Al: Representation and Problem Solving Hidden Markov Models

Instructors: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Warm-up

For the following Bayes net, write the query $P(X_4 | e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

$$P(X_4 \mid e_1, e_2, e_3, e_4) =$$

Reasoning over Time or Space

Often, we want to reason about a sequence of observations

- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

Conditional Independence

Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Note that the chain is just a (growable) BN

We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Markov Chain Models

Value of X at a given time is called the state

$$P(X_1) \xrightarrow{X_1 \to X_2 \to X_3 \to X_4} \cdots \xrightarrow{P(X_t \mid X_{t-1})}$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Example: Markov Chain Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

CPT P(X_t | X_{t-1}):

X _{t-1}	X _t	$P(X_t X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step? $P(X_2 = sun) = ?$

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step? $P(X_2 = sun) = ?$

$$P(X_{2} = sun) = \sum_{x_{1}} P(X_{1} = x_{1}, X_{2} = sun)$$

= $\sum_{x} P(X_{2} = sun | X_{1} = x_{1})P(X_{1} = x_{1})$
= $P(X_{2} = sun | X_{1} = sun)P(X_{1} = sun) + P(X_{2} = sun | X_{1} = rain)P(X_{1} = rain)$
= $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Poll 1

Initial distribution:
$$P(X_2 = sun) = 0.9$$

What is the probability distribution after the next step? $P(X_3 = sun) = ?$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

Poll 1

What is the probability distribution after the next step? $P(X_3 = sun) = ?$

A) 0.81
B) 0.84
C) 0.9
D) 1.0
E) 1.2

$$P(X_3 = sun) = \sum_{x_2} P(X_3 = sun, X_2 = x_2)$$

 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 = x_2) P(X_2 = x_2)$
 $P(X_3 = sun, X_2 = x_2) P(X_2 =$

Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

= $\sum_{x_4} P(X_5 \mid x_4) P(x_4)$

Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow$$

If you know the transition probabilities, $P(X_t | X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5)$$

$$= \sum_{x_1, x_2, x_3, x_4} P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_4} P(X_5 \mid x_4) P(x_4)$$

Weather prediction

- States {rain, sun}
- Initial distribution P(X₀)

P(X ₀)				
sun	rain			
0.5	0.5			

X _{t-1}	P(X _t X _{t-1})				
	sun rain				
sun	0.9	0.1			
rain	0.3	0.7			

Two new ways of representing the same CPT

Weather prediction

Time 0: *P*(*X*₀) =<0.5,0.5>

X _{t-1}	P(X _t X _{t-1})			
	sun rain			
sun	0.9	0.1		
rain	0.3	0.7		

What is the weather like at time 1?

 $P(X_1) = \sum_{x_0} P(X_0 = x_0, X_1)$ = $\sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0)$ = 0.5<0.9,0.1> + 0.5<0.3,0.7>

= <0.6,0.4>

Weather prediction, contd.

Time 1: *P*(*X*₁) =<0.6,0.4>

X _{t-1}	P(X _t X _{t-1})				
	sun rain				
sun	0.9	0.1			
rain	0.3 0.7				

What is the weather like at time 2?

 $P(X_2) = \sum_{x_1} P(X_1 = x_1, X_2)$ = $\sum_{x_1} P(X_2 | X_1 = x_1) P(X_1 = x_1)$ = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Weather prediction, contd.

Time 2: *P*(*X*₂) =<0.66,0.34>

X _{t-1}	P(X _t X _{t-1})				
	sun rain				
sun	0.9	0.1			
rain	0.3 0.7				

What is the weather like at time 3?

 $P(X_3) = \sum_{x_2} P(X_2 = x_2, X_3)$ = $\sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2)$ = 0.66<0.9,0.1> + 0.34<0.3,0.7>

= <0.696,0.304>

Forward algorithm (simple form)

Hidden Markov Models

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence E at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several variables

HMM as a Bayes Net Warm-up

 $i = \frac{1}{P(e_1, e_2, e_3, e_4)}$ For the following Bayes net, write the query $P(X_4 | e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.) \rightarrow $(X_2) \rightarrow (X_3) \rightarrow (X_4)$ (X_1)

$$P(X_{4} | e_{1}, e_{2}, e_{3}, e_{4}) = \alpha P(X_{4}, e_{1}, 4)$$

$$= \alpha \underset{x_{1}}{\leq} \underset{x_{2}}{\leq} 2 P(x_{1}, x_{7}, x_{3}, X_{4}, e_{1}, e_{2}, e_{3}, e_{4})$$

$$= \alpha \underset{x_{1}}{\leq} \underset{x_{2}}{\leq} 2 P(x_{1}, x_{7}, x_{3}, X_{4}, e_{1}, e_{2}, e_{3}, e_{4})$$

$$= \alpha \underset{x_{2}}{\leq} 2 P(x_{1}, x_{7}, x_{3}, X_{4}, e_{1}, e_{2}, e_{3}, e_{4})$$

Useful notation: $X_{a:b} = X_a, X_{a+1}, ..., X_b$ For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Example: Weather HMM

An HMM is defined by:

- Initial distribution: P(X₀)
- Transition model: $P(X_t | X_{t-1})$
- Sensor model: $P(E_t | X_t)$

Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(X_0) = uniform$
- $P(X_t \mid X_{t-1})$ = usually move clockwise, but sometimes move randomly or stay in place
- $P(C_{tii} \mid X_t)$ = same sensor model as before: red means close, green means far away.

		h	1/6	1/6	1/2	
			0	1/6	0	
1/9	1/9	how 000 how	0	0	0	
1/9	1/9	P	X ₂	X ₁ =	=(2,3	3)
1/9	1/9					
Р(Х о))		

1/9

1/9

1/9

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

 $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$

HMM as Probability Model

Joint distribution for Markov model:

$$P(X_0, \dots, X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

$$\begin{array}{c} X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow \cdots \rightarrow \\ \hline E_{1} & E_{2} & E_{3} \end{array}$$

Useful notation: $X_{a:b} = X_a, X_{a+1}, ..., X_b$ For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
 - Or even images
- States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

Smoothing: $P(X_k | e_{1:t}), k < t$ $(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4)$ $(e_1 \ e_2 \ e_3 \ e_4)$

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time *t* can condition on those from *t*-1

 $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$

Example: Prediction step

As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<
<0.01	<0.01	1.00	<0.01	<0.01	<0.01	<0.01	0
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<

T = 1

T = 2

Example: Update step

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

Demo Ghostbusters – Circular Dynamics -- HMM

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

 $P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$ = $\alpha P(X_t, e_t | e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}, e_{1:t-1}) P(e_{t} | X_{t}, x_{t-1}, e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t, e_{1:t-1})$$

= $\alpha P(X_t, e_t | e_{1:t-1})$
= $\alpha \sum_{x_{t-1}} P(x_{t-1}, X_t, e_t | e_{1:t-1})$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

e₃

 e_4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$e_{1} e_{2} e_{3} e_{4}$$

$$e_{4} e_{1} e_{2} e_{3} e_{3} e_{4}$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

Recursion.

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_{t} | x_{t}) \sum_{x_{t-1}} P(x_{t} | x_{t-1}) P(x_{t-1} | e_{1:t-1})$$

Recursion

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

Demo: Pacman Ghostbusters

 $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$

Cost per time step: $O(|X|^2)$ where |X| is the number of states Time and space costs are *constant*, independent of t

 $O(|X|^2)$ is infeasible for models with many state variables We get to invent really cool approximate filtering algorithms