
function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do 

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier



function GRAPH_SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do 

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier



function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a priority queue using node path_cost as the priority

add initial state of problem to frontier with path_cost = 0

loop do 

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier

else if the child is already in the frontier with higher path_cost then

replace that frontier node with child


