
Warm-up as you walk in

Given these N=10 observations of the world:

What is the approximate value for  
𝑃 −𝑐 | − 𝑎, +𝑏 ?

A. 1/10
B. 5/10
C. 1/4
D. 1/5
E. I’m not sure

+a +b +c 0

+a +b -c 0

+a -b +c 3

+a -b -c 0

-a +b +c 4

-a +b -c 1

-a -b +c 2

-a -b -c 0

Counts
−𝑎, −𝑏, +𝑐
+𝑎, −𝑏, +𝑐
−𝑎, −𝑏, +𝑐
−𝑎, +𝑏, +𝑐
+𝑎, −𝑏, +𝑐
−𝑎, +𝑏, −𝑐
−𝑎, +𝑏, +𝑐
−𝑎, +𝑏, +𝑐
+𝑎, −𝑏, +𝑐
−𝑎, +𝑏, +𝑐



AI: Representation and Problem Solving

Bayes Nets Sampling

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu



Review: Bayes Nets

Joint distributions → answer any query

    𝑃 𝑎 𝑒) =
1

𝑍
 𝑃 𝑎, 𝑒 =

1

𝑍
σ𝑏 σ𝑐 σ𝑑 𝑃(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)

Break down joint using chain rule

 𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴, 𝐵  𝑃 𝐷 𝐴, 𝐵, 𝐶  𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

With Bayes nets

 𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴  𝑃 𝐷 𝐶  𝑃(𝐸|𝐶)
𝐴

𝐵 𝐶

𝐷 𝐸



Bayes Nets

Part I: Representation

Part II: Exact inference

▪ Enumeration (always exponential complexity)

▪ Variable elimination (worst-case exponential complexity, often better)

▪ Inference is NP-hard in general

Part III: Approximate Inference



Warm-up as you walk in

Given these N=10 observations of the world:

What is the approximate value for  
 𝑃 −𝑐|  − 𝑎, +𝑏 ?

A. 1/10
B. 5/10
C. 1/4
D. 1/5
E. I’m not sure

+a +b +c 0

+a +b -c 0

+a -b +c 3

+a -b -c 0

-a +b +c 4

-a +b -c 1

-a -b +c 2

-a -b -c 0

Counts
−𝑎, −𝑏, +𝑐
+𝑎, −𝑏, +𝑐
−𝑎, −𝑏, +𝑐
−𝑎, +𝑏, +𝑐
+𝑎, −𝑏, +𝑐
−𝑎, +𝑏, −𝑐
−𝑎, +𝑏, +𝑐
−𝑎, +𝑏, +𝑐
+𝑎, −𝑏, +𝑐
−𝑎, +𝑏, +𝑐



Approximate Inference: Sampling



Inference vs Sampling



Motivation for Approximate Inference



Sampling

Sampling from given distribution

▪ Step 1: Get sample u from uniform 
distribution over [0, 1)

▪ e.g. random() in python

▪ Step 2: Convert this sample u into an 
outcome for the given distribution 
by having each outcome associated 
with a sub-interval of [0,1) with sub-
interval size equal to probability of 
the outcome

Example

▪ If random() returns u = 0.83, then 
our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3



Sampling
How would you sample from a conditional distribution?

𝐴

𝐵

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

𝑃(𝐴)

𝑃(𝐵|𝐴)



Sampling
How would you sample from a conditional distribution?

𝐴

𝐵

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

𝑃(𝐴)

𝑃(𝐵|𝐴)



Sampling
How would you sample from a conditional distribution?

