AI: Representation and Problem Solving

Hidden Markov Models

Instructors: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Warm-up

$$\alpha = \frac{1}{P(e, e_1 e_3 e_4)}$$

For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional probability tables associated with the Bayes net.

Reasoning over Time or Space

Often, we want to reason about a sequence of observations

- Speech recognition
- Robot localization
- User attention
- Medical monitoring

Need to introduce time (or space) into our models

Conditional Independence Z $Y(X_3/Z)$

Basic conditional independence:

- Past and future independent given the present
- Each time step only depends on the previous
- This is called the (first order) Markov property

Note that the chain is just a (growable) BN

 We can always use generic BN reasoning on it if we truncate the chain at a fixed length

Markov Chain Models

Value of X at a given time is called the state

$$P(X_1) \xrightarrow{X_1} X_2 \xrightarrow{X_3} X_4 \xrightarrow{X_4} \xrightarrow{P(X_t \mid X_{t-1})}$$

- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities)
- Stationarity assumption: transition probabilities the same at all times
- Same as MDP transition model, but no choice of action

Example: Markov Chain Weather

States: X = {rain, sun}

Initial distribution: 1.0 sun

CPT P(X_t | X_{t-1}):

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

5 .97.1

Two new ways of representing the same CPT

Example: Markov Chain Weather

Initial distribution:
$$P(X_1 = sun) = 1.0$$

 $P(X_1 = rain) = 0.0$

What is the probability distribution after one step?

$$P(X_2 = sun) = ?$$

Example: Markov Chain Weather

Initial distribution: $P(X_1 = sun) = 1.0$

What is the probability distribution after one step?

$$P(X_2 = sun) = ?$$

$$P(X_2 = sun) = \sum_{x_1} P(X_1 = x_1, X_2 = sun)$$

$$= \sum_{x_2} P(X_2 = sun \mid X_1 = x_1) P(X_1 = x_1)$$

$$= P(X_2 = sun \mid X_1 = sun) P(X_1 = sun) +$$

$$P(X_2 = sun \mid X_1 = rain) P(X_1 = rain)$$

$$= 0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$$

Poll 1

Initial distribution: $P(X_2 = sun) = 0.9$

What is the probability distribution after the next step?

$$P(X_3 = sun) = ?$$

- A) 0.81
- B) 0.84
- C) 0.9
- D) 1.0
- E) 1.2

Poll 1

Initial distribution:
$$P(X_2 = sun) = 0.9$$

What is the probability distribution after the next step?

$$P(X_3 = sun) = ?$$

$$P(X_3 = sun) = \sum_{x_2} P(X_3 = sun, X_2 = x_2)$$

$$= \sum_{x_3} P(X_3 = sun | X_2 = x_3) P(X_2 = x_2)$$

$$= 0.9 \cdot 0.9 + 0.3 \cdot 0.1$$

$$= 0.81 + 0.03 = 0.84$$

Markov Chain Inference

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

Markov Chain Inference

$$X_1$$
 X_2 X_3 X_4 X_4

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_4} P(x_4, X_5)$$

= $\sum_{x_4} P(X_5 \mid x_4) P(x_4)$

Markov Chain Inference

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \cdots \rightarrow X_4 \rightarrow X_4$$

If you know the transition probabilities, $P(X_t \mid X_{t-1})$, and you know $P(X_4)$, write an equation to compute $P(X_5)$.

$$P(X_5) = \sum_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4, X_5)$$

$$= \sum_{x_1, x_2, x_3, x_4} P(X_5 \mid x_4) P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_4 \mid x_3) P(x_3 \mid x_2) P(x_2 \mid x_1) P(x_1)$$

$$= \sum_{x_4} P(X_5 \mid x_4) \sum_{x_1, x_2, x_3} P(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_4} P(X_5 \mid x_4) P(x_4)$$

Weather prediction

States {rain, sun}

• Initial distribution $P(X_0)$

P(X _o)		
sun	rain	
0.5	0.5	

• Transition model $P(X_t \mid X_{t-1})$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two new ways of representing the same CPT

Weather prediction

Time 0:
$$P(X_0) = <0.5, 0.5>$$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_1) = \sum_{x_0} P(X_0 = x_{0}, X_1)$$

$$= \sum_{x_0} P(X_1 | X_0 = x_0) P(X_0 = x_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 >$$

$$= < 0.6, 0.4 >$$

Weather prediction, contd.

Time 1:
$$P(X_1) = <0.6, 0.4>$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$$P(X_2) = \sum_{x_1} P(X_1 = x_1, X_2)$$

$$= \sum_{x_1} P(X_2 \mid X_1 = x_1) P(X_1 = x_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 >$$

$$= < 0.66, 0.34 >$$

Weather prediction, contd.

