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Warm-up

For the following Bayes net, write the query P(X4 | e1:4) in terms of the 
conditional probability tables associated with the Bayes net.

P(X4 | e1, e2, e3, e4) = 
X2

e1

X1 X3 X4

e2 e3 e4



Reasoning over Time or Space
Often, we want to reason about a sequence of observations

▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

Need to introduce time (or space) into our models



Conditional Independence

Basic conditional independence:

▪ Past and future independent given the present

▪ Each time step only depends on the previous

▪ This is called the (first order) Markov property

Note that the chain is just a (growable) BN

▪ We can always use generic BN reasoning on it if we 
truncate the chain at a fixed length



Markov Chain Models

Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the 
state evolves over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times

▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4

𝑃 𝑋1
𝑃 𝑋𝑡 ∣ 𝑋𝑡−1



States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ CPT P(Xt | Xt-1):

Example: Markov Chain Weather



Example: Markov Chain Weather
Initial distribution: 𝑃(𝑋1 = 𝑠𝑢𝑛)  =  1.0

What is the probability distribution after one step?

𝑃(𝑋2 = 𝑠𝑢𝑛)  = ?

rain sun

0.9

0.7

0.3

0.1



Example: Markov Chain Weather
Initial distribution: 𝑃(𝑋1 = 𝑠𝑢𝑛)  =  1.0

What is the probability distribution after one step?

𝑃(𝑋2 = 𝑠𝑢𝑛)  = ?

 𝑃 𝑋2 = 𝑠𝑢𝑛 = σ𝑥1
𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑠𝑢𝑛)

                          = σ𝑥 𝑃 𝑋2 = 𝑠𝑢𝑛 𝑋1 = 𝑥1 𝑃(𝑋1 = 𝑥1)

                          = 𝑃 𝑋2 = 𝑠𝑢𝑛 𝑋1 = 𝑠𝑢𝑛 𝑃 𝑋1 = 𝑠𝑢𝑛 +

                              𝑃 𝑋2 = 𝑠𝑢𝑛 𝑋1 = 𝑟𝑎𝑖𝑛 𝑃 𝑋1 = 𝑟𝑎𝑖𝑛

                          = 0.9 ⋅ 1.0 + 0.3 ⋅ 0.0 = 0.9

rain sun

0.9

0.7

0.3

0.1



Poll 1
Initial distribution: 𝑃(𝑋2 = 𝑠𝑢𝑛)  = 0.9

What is the probability distribution after the next step?

𝑃(𝑋3 = 𝑠𝑢𝑛)  = ?

A) 0.81

B) 0.84

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Poll 1
Initial distribution: 𝑃(𝑋2 = 𝑠𝑢𝑛)  = 0.9

What is the probability distribution after the next step?

𝑃(𝑋3 = 𝑠𝑢𝑛)  = ?

A) 0.81

B) 0.84

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣  𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

X2X1 X3 X4



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣  𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

 𝑃 𝑋5 = σ𝑥4
𝑃 𝑥4, 𝑋5

 = σ𝑥4
𝑃 𝑋5 𝑥4 𝑃 𝑥4

 

X2X1 X3 X4



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣  𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

 𝑃 𝑋5 = σ𝑥1,𝑥2,𝑥3,𝑥4
𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑋5

 = σ𝑥1,𝑥2,𝑥3,𝑥4
𝑃 𝑋5 𝑥4 𝑃 𝑥4 ∣ 𝑥3 𝑃 𝑥3 ∣ 𝑥2 𝑃 𝑥2 ∣ 𝑥1 𝑃 𝑥1

 = σ𝑥4
𝑃 𝑋5 𝑥4 σ𝑥1,𝑥2,𝑥3

𝑃 𝑥4 ∣ 𝑥3 𝑃 𝑥3 ∣ 𝑥2 𝑃 𝑥2 ∣ 𝑥1 𝑃 𝑥1

 = σ𝑥4
𝑃 𝑋5 𝑥4 σ𝑥1,𝑥2,𝑥3

𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4)

 = σ𝑥4
𝑃 𝑋5 𝑥4 𝑃 𝑥4

X2X1 X3 X4



States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

▪ Initial distribution P(X0) 

▪ Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5

Weather prediction



Weather prediction

Time 0: P(X0) =<0.5,0.5>

What is the weather like at time 1?
    P(X1) =

X1X0

x0
 P(X0=x0, X1)

              = x0
 P(X1| X0=x0) P(X0=x0) 

              = 0.5<0.9,0.1> + 0.5<0.3,0.7> 

              = <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



x1
 P(X1=x1, X2)

              = x1
 P(X2| X1=x1) P(X1=x1) 

              = 0.6<0.9,0.1> + 0.4<0.3,0.7> 

              = <0.66,0.34>
X0

Weather prediction, contd.

Time 1: P(X1) =<0.6,0.4>

What is the weather like at time 2?
    P(X2) =

X2X1

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



x2
 P(X2=x2, X3)

              = x2
 P(X3| X2=x2) P(X2=x2) 

              = 0.66<0.9,0.1> + 0.34<0.3,0.7>

              = <0.696,0.304>

Weather prediction, contd.

