Warm-up: DFS Graph Search

Why is the answer S->B->G, not S->A->B->G?

After all, we were doing DFS and breaking
ties alphabetically.

Plan

Last time
" Tree search vs graph search
Today
= Uniform cost search
= Heuristics
" Greedy search
= A*search
= Optimality
= [More on heuristics]

Uniform Cost Search

Back to Lecture 2 slides

Al: Representation and Problem Solving

Informed Search

Instructor: Pat Virtue

Slide credits: CMU Al, http://ai.berkeley.edu

Donuts ASAP!

Soergeld
4.7
Market - & [
Closed - Opf/

& 1heyhs
“ more”

\\
N

_Canonsbur

/
g

POLISH HILL

ATS

N

Carnegie Mu&mds

eumyof Art_§

% (3
oA

N

BLOOMFIELD

ond
o
ooV

_SHADYSIDE

2N

Creenfig|g Ave

GREENFIELD

A O
el ‘{\\\\'\\“‘\

fum)\ Blueggers:BageBagels

SQUIRREL
HIELNORTH

Trader Joe's 9

& P
T)
— /)
Q 7)
= 8L
==
Q.
v £+ Ave
- Fifth
Th
Mu

The Homewood
Cemetery

SQUIRREL
HILL SOUTH

Monitor St

Demo Contours UCS Empty

Demo Contours UCS Pacman Small Maze

Uninformed vs Informed Search

Today

Informed Search
= Heuristics

" Greedy Search

= A* Search

Informed Search

Search Heuristics

A heuristic is:

= A function that estimates how close a state is to a goal

" Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance for
pathing

Example: Euclidean distance to Bucharest

[1 Oradea

Zerind 151

75
Ara c i
Sibiu 99 Fagaras
118
80
. . Rimnicu Vilcea
Timisoara ™
111] Lugoj
70
[1 Mehadia
75 138
Drobeta [| 120
[|
Craiova

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

234
380
100
193
253
329

30
199

Neamt Buc!larest
O Craiova
87 Drobeta
= T Eforie
Tasi Fagaras
Giurgiu
92 Hirsova
Iasi
1 Vaslui @0.1
211 142
98 .
85 Hirsova
101 Q) Urziceni
A 86
Bucharest
90

o Giurgiu Eforie

h(state) = value

Effect of heuristics

Guide search towards the goal instead of all over the place

StarGoaI Stz@ Goal

Informed Uninformed

Greedy Search

Donuts ASAP!

Soergeld
4.7
Market - & [
Closed - Opp—~

& 1heyhs
“ more”

=VA

g}et/r\el bark

4
/r/

\
)

SOUTHEOAKLAND

ATS

N

Greenfig|y Ave

& BLOOMFIELD
W
&
Q I
¥ Trader Joe's 9
POLISH HILL @
geo z 2
& K7
> L
© S 2
% SHADYSIDE 5
o
5 Z FiftnAve
@
&) O
.0 5 — .
Q
R P 3 % Bruegger's Bagels
o oY :
3 Th
NORTH OAKLAND
Fifth Ave My
SQUIRREL
: i HILL NORTH
Carnegie Museum of Art @ Carnegie Mellon
University
ll The Homewood
Phipps Cemetery
N Conservatory @
and Botanical *~
Gardens
AR SQUIRREL
2Schenley Park HILL SOUTH
\,

MOnitOrst
GREENFIELD

A* Search

A* Search

A* Search

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Example: Teg Grenager

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal?

What went wrong?
Estimated good goal cost > Actual future cost!
We need estimates to be less than actual costs!

The Price is Wrong...

Closest bid without going over...

https://www.youtube.com/watch?v=9B0ZKRurC5Y

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics

Admissible Heuristics

A heuristic his admissible (optimistic) if:
0< h(n) £h*(n)

where h*(n) is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search |

Assume:

A is an optimal goal node
B is a suboptimal goal node
h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B

Optimality of A* Tree Search: Blocking

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1.

2.
3.

