Al: Representation and Problem Solving

Particle Filtering

Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

When sampling with likelihood weighting, what distribution do we have when we multiply fraction of counts times the weight?

Particle Filtering

Particle Filtering

We need a new algorithm!

When |X| is more than 10⁶ or so (e.g., 3 ghosts in a 10x20 world), exact inference becomes infeasible

Likelihood weighting fails completely – number of samples needed grows *exponentially* with *T*

We need a new idea!

The problem: sample state trajectories go off into low-probability regions, ignoring the evidence; too few "reasonable" samples

Solution: kill the bad ones, make more of the good ones

This way the population of samples stays in the high-probability region

This is called resampling or survival of the fittest

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.]

[Video: global-sonar-uw-annotated.avi]

Particle Filtering

- Represent belief state by a set of samples
 - Samples are called *particles*
 - Time per step is linear in the number of samples
 - But: number needed may be large
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
- Generally, N << |X|</p>
- Storing map from X to counts would defeat the point

P(x) approximated by number of particles with value x

Particles
(3,3)
(2,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)

Particle Filtering: Propagate forward

 A particle in state x_t is moved by sampling its next position directly from the transition model:

• $x_{t+1} \sim P(X_{t+1} | x_t)$

- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:

(3,3) (2,3)

(3,3) (3,2)

(3,3) (3,2)

(1,2) (3,3)

(3,3) (2,3)

Particles:

(3,2) (2,3)

(3,2)

(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,3)
(2,2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, weight samples based on the evidence
 - $W = P(e_t | x_t)$
- Normalize the weights: particles that fit the data better get higher weights, others get lower weights

Particle Filtering: Resample

Rather than tracking weighted samples, we *resample*

We have an updated belief distribution based on the weighted particles

We sample N new particles from the weighted belief distributions

Now the update is complete for this time step, continue with the next one

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 14

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Weighting and Resampling

How to compute a belief distribution given weighted particles

Weight

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9 (3,1) w=.4

(5,1) W-.4

- (3,3) w=.4 (3,2) w=.9
- (1,3) w=.1

(2,3) w=.2

(2,3) w-.2

(3,3) w=.4

(2,2) w=.4

Summary: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Consistency: see proof in AIMA Ch. 14

[Demos: ghostbusters particle filtering (L15D3,4,5)]

If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

- A. Propagate forward
- B. Weight
- C. Resample
- D. None of the above

Poll 1

If we only have one particle which of these steps are unnecessary?

Select all that are unnecessary.

- A. Propagate forward
- B. Weight Unless the weight is zero, in which case, you'll
- C. Resample want to resample from the beginning \mathfrak{S}
- D. None of the above

Particle Filter Localization (Laser)

[Dieter Fox, et al.]

[Video: global-floor.gif]

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

[Sebastian Thrun, et al.]

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2

[Dirk Haehnel, et al.]

[Demo: PARTICLES-SLAM-fastslam.avi]

SLAM

https://www.irobot.com/