𝐴

𝐵

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

𝑃(𝐴)

𝑃(𝐵|𝐴)



Sampling in Bayes’ Nets

Prior Sampling

Rejection Sampling

Likelihood Weighting

Gibbs Sampling



Handout

Input: evidence instantiation

w = 1.0

for i=1, 2, …, m

 

 

▪ Set w = w * P(xi | Parents(Xi))

 

 

return w

No evidence:

Prior Sampling

Some evidence:

Likelihood Weighted Sampling

All evidence:

Likelihood Weighted

Input: no evidence

 

for i=1, 2, …, m

     

 

 

     

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xm)

Input: evidence instantiation

w = 1.0

for i=1, 2, …, m

    if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

    else

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xm), w



Prior Sampling



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…



Prior Sampling

For i=1, 2, …, m

▪ Sample xi from P(Xi | Parents(Xi))

Return (x1, x2, …, xm)



Poll 1

Prior Sampling: What does the value 
𝑁 +𝑎,−𝑏,+𝑐

𝑁
 approximate?

A.  𝑃(+𝑎, −𝑏, +𝑐)
B.  𝑃 +𝑐 + 𝑎, −𝑏)
C.  𝑃(+𝑐 | − 𝑏)
D.  𝑃(+𝑐)
E. I don’t know

19

𝐴

𝐵

𝐶



Poll 1

Prior Sampling: What does the value 
𝑁 +𝑎,−𝑏,+𝑐

𝑁
 approximate?

A.  𝑃(+𝑎, −𝑏, +𝑐)
B.  𝑃 +𝑐 + 𝑎, −𝑏)
C.  𝑃(+𝑐 | − 𝑏)
D.  𝑃(+𝑐)
E. I don’t know

20

𝐴

𝐵

𝐶

Let's assume for simplicity 
that all probabilities are 0.5:
    P 𝑎 = 0.5 ∀𝑎 
    P 𝑏 ∣ 𝑎 = 0.5 ∀𝑎, 𝑏 
    P 𝑐 ∣ 𝑏 = 0.5 ∀𝑏, 𝑐 

Let's take 1000 samples:



Poll 2
How many {−𝑎, +𝑏, −𝑐} samples out of N=1000
should we expect?

A.  1
B.  50
C.  125
D.  200
E.  I have no idea

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Poll 2
How many {−𝑎, +𝑏, −𝑐} samples out of N=1000
should we expect?

A.  1
B.  50
C.  125
D.  200
E.  I have no idea

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Probability of a sample

Given this Bayes Net & CPT,
what is 𝑃 +𝑎, +𝑏, +𝑐 ?

Algorithm: Multiply probability of 
each node given parents:

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)

▪ w = 1.0

▪ for i=1, 2, …, m

▪ Set w = w * P(xi | Parents(Xi))

▪ return w



Example
We’ll get a bunch of samples from the BN:
 +c, -s, +r, +w

 +c, +s, +r, +w

 -c, +s, +r,  -w

 +c, -s, +r, +w

 -c,  -s,  -r, +w

If we want to know P(W)
▪ We have counts <+w:4, -w:1>

▪ Normalize to get P(W) = <+w:0.8, -w:0.2>

▪ This will get closer to the true distribution with more samples

▪ Can estimate anything else, too

▪ What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

▪ Fast: can use fewer samples if less time (what’s the 
drawback?)

S R

W

C



Rejection Sampling



+c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r,  -w
 +c, -s, +r, +w
 -c,  -s,  -r, +w

Rejection Sampling

Let's say we want P(C)
▪ No point keeping all samples around

▪ Just tally counts of C as we go

Let's say we want P(C| +s)
▪ Same thing: tally C outcomes, but ignore 

(reject) samples which don’t have S=+s

▪ This is called rejection sampling

▪ It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
IN: evidence instantiation

For i=1, 2, …, m

▪ Sample xi from P(Xi | Parents(Xi))

▪ If xi not consistent with evidence
▪ Reject: Return, and no sample is generated in this cycle

Return (x1, x2, …, xm)



Poll 3

What queries can we (approximately) answer 
with rejection sampling samples (evidence: +𝑐)?
Select all that apply

A.  𝑃(+𝑎, −𝑏, +𝑐)
B.  𝑃(+𝑎, −𝑏 ∣ +𝑐)
C.  𝑃(+𝑎, −𝑏 ∣ −𝑐)
D.  None of the above
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𝐴