Time 2:
$$P(X_2) = <0.66, 0.34>$$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3?

$$P(X_3) = \sum_{x_2} P(X_2 = x_2, X_3)$$

$$= \sum_{x_2} P(X_3 | X_2 = x_2) P(X_2 = x_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 >$$

$$= < 0.696, 0.304 >$$

Forward algorithm (simple form)

What is the state at time *t*?

$$P(X_t) = \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}, X_t)$$

$$= \sum_{X_{t-1}} P(X_t | X_{t-1} = X_{t-1}) P(X_{t-1} = X_{t-1})$$

Iterate this update starting at *t*=0

Transition model

Probability from previous iteration

Hidden Markov Models

Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)

- Underlying Markov chain over states X
- You observe evidence *E* at each time step
- X_t is a single discrete variable; E_t may be continuous and may consist of several variables

HMM as a Bayes Net Warm-up

 $\alpha = \frac{1}{P(e, e_1 e_3 e_4)}$

For the following Bayes net, write the query $P(X_4 \mid e_{1:4})$ in terms of the conditional

probability tables associated with the Bayes net.

$$P(X_{4} | e_{1}, e_{2}, e_{3}, e_{4}) = \alpha P(X_{4}, e_{1}; 4)$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{2}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} \sum_{x_{2}} P(x_{1}, x_{3}, x_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4})$$

$$= \alpha \sum_{x_{1}} P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4}) P(x_{2}, e_{3}, e_{4}) P(x_{3}, e_{4}) P(x_{3}, e_{4}) P(x_{3}, e_{4}) P(x_{4}, e_{4})$$

Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b

For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Example: Weather HMM

An HMM is defined by:

■ Initial distribution: $P(X_0)$

■ Transition model: $P(X_t \mid X_{t-1})$

■ Sensor model: $P(E_t \mid X_t)$

W_{t-1}	$P(W_{t} W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Example: Ghostbusters HMM

- State: location of moving ghost
- Observations: Color recorded by ghost sensor at clicked squares
- $P(X_0) = uniform$
- $P(X_t \mid X_{t-1})$ = usually move clockwise, but sometimes move randomly or stay in place
- $P(C_{tij} \mid X_t)$ = same sensor model as before: red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_0)$

Query: What is the current state, given all of the current and past evidence?

Query: What is the current state, given all of the current and past evidence?

P(X+1 | e1:t-1)

Query: What is the current state, given all of the current and past evidence? (x,y) = (x,y) + (y,y) = (x,y) + (y,y) + (y,y) = (x,y) + (y,y) + (y,y)

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) P(X_t|e_{1:t})$$

HMM as Probability Model

$$P(X_0,...,X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$$

Joint distribution for hidden Markov model:

$$P(X_0, X_1, E_1, ..., X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation: $X_{a:b} = X_a$, X_{a+1} , ..., X_b

For example: $P(X_{1:2} | e_{1:3}) = P(X_1, X_2, | e_1, e_2, e_3)$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Robot tracking:

- Observations are range readings (continuous)
- → Or even images
 - States are positions on a map (continuous)

Molecular biology:

- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Other HMM Queries /

Filtering: $P(X_t | e_{1:t})$

Smoothing: $P(X_k | e_{1:t})$, k < t

Viterbi alg.

Dynamic Prog.

Prediction: $P(X_{t+k}|e_{1:t})$

Explanation: $P(X_{1:t} | e_{1:t})$

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(X_{t+1} | X_t) P(x_t | e_{1:t})$$

Normalize

Update

Predict

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

Example: Prediction step

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

Example: Update step

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

Demo Ghostbusters – Circular Dynamics -- HMM

Query: What is the current state, given all of the current and past evidence?

$$P(X_t | e_{1:t}) = P(X_t | e_t | e_{1:t-1})$$

$$= \alpha P(X_t, e_t | e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

 x_{t-1}

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{X_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum P(x_{t-1}|e_{1:t-1}) P(X_t|x_{t-1},e_{1:t-1}) P(e_t|X_t,x_{t-1},e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

 x_{t-1}

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{X_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{t=0}^{\infty} P(x_{t-1}|e_{1:t-1}) P(X_t|x_{t-1},e_{1:t-1}) P(e_t|X_t,x_{t-1},e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{t=0}^{\infty} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{t=0}^{\infty} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_t | x_{t-1}) P(e_t | X_t)$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Query: What is the current state, given all of the current and past evidence?

$$P(X_{t} | e_{1:t}) = P(X_{t} | e_{t}, e_{1:t-1})$$

$$= \alpha P(X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1}, X_{t}, e_{t} | e_{1:t-1})$$

$$= \alpha \sum_{x_{t-1}} P(x_{t-1} | e_{1:t-1}) P(X_{t} | x_{t-1}) P(e_{t} | X_{t})$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1})$$

Other HMM Queries

Filtering: $P(X_t | e_{1:t})$

Prediction: $P(X_t | e_{1:t-1})$

Smoothing: $P(X_t | e_{1:N})$, t<N

Explanation: $P(X_{1:N} | e_{1:N})$

Demo: Pacman Ghostbusters

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{X_t} P(X_{t+1} | X_t) P(x_t | e_{1:t})$$

Normalize Update Predict

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

Cost per time step: $O(|X|^2)$ where |X| is the number of states Time and space costs are **constant**, independent of t

 $O(|X|^2)$ is infeasible for models with many state variables We get to invent really cool approximate filtering algorithms