net semantics (product of CPTs)

P(A) P(B|A) P(C|A,B)

P(A) P(B|A) P(C|B)

Assumption: P(C|A,B) = P(C|B)C is independent from A given B P(A) P(B|A) P(C|A,B)

P(A) P(B|A) P(C|A)

Assumption: P(C|A,B) = P(C|A)

C is independent from B given A

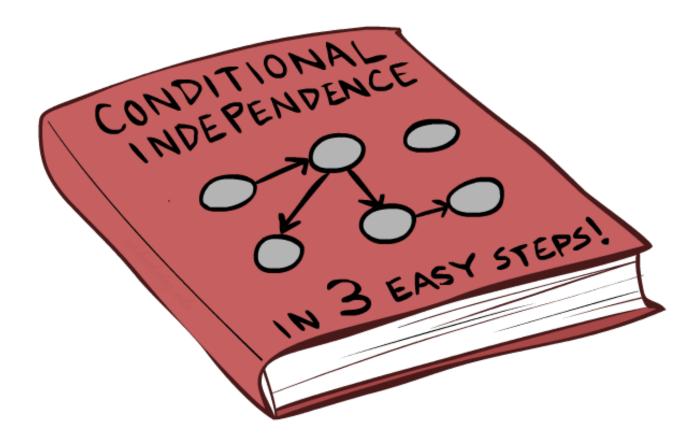
(A)	B
$\overline{\}$	
	C)

P(A) P(B|A) P(C|A,B)

P(A) P(B) P(C|A,B)

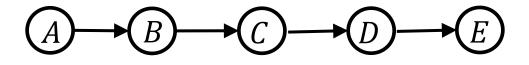
Assumption: P(B|A) = P(B)A is independent from B given { }

Bayes Net Independence

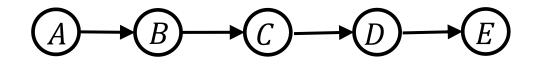


Answering Independence Questions

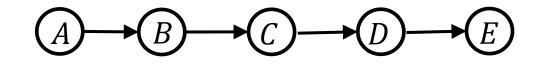
Is A independent from E?



Is A independent from E given C?



Is A independent from C given E?



Active / Inactive Paths

Question: Are X and Y conditionally independent given evidence variables {Z}?

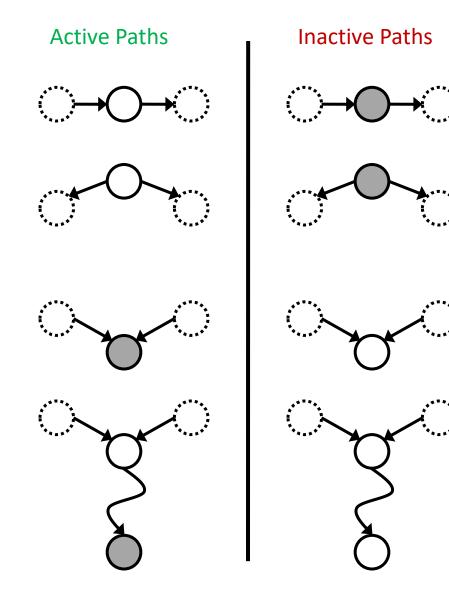
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:

- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure)

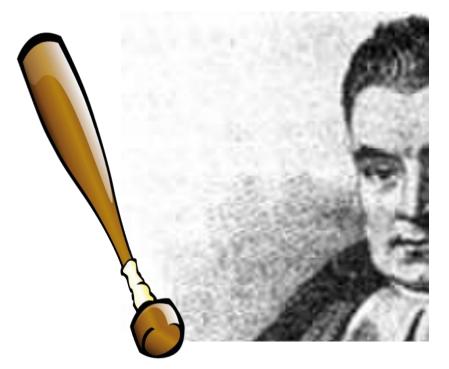
 $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed

All it takes to block a path is a single inactive segment

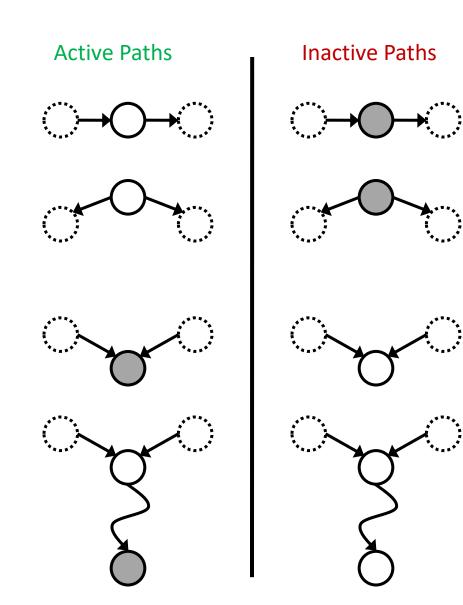


Bayes Ball

Question: Are X and Y conditionally independent given evidence variables {Z}?



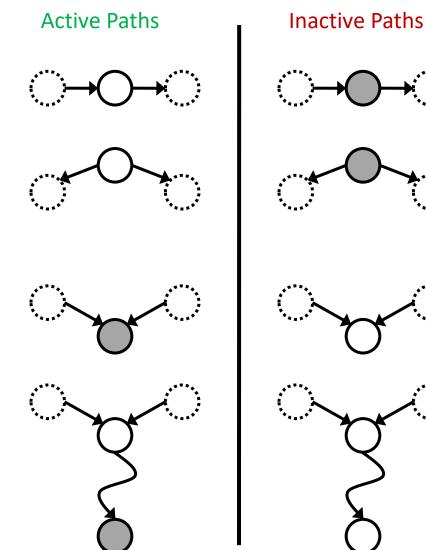
Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams)." *Proceedings of the Fourteenth conference on Uncertainty in Artificial Intelligence.* 1998.



Bayes Ball

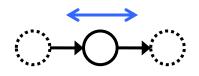
Question: Are X and Y conditionally independent given evidence variables {Z}?

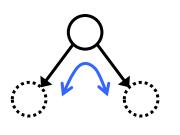
- 1. Shade in Z
- 2. Drop a ball at X
- 3. The ball can pass through any *active* path and is blocked by any *inactive* path (ball can move either direction on an edge)
- 4. If the ball reaches Y, then X and Y are NOT conditionally independent given Z

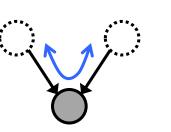


Bayes Ball

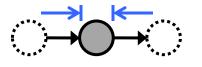
Active Paths

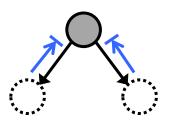


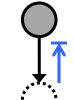


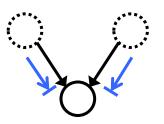


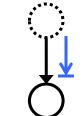
Inactive Paths



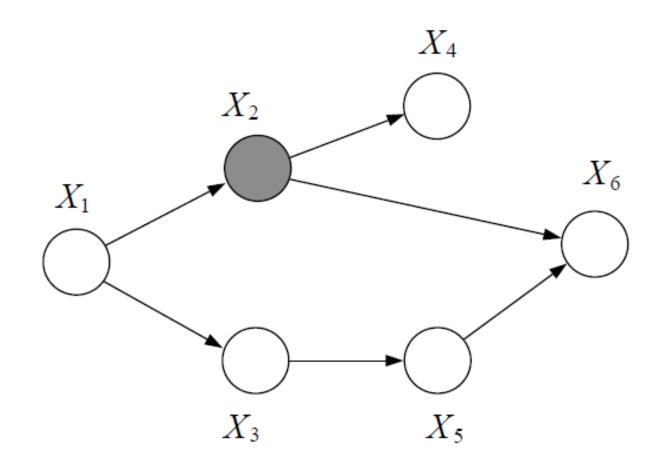






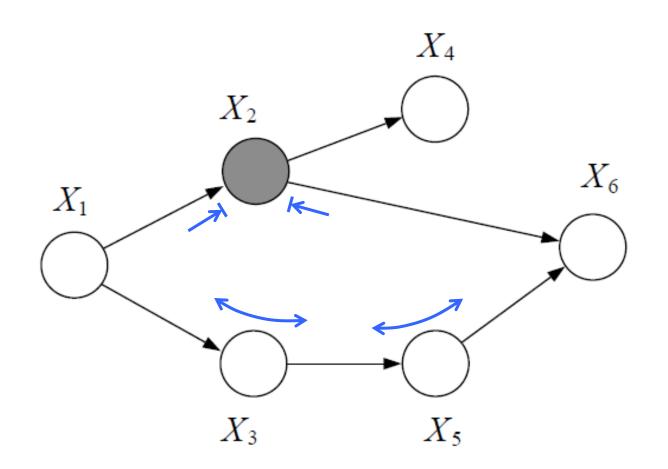


Is X_1 independent from X_6 given X_2 ?

