AI: Representation and Problem Solving Hidden Markov Models

Instructors: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Warm-up

For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$
P(X_4 \mid e_1, e_2, e_3, e_4) =
$$

Reasoning over Time or Space

Often, we want to reason about a sequence of observations

- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

Conditional Independence

Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Note that the chain is just a (growable) BN

■ We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Markov Chain Models

Value of X at a given time is called the state

$$
P(X_1)
$$

$$
(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow \rightarrow
$$

$$
P(X_t | X_{t-1})
$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Example: Markov Chain Weather

States: $X = \{rain, sun\}$

E Initial distribution: 1.0 sun

■ CPT $P(X_t | X_{t-1})$:

Two new ways of representing the same CPT

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step? $P(X_2 = sun) = ?$

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step? $P(X_2 = sun) = ?$

$$
P(X_2 = sun) = \sum_{x_1} P(X_1 = x_1, X_2 = sun)
$$

= $\sum_{x} P(X_2 = sun | X_1 = x_1) P(X_1 = x_1)$
= $P(X_2 = sun | X_1 = sun) P(X_1 = sun) +$
 $P(X_2 = sun | X_1 = rain) P(X_1 = rain)$
= 0.9 · 1.0 + 0.3 · 0.0 = 0.9

Poll 1

Initial distribution:
$$
P(X_2 = sun) = 0.9
$$

What is the probability distribution after the next step? $P(X_3 = sun) = ?$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

Poll 1

What is the probability distribution after the next step?

 $P(X_3 = sun) = ?$

(X₃ = 5un) = $\sum_{x_2} P(X_3 = 5un, X_2 = x_2)$

A) 0.81 A) 0.81 = $\sum_{x_2} P(X_3 = 5un | X_2 = x_2) P(X_2 = x_2)$ B) 0.84 C) 0.9 $=$ 0.9 0.9 + 0.3 0.1 D) 1.0 E) 1.2 $=$ 0.81 + 0.03 = 0.84

Markov Chain Inference

$$
(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow \rightarrow
$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

Markov Chain Inference

$$
(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow \rightarrow
$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$
P(X_5) = \sum_{x_4} P(x_4, X_5)
$$

= $\sum_{x_4} P(X_5 | x_4) P(x_4)$

Markov Chain Inference

$$
(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow \rightarrow
$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$
P(X_5) = \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5)
$$

= $\sum_{x_1, x_2, x_3, x_4} P(X_5 | x_4) P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$
= $\sum_{x_4} P(X_5 | x_4) \sum_{x_1, x_2, x_3} P(x_4 | x_3) P(x_3 | x_2) P(x_2 | x_1) P(x_1)$
= $\sum_{x_4} P(X_5 | x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4)$
= $\sum_{x_4} P(X_5 | x_4) P(x_4)$

Weather prediction

- States {rain, sun}
- Initial distribution $P(X_0)$

Two new ways of representing the same CPT

Weather prediction

Time 0: $P(X_0) = 0.5, 0.5$

What is the weather like at time 1?

 $P(X_1) = \sum_{x_0} P(X_0 = x_0, X_1)$ $= \sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0)$ $= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 >$

 $= <0.6, 0.4>$

Weather prediction, contd.

Time $1: P(X_1) = 0.6, 0.4$

What is the weather like at time 2?

 $P(X_2) = \sum_{x_1} P(X_1 = x_1, X_2)$ $= \sum_{x_1} P(X_2 | X_1 = x_1) P(X_1 = x_1)$ $= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 >$ $= <0.66, 0.34>$

Weather prediction, contd.

Time 2: $P(X_2) = 0.66, 0.34$

What is the weather like at time 3?

