Al: Representation and Problem Solving
Hidden Markov Models

Instructors: Pat Virtue

Slide credits: CMU Al and http://ai.berkeley.edu



Warm-up

For the following Bayes net, write the query P(X, | e,.,) in terms of the
conditional probability tables associated with the Bayes net.
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P(X, | e, e, e; €,) =
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Reasoning over Time or Space

Often, we want to reason about a sequence of observations
= Speech recognition

= Robot localization

= User attention

=" Medical monitoring

Need to introduce time (or space) into our models



Conditional Independence
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Basic conditional independence:

" Past and future independent given the present
" Each time step only depends on the previous

" This is called the (first order) Markov property

Note that the chain is just a (growable) BN

= \We can always use generic BN reasoning on it if we
truncate the chain at a fixed length



Markov Chain Models

Value of X at a given time is called the state
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P(X1)
P(X; | Xt—1)

" Parameters: called transition probabilities or dynamics, specify how the
state evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times

= Same as MDP transition model, but no choice of action



Example: Markov Chain Weather

States: X = {rain, sun}

= |nitial distribution: 1.0 sun

= CPT P(X, | X,.,):

Xew | X | P(XcIX4)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

Two new ways of representing the same CPT

0.9
0.3

sun v sun

0.1



Example: Markov Chain Weather
Initial distribution: P(X; = sun) = 1.0

What is the probability distribution after one step?
P(X, =sun) =7

0.7

0.3

0.1

0.9
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Example: Markov Chain Weather 0.3 ’

Initial distribution: P(X; = sun) = 1.0 .

0.7 0.1

What is the probability distribution after one step?
P(X, =sun) =7

P(X; = sun) = )., P(X; = x4, X; = sun)
=2x P(X; = sun | X; = x )P(X; = x1)
= P(X, =sun| X; = sun)P(X,; = sun) +
P(X, =sun| X{ = rain)P(X, = rain)
=09-1.04+0.3-0.0=0.9



0.9

Poll 1 0.3 ’

Initial distribution: P(X, = sun) = 0.9 .

0.7 0.1

What is the probability distribution after the next step?
P(X; =sun) =7

A) 0.81
B) 0.84
C) 0.9
D) 1.0
E) 1.2



0.9

Poll 1
Initial distribution: P(X, = sun) = 0.9
0.7 0.1
What is the probability distribution after the next step? '
P(X; =sun) =7
?(X :5M“\) = Z P(st“{\) XZ:XZ\
A) 0.81 ? X,
B) 0.84 _ _ _ =
) - Z PCX's"SW‘(\ \Xz"' A PCXZ XZ\
C) 0.9 X,
D) 1.0 = 0409 + 030\

E) 1.2
- O3 + 0.03 = 0,94

1



Markov Chain Inference

e O e e

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).




Markov Chain Inference

e O e e

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = Zx4P(x4,X5)
= Zx4P(X5 | x4 )P (x4)



Markov Chain Inference

e O e e

If you know the transition probabilities, P(X; | X;_1), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = le,xz,x3,x4 P(x1, x5, x3, X4, X5)
= le,xz,x3,x4P(X5 | x4 )P (x4 | x3)P(x3 | x2)P(x2 | X1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3p(x4 | x3)P(x3 | x2)P(x2 | x1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3P(Xsz,xs,sz)
= 2x4P(X5 x4 )P (x4)




Weather prediction

States {rain, sun}

= Initial distribution P(X)

P(X,)

sun rain
0.5 0.5

Two new ways of representing the same CPT

= Transition model P(X, | X, )

0.9
0.3

X,., P(X,|X..,) sun v sun
sun rain A

sun 0.9 0.1 0.7

rain 0.3 0.7 0.1




Weather prediction

Time 0: P(X,) =<0.5,0.5> X1

P(X;|X,.,)
sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 17
P(X1) = 2., P(Xyg=xy X,)
= 2., PX1| Xo=X0) P(X5=Xo)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

=<0.6,0.4>




Weather prediction, contd.

Time 1: P(X,) =<0.6,0.4> Xy1 P(X|X.1)

sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 27
P(Xy) = 2., P(X;=x5, X,)

= 2, POX, | Xi=x7) P(X;=x,)
= 0.6<0.9,0.1> + 0.4<0.3,0.7>
= <0.66,0.34>




Weather prediction, contd.

Time 2: P(X,) =<0.66,0.34> Xy1 P(X|X.1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

What is the weather like at time 37
P(X3) = 2., P(X,=x, X;)

=2, PIX3 | X3=x;) P(Xy=x5)
= 0.66<0.9,0.1> + 0.34<0.3,0.7>
=<0.696,0.304>

_.®




Forward algorithm (simple form)

Probability from

Transition model } . . . ]
previous iteration

What is the state at time t?
P(X;) = th_l P(X. 1=x,.1, X)
= th_l P(X| Xp1=%p1) P(Xp1=Xp0)
Iterate this update starting at t=0



Hidden Markov Models




Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

= X, is a single discrete variable; £, may be
continuous and may consist of several variables

OaOnOn Ol




HMM as a Bayes Net Warm-up

A=

7

Ple. c-:Z € < Q}

For the following Bayes net, write the query P(X, | e,.;) in terms of the conditional
probability tables associated with the Bayes net.