𝐵

𝐶
+a +b +c 4

+a +b -c

+a -b +c 3

+a -b -c

-a +b +c 2

-a +b -c

-a -b +c 1

-a -b -c

Counts 𝑁(𝐴, 𝐵, 𝐶)



Poll 3

What queries can we (approximately) answer 
with rejection sampling samples (evidence: +𝑐)?
Select all that apply

A.  𝑃(+𝑎, −𝑏, +𝑐)
B.  𝑃(+𝑎, −𝑏 ∣ +𝑐)
C.  𝑃(+𝑎, −𝑏 ∣ −𝑐)
D.  None of the above
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𝐴

𝐵

𝐶
+a +b +c 4

+a +b -c

+a -b +c 3

+a -b -c

-a +b +c 2

-a +b -c

-a -b +c 1

-a -b -c

Counts 𝑁(𝐴, 𝐵, 𝐶)

A and C: only if we also have total 
number of attempts



Likelihood Weighting



▪ Idea: fix evidence variables and sample the 
rest
▪ Problem: sample distribution not consistent!

▪ Solution: weight by probability of evidence 
given parents

Likelihood Weighting

Problem with rejection sampling:
▪ If evidence is unlikely, rejects lots of samples

▪ Evidence not exploited as you sample

▪ Consider P(Shape|blue)

Shape ColorShape Color

pyramid,  green
 pyramid,  red
 sphere,     blue
 cube,         red
 sphere,      green

pyramid,  blue
 pyramid,  blue
 sphere,     blue
 cube,         blue
 sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5

-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2

-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w

…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass



Likelihood Weighting
IN: evidence instantiation

w = 1.0

for i=1, 2, …, m

▪ if Xi is an evidence variable
▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else
▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xm), w



Likelihood Weighting

Input: evidence instantiation

w = 1.0

for i=1, 2, …, m

 

 

▪ Set w = w * P(xi | Parents(Xi))

 

 

return w

No evidence:

Prior Sampling

Some evidence:

Likelihood Weighted Sampling

All evidence:

Likelihood Weighted

Input: no evidence

 

for i=1, 2, …, m

     

 

 

     

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xm)

Input: evidence instantiation

w = 1.0

for i=1, 2, …, m

    if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

    else

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xm), w



Remember Poll 2
How many {−𝑎, +𝑏, −𝑐} samples out of N=1000
should we expect?

A.  1
B.  50
C.  125
D.  200
E.  I have no idea

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Likelihood Weighting

𝐴

𝐵

𝐶

+a 1/2

-a 1/2

+a +b 1/10
-b 9/10

-a +b 1/2
-b 1/2

+b +c 4/5
-c 1/5

-b +c 1
-c 0

𝑃(𝐴)

𝑃(𝐵|𝐴)

𝑃(𝐶|𝐵)



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Joint from Bayes nets

 𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴  𝑃 𝐷 𝐶  𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: +𝑎, −𝑑

Joint from Bayes nets

 𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎  𝑃 𝐵 +𝑎  𝑃 𝐶 +𝑎  𝑃 −𝑑 𝐶  𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: +𝑎, +𝑏, −𝑐, −𝑑, +𝑒

Joint from Bayes nets

 𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎  𝑃 +𝑏 +𝑎  𝑃 −𝑐 +𝑎  𝑃 −𝑑 −𝑐  𝑃(+𝑒| − 𝑐)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: None

Joint from Bayes nets

 𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴  𝑃 𝐵 𝐴  𝑃 𝐶 𝐴  𝑃 𝐷 𝐶  𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting
Sampling distribution if z sampled and e fixed evidence

Now, samples have weights

Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W



Poll 4

Given a fixed query, two identical samples from likelihood weighted sampling 
will have the same exact weights.

A. True
B. False
C. It depends
D. I don’t know



Poll 4

Given a fixed query, two identical samples from likelihood weighted sampling 
will have the same exact weights.