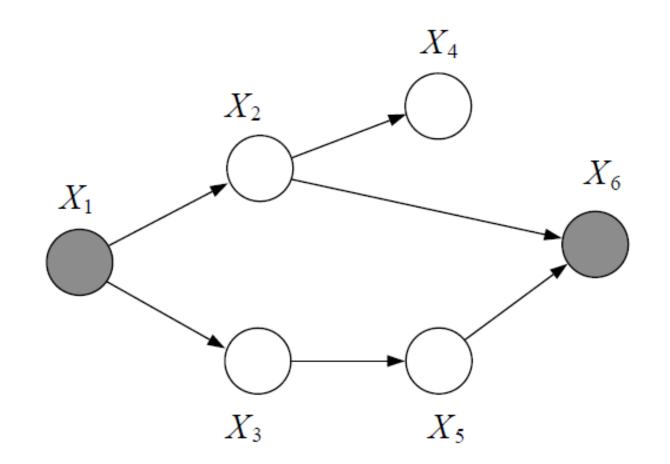


Poll 3

Is X_1 independent from X_6 given X_2 ? No, the Bayes ball can travel through X_3 and X_5 .

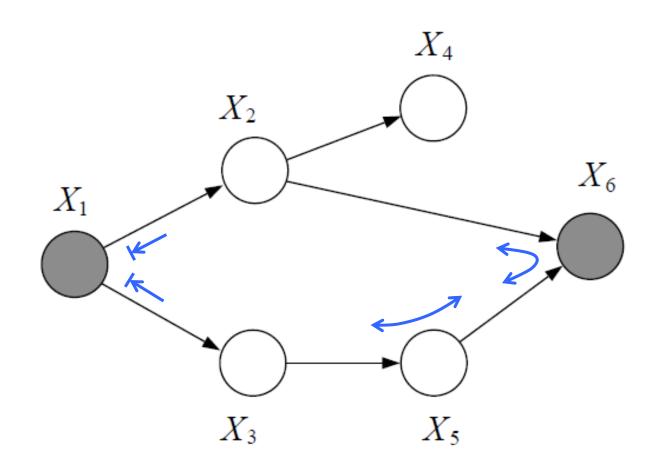


Is X_2 independent from X_3 given X_1 and X_6 ?



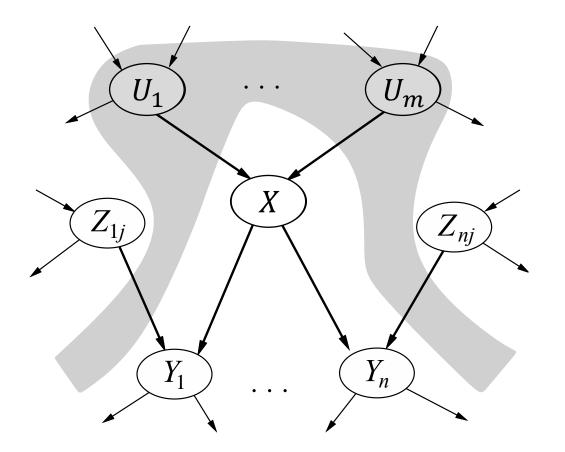
Poll 4

Is X_2 independent from X_3 given X_1 and X_6 ? No, the Bayes ball can travel through X_5 and X_6 .