_,0(222 F(x X, K

X Xq_,)(

=X Z 2 P

73?) ¢ P@(j

Pl )P )P

()B )xb =

Useful notation: X ab = Xg, Xqt

For example: P(X;., | e4.5) =




Example: Weather HMM

An HMM is defined by:

= |nitial distribution: P(X,)

®* Transition model: P(X, | X, ,) Wil PWiw.y
= Sensor model: P(E, | X,) sun | rain
sun 0.9 0.1
rain 0.3 0.7
Weather ,_; Weather
W, P(U,|W,)

true false

sun 0.2 0.8

rain 0.9 0.1

o (@1

Weather 4




Example: Ghostbusters HMM

State: location of moving ghost

Observations: Color recorded by )
ghost sensor at clicked squares 1/46_-1/16 ¥
P(X,) = uniform 0 |1/6] O
P(X, | X, ,) = usually move clockwise, but ololo
sometimes move randomly or stay in place 1/91/9|1/9
P(C,; | X.) = same sensor model as before: 1/9|1/9|1/9 P(X, | X;=(2,3))
red means close, green means far away.

1/911/9(1/9

P(X,) |

© © &

[Demo: Ghostbusters — Circular Dynamics — HMM (L14D2)]



Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

) 4

¥




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

ofer




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network
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Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network




Filtering Algorithm

P(Xiiil€1.001) = P(et+1 |Xt+1) th P( t+1| Xt) P(x, | eq.)

l Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)




HMM as Probability Model

= Joint distribution for Markov model:

P(Xgyeeey X7) = PXg) I Licq.7 PO, | X q)
= Joint distribution for hidden Markov model:
P(X()) X]_IE]_I *e) XT;ET) = P(XO) Ht:]_;T P(Xt | Xt_]_) P(Et | Xt)
= Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state
= Are evidence variables independent of each other?

-—==»

é é é Useful notation: X, = X, X1, - X

For example: P(X;., | e4.5) = P(X{, X5, | €4, €5, €3)




Real HMM Examples

Speech recognition HMMs:
* Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

—> ﬁ?—V
Robot tracking:
= Observations are range readings (continuous)

= Or even images
= States are positions on a map (continuous)

Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

Molecular biology:
= Observations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



Other HMM Queries
Filtering: P(X,|e,.,)
D@
() () (&) (o

Smoothing: P(X,|e,.,), k<t
OO
& ® ® &

Prediction: P(X,,.|e;.,)

QX OHONONO)
© @

Explanation: P(X,.,|e;.,)

OO 66




Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

t=1 t=2 t=3




Filtering Algorithm

P(Xiiil€1.001) = P(et+1 |Xt+1) th P( t+1| Xt) P(x, | eq.)

l Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)




Example: Prediction step

. . (11 77
As time passes, uncertainty “accumulates (Transition model: ghosts usually go clockwise)

EEEEEE

ITDITT  ODEDDIX

ITDDIT  ODoIDT

IITITT =~ DDITTXT
T=1 T=2




Example: Update step

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation




Demo Ghostbusters — Circular Dynamics -- HMM



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| e, €1.6-1)
= a P(X;, et er.6-1)

D>
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Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X;: | e1.r) = P(X¢| ers€q:6-1) @_’@ﬂ'@-

= a P(X;, er| e1.0—1) l

A 4 \ 4
Pl [OJOXOXO

Xt—1




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X;: | e1.r) = P(X¢| ers€q:6-1) @_’@ﬂ'@-

= a P(X;, er| e1.0—1) l

A 4 \ 4
Pl [OJOXOXO

Xt—1

a z P(x¢—1| €1.t-1) P(X¢|x¢—1, €1.4—1) P(ee| X, Xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er, €1.6-1) @*@ '@ >@

= a P(X;, et er.6-1)

azp(xt_1,xt;et|el:t—1)

Xt—1

a z P(x¢—q| €1.4—1) P(X¢|x¢—1, €1.4—1) P(er| X, xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)
= a P(X;, er| e1.0—1)

a z P(x¢—q,Xe, €] €1.6-1)

Xt—1

Xt—1

orol

]

@ ) POl exe-1) P(Xclxey) PlerlX)




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)

= a P(X;, e e1.4-1)
a z P(x¢—q,Xe, €] €1.6-1)

Xt—1

orol

]

@ ) POl exe-1) P(Xclxey) PlerlX)

Xt—1

a P(e¢|x;) Z P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1




Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| e, €1.6-1) @—»@——»@—

= a P(X;, et er.6-1)

l
a Z P(xi—1, Xt, et €1:6-1)

Xt—1

a z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]|Xt)

Xt—1

a P(e¢|x;) z P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1

gg



Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1) Xy »@»
= a P(X;, er| e1.0—1)

—»Xy

A4

!
04 z P(xi—1, X, €| €1.0-1)

Xt—1

@ ) POl exe-1) P(Xclxey) PlerlX)

Xt—1

a P(e¢|x;) Z P(xelxe—1) P(x¢—q| €1.6-1)

Xt—1



Other HMM Queries
Filtering: P(X,|ey.)
D@D
() () (&) (o

Smoothing: P(X;|e,.y), t<N
001010
& @ ©® @&

Prediction: P(X.|e,., )

D@D
@ @ ©

Explanation: P(X,.\|eq.n)

OO 66




Demo: Pacman Ghostbusters

[Demos: ghostbusters (L14D1,3)]



Filtering Algorithm

P(Xp1l€1.000) = P €1 |Xt+1 th P t+1| Xt) Pixe | 1)

I Normalize I hdate ﬁedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)
Cost per time step: O(|X|?) where | X| is the number of states

Time and space costs are constant, independent of t

O(|X|?) is infeasible for models with many state variables
We get to invent really cool approximate filtering algorithms
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