 $P(X_3) = \sum_{x_2} P(X_2 = x_2, X_3)$ $= \sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2)$ $= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 >$

 $= <0.696, 0.304>$

Forward algorithm (simple form)

Hidden Markov Models

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence *E* at each time step
- $\mathbb{P}(X_t)$ is a single discrete variable; E_t may be continuous and may consist of several variables

HMM as a Bayes Net Warm-up

For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$
P(X_4 | e_1, e_2, e_3, e_4) = \alpha P(X_1 | e_1, e_1)
$$

= $\alpha \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1, x_2, x_3, X_4, e_1, e_2, e_3, e_4)$
= $\alpha \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1, x_2, x_3, X_4, e_1, e_2, x_3, P(x_2, x_1, e_2, x_3, x_4, e_3, x_5, x_6)$

Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

 X_1 \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4)

Example: Weather HMM

An HMM is defined by:

- Initial distribution: $P(X_0)$
- \blacksquare Transition model: $P(X_t | X_{t-1})$
- **•** Sensor model: $P(E_t | X_t)$

Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- **•** $P(X_0)$ = uniform
- $P(X_t | X_{t-1})$ = usually move clockwise, but sometimes move randomly or stay in place
- **•** $P(C_{tij} | X_t)$ = same sensor model as before: red means close, green means far away.

 $1/9$ | $1/$

 $1/9$ | $1/$

 $1/9$ | $1/$

0

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

 $f_{1:t+1}$ = <code>FORWARD($f_{1:t}$, e_{t+1})</code>

HMM as Probability Model

■ Joint distribution for Markov model:

$$
P(X_0, ..., X_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1})
$$

■ Joint distribution for hidden Markov model:

$$
P(X_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t | X_{t-1}) P(E_t | X_t)
$$

- \blacksquare Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

$$
(x_0) \rightarrow (x_1) \rightarrow (x_2) \rightarrow (x_3) \rightarrow \rightarrow
$$

\n
$$
(E_1) \quad (E_2) \quad (E_3)
$$

*E*5 Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
	- Or even images
- States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

 $X^{}_{2}$ $e₁$ X_1 \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) (e_2) (e_3) (e_4) Smoothing: $P(X_k | e_{1:t})$

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time *t* can condition on those from *t-1*

 $f_{1:t+1}$ = <code>FORWARD($f_{1:t}$, e_{t+1})</code>

Example: Prediction step

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

Example: Update step

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation and all the After observation

Demo Ghostbusters – Circular Dynamics -- HMM

Query: What is the current state, given all of the current and past evidence?

- $P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$
	- $= \alpha P(X_t, e_t | e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$
P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})
$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$
P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})
$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}, e_{1:t-1}) P(e_t | X_t, x_{t-1}, e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$
P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})
$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}, e_{1:t-1}) P(e_t | X_t, x_{t-1}, e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$
P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})
$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$

$$
= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)
$$

Query: What is the current state, given all of the current and past evidence?

 X^2

Matching math with Bayes net

 $e₁$ X_1 \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) (e_2) (e_3) (e_4) $= \alpha P(X_t, e_t | e_{1:t-1})$ $= \alpha \sum P(x_{t-1}, X_t, e_t | e_{1:t-1})$ x_{t-1} $= \alpha \sum_{t=1}^{t} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$ x_{t-1} $= \alpha P(e_t | x_t)$ $\sum_{t=1}^{t} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1})$ x_{t-1} $P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

 X^2 e_1 X_1 \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) e_2) (e_3) $= \alpha P(X_t, e_t | e_{1:t-1})$ $= \alpha \sum P(x_{t-1}, X_t, e_t | e_{1:t-1})$ x_{t-1} $= \alpha \sum_{t=1}^{t} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$ x_{t-1} $= \alpha P(e_t | x_t)$ $\sum_{t=1}^{t} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1})$ x_{t-1} $P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$

*Recursion!*Recursion

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$
P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})
$$
\n
$$
= \alpha P(X_t, e_t | e_{1:t-1})
$$
\n
$$
= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})
$$
\n
$$
= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)
$$
\n
$$
= \alpha P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1} | e_{1:t-1})
$$

*Recursion!*Recursion

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

Demo: Pacman Ghostbusters

 $f_{1:t+1}$ = <code>FORWARD($f_{1:t}$, e_{t+1})</code>

Cost per time step: $O(|X|^2)$ where $|X|$ is the number of states Time and space costs are *constant*, independent of t

O(|*X*| 2) is infeasible for models with many state variables We get to invent really cool approximate filtering algorithms