A. True
B. False
C. It depends
D. I don’t know

+𝑏 −𝑑Example:
𝑃(𝐴, 𝐶 ∣ +𝑏, −𝑑) 𝐴 𝐵 𝐶 𝐷



Poll 5
What does the following likelihood  weighted value approximate?

  weight(+𝑎,−𝑏,+𝑐) ⋅
𝑁 +𝑎,−𝑏,+𝑐

𝑁
 

A.  𝑃(+𝑎, −𝑏, +𝑐)
B.  𝑃 +𝑎, −𝑏 + 𝑐)
C. I’m not sure



Poll 5
What does the following likelihood  weighted value approximate?

  weight(+𝑎,−𝑏,+𝑐) ⋅
𝑁 +𝑎,−𝑏,+𝑐

𝑁
 

A.  𝑃(+𝑎, −𝑏, +𝑐)
B.  𝑃 +𝑎, −𝑏 + 𝑐)
C. I’m not sure 𝑤𝑒𝑖𝑔ℎ𝑡 𝑥1,𝑥2,𝑥3,𝑒1,𝑒2,𝑒3

= ෑ

𝑖

𝑃 𝑒𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑒𝑖

 
𝑁 𝑥1, 𝑥2, 𝑥3, 𝑒1, 𝑒2, 𝑒3

𝑁
≈ ෑ

𝑗

𝑃 𝑥𝑗 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑥𝑗

𝑤𝑒𝑖𝑔ℎ𝑡 𝑥1,𝑥2,𝑥3,𝑒1,𝑒2,𝑒3
⋅

𝑁 𝑥1, 𝑥2, 𝑥3, 𝑒1, 𝑒2, 𝑒3

𝑁
≈ 𝑃 𝑥1, 𝑥2, 𝑥3, 𝑒1, 𝑒2, 𝑒3



Likelihood Weighting
Likelihood weighting is good

▪ We have taken evidence into account as 
we generate the sample

▪ E.g. here, W's value will get picked based 
on the evidence values of S, R

▪ More of our samples will reflect the state 
of the world suggested by the evidence

 

Likelihood weighting doesn’t solve all 
our problems

▪ Evidence influences the choice of 
downstream variables, but not 
upstream ones (C isn’t more likely 
to get a value matching the 
evidence)

We would like to consider evidence 
when we sample every variable

 



Likelihood Weighting
Likelihood weighting doesn’t solve all 
our problems

▪ Evidence influences the choice of 
downstream variables, but not 
upstream ones (C isn’t more likely 
to get a value matching the 
evidence)

We would like to consider evidence 
when we sample every variable

→ Gibbs sampling

 



Gibbs Sampling



Gibbs Sampling

Procedure: keep track of a full instantiation x1, x2, …, xm.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep 
evidence fixed.

3. Keep repeating this for a long time.



Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | +r)

Step 1: Fix evidence
▪ R = +r

Steps 3: Repeat
▪ Choose a non-evidence variable X

▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Keep only the last sample from each iteration:

1.  

2.  

3.  

Gibbs Sampling Example: P( S | +r)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Efficient Resampling of One Variable
Sample from P(S | +c, +r, -w) 

Many things cancel out – only CPTs with S remain!

More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xm.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.

Property: in the limit of repeating this infinitely many times the resulting sample is 
coming from the correct distribution

Rationale: both upstream and downstream variables condition on evidence.
 

In contrast: likelihood weighting only conditions on upstream evidence, and hence 
weights obtained in likelihood weighting can sometimes be very small.  Sum of weights 
over all samples is indicative of how many “effective” samples were obtained, so want 
high weight.



Further Reading on Gibbs Sampling

Gibbs sampling produces sample from the query distribution P( Q | e ) in 
limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called Markov 
chain Monte Carlo (MCMC) methods 

▪Metropolis-Hastings is one of the more famous MCMC methods          
(in fact, Gibbs sampling is a special case of Metropolis-Hastings) 

You may read about Monte Carlo methods – they’re just sampling



Bayes Net Sampling Summary

Prior Sampling  P(Q, E)

Likelihood Weighting  P( Q , e)

Rejection Sampling  P( Q | e )

Gibbs Sampling  P( Q | e )
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