Conditional Independence Semantics

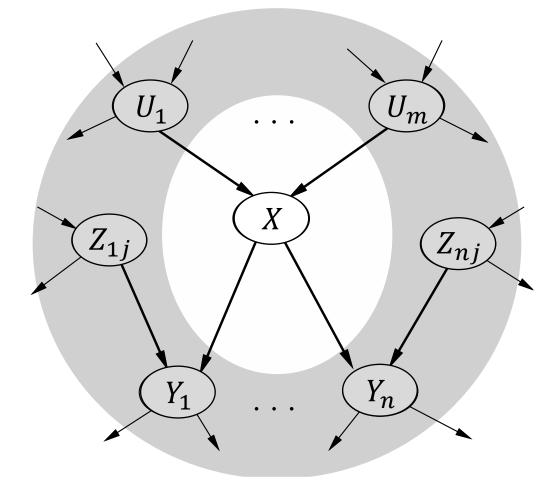
Every variable is conditionally independent of its non-descendants given its parents



Markov blanket

A variable's Markov blanket consists of parents, children, children's other parents

Every variable is conditionally independent of all other variables given its Markov blanket

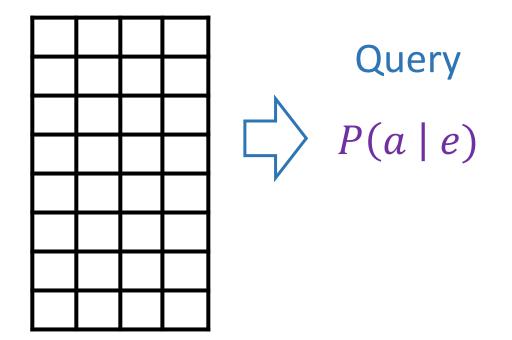


Answer Any Query from Joint Distribution

Joint distributions are the best!

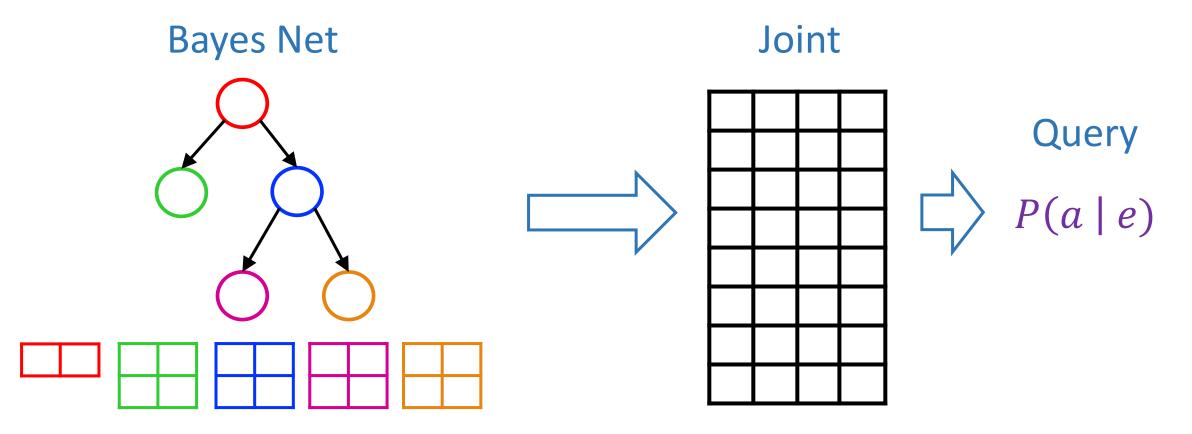
Problems with joints

- We aren't given the joint table
 - Usually some set of conditional probability tables
- Huge
 - *n* variables with *d* values
 - d^n entries



Joint

Answer Any Query from Bayes Net



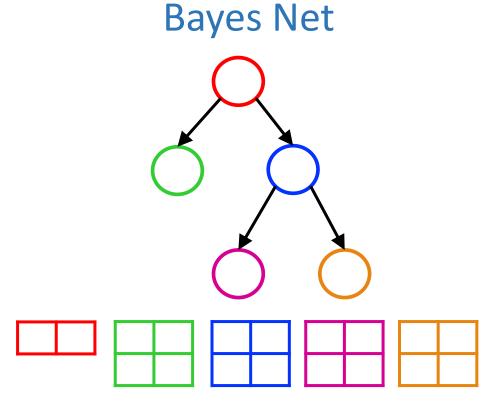
P(A) P(B|A) P(C|A) P(D|C) P(E|C)

Next: Answer Any Query from Bayes Net

Query

P(a)

 $|e\rangle$



P(A) P(B|A) P(C|A) P(D|C) P(E|C)