Time 2: P(X2) =<0.66,0.34>

What is the weather like at time 3?
    P(X3) =

X3X2X1

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Forward algorithm (simple form)

What is the state at time t?

P(Xt) = xt-1
 P(Xt-1=xt-1, Xt)

          = xt-1
 P(Xt| Xt-1=xt-1) P(Xt-1=xt-1) 

Iterate this update starting at t=0

Probability from 
previous iteration

Transition model



Hidden Markov Models



Hidden Markov Models
Usually the true state is not observed directly

Hidden Markov models (HMMs)

▪ Underlying Markov chain over states X

▪ You observe evidence E at each time step

▪ Xt is a single discrete variable; Et may be 
continuous and may consist of several variables

X5X1X0 X2 X3

E1 E2 E3 E5



HMM as a Bayes Net Warm-up

For the following Bayes net, write the query P(X4 | e1:4) in terms of the conditional 
probability tables associated with the Bayes net.

P(X4 | e1, e2, e3, e4) = 

X2

e1

X1 X3 X4

e2 e3 e4

Useful notation: Xa:b = Xa , Xa+1, …, Xb

For example: P(X1:2 | e1:3) = P(X1, X2, | e1 , e2, e3)



Example: Weather HMM

Umbrella t-1 Umbrella t Umbrella t+1

Weather t-1 Weather t Weather t+1

An HMM is defined by:
▪ Initial distribution:   P(X0)
▪ Transition model:    P(Xt | Xt-1)
▪ Sensor model:          P(Et | Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1



▪ State: location of moving ghost

▪ Observations: Color recorded by 
ghost sensor at clicked squares

▪ P(X0) = uniform

▪ P(Xt | Xt-1) = usually move clockwise, but 
sometimes move randomly or stay in place

▪ P(Ctij | Xt) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X0)

P( X2 | X1=(2,3) )

1/6

0 1/6

1/2

0

0 0 0

1/6

X5

X1X0 X2 X3

C1ij C2ij C3ij

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

Example: Ghostbusters HMM



Filtering Algorithm

X2

e1

X1

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X3

e2

X2X1

e3e1

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X4

e3

X3X1

e4e1

X2

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X4

e3

X3X1

e4e1

X2

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
 P(Xt+1| xt) P(xt | e1:t) 

f1:t+1 = FORWARD(f1:t , et+1)

PredictUpdateNormalize



HMM as Probability Model

▪ Joint distribution for Markov model:              

P(X0,…, XT) = P(X0) t=1:T P(Xt | Xt-1)

▪ Joint distribution for hidden Markov model:                                                                 

P(X0, X1,E1, …, XT,ET) = P(X0) t=1:T P(Xt | Xt-1) P(Et | Xt) 

▪ Future states are independent of the past given the present

▪ Current evidence is independent of everything else given the current state

▪ Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5
Useful notation: Xa:b = Xa , Xa+1, …, Xb

For example: P(X1:2 | e1:3) = P(X1, X2, | e1 , e2, e3)



Real HMM Examples
Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

Robot tracking:
▪ Observations are range readings (continuous)

▪ Or even images
▪ States are positions on a map (continuous)

Molecular biology:
▪ Observations are nucleotides ACGT
▪ States are coding/non-coding/start/stop/splice-site etc.

X2

e1

X1 X3 X4

e2 e3 e4



Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)

X5



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using 
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
 P(Xt+1| xt) P(xt | e1:t) 

f1:t+1 = FORWARD(f1:t , et+1)

PredictUpdateNormalize



Example: Prediction step

As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Example: Update step

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Demo Ghostbusters – Circular Dynamics -- HMM



Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1
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Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  𝑃 𝑋𝑡|𝑥𝑡−1, 𝑒1:𝑡−1  𝑃 𝑒𝑡|𝑋𝑡, 𝑥𝑡−1, 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  𝑃 𝑋𝑡|𝑥𝑡−1, 𝑒1:𝑡−1  𝑃 𝑒𝑡|𝑋𝑡, 𝑥𝑡−1, 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  𝑃 𝑋𝑡|𝑥𝑡−1  𝑃 𝑒𝑡|𝑋𝑡

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  𝑃 𝑋𝑡|𝑥𝑡−1  𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1  𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  𝑃 𝑋𝑡|𝑥𝑡−1  𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1  𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  𝑃 𝑋𝑡|𝑥𝑡−1  𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1  𝑃 𝑥𝑡−1| 𝑒1:𝑡−1  

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1  
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Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt|e1:t-1)

Smoothing: P(Xt|e1:N), t<N Explanation: P(X1:N|e1:N)



Demo: Pacman Ghostbusters

[Demos: ghostbusters (L14D1,3)]



Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
 P(Xt+1| xt) P(xt | e1:t) 

f1:t+1 = FORWARD(f1:t , et+1)

Cost per time step: O(|X|2) where |X| is the number of states

Time and space costs are constant, independent of t

O(|X|2) is infeasible for models with many state variables

We get to invent really cool approximate filtering algorithms

PredictUpdateNormalize
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