All ancestors of A are explored before B
A is explored before B
A* search is optimal

Optimality of A* Tree Search: Blocking | - |
N

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B
1. fln)<f(A) €< TODO
2. f(A) <f(B) €< TODO
3. f(n) £ f(A) < f(B) then n is explored before B
All ancestors of A are explored before B

A is explored before B
A* search is optimal

. . _ x) = g(x) + h(x)
Optimality of A* Tree Search: Blocking i&% < hg((x))

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. fln) < f(A)

f(n) = g(n) + h(n) Definition of f-cost A

f(n) <g(n)+ h*(n) Admissibility of h
f(n) < g(A) n on optimal path to A
Kf(n) < f(A) h =0 at a goal)

. . _ x) = g(x) + h(x)
Optimality of A* Tree Search: Blocking i&% < hg((x))

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. fln) < f(A)

2. JIA)<1(B) HA) =g(A)+h(A) Def. of f(x) N
=g(A) h =0 at a goal

f(B) =g(B) Similarly for B

g(A) < g(B) Suboptimality of B

\f(4) < f(B) Y

. . _ x) = g(x) + h(x)
Optimality of A* Tree Search: Blocking i&% < hg((x))

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)
Claim: n will be explored before B

1. f(n)is less than or equal to f(A)

2. f(A)is less than f(B)

3. f(n) £ f(A) < f(B) then n is explored before B

All ancestors of A are explored before B

A is explored before B
A* search is optimal

UCS vs A* Contours

Uniform-Cost

b

A*

UCS vs A* Contours
Uniform-cost expands equally in all
“directions” @
Sta Goal

A* expands mainly toward the goal,

but does hedge its bets to ensure
optlmallty Start Goal

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost

A* Search Algorithms

A* Tree Search

= Same tree search algorithm as before but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

A* Graph Search

= Same UCS graph search algorithm but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using g(n) as the priority
add initial state of problem to frontier with priority g(S) =0

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher g(n)
replace that frontier node with child

A-STAR-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority
add initial state of problem to frontier with priority f(S) = 0 + h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher f(n)
replace that frontier node with child

Optimality of A* Graph Search

A* Tree Search
State space graph

h=4

h

0

Search tree Frontier
SAO+7])
e
S-E{3+71)
A(1+4) C(3+1) S-C-G (6+0)
| ' S-A-E2+1)
C(2+1) G (6+0) SA-E=G(5¥0)
!
G (5+0)

Result: S-A-C-G cost 5
Correct!

A* Graph Search

What paths does A* graph search consider during its search?

h=4 Frontier Explored

h

0

Poll 1: A* Graph Search

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

h=4 A) .8, SA, S-C, S-C-G

h=1 B) .S, S-A, S-C, S-A-C, S-C-G
C) S, S-A, S-A-C, S-A-C-G

D) .S, S-A,S-C, S-A-C, S-A-C-G

h

0

Poll 1: A* Graph Search

What paths does A* graph search consider during its search?
(What does your work for the frontier look like?)

h=4 A) S S-A, S-C, S-C-G

h

0

A* Graph Search Gone Wrong? 5h

State space graph S_A_ C_l - '§~ (- @
h=4

- S (0+2)
- /\
A(1+4) C(3+1)

!
G (6+0)

Simple check against explored set blocks C

S-A-C never gets considered

(@)

Admissibility of Heuristics
Main idea: Estimated heuristic values < actual costs
= Admissibility:
heuristic value < actual cost to goal
h(A) < actual cost from A to G

Consistency of Heuristics
Main idea: Estimated heuristic costs < actual costs
= Admissibility:
heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency:
“heuristic step cost” < actual cost for each step
h(A) — h(C) < cost(A to C)
s triangle inequality
h(A) < cost(A to C) + h(C)

Consequences of consistency:

" The f value along a path never decreases
= A* graph search is optimal

Optimality of A* Graph Search

Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

" Fact 2: For every state s, nodes that
reach s optimally are explored before
nodes that reach s suboptimally

" Result: A* graph search is optimal

Optimality

Tree search:
" A* is optimal if heuristic is admissible
=" UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

Example: 8 Puzzle

7 2 |4 371
5 6 S\ 2 45
8 3 1 S8 N 6 7

Start State Actions Goal State

12
|5

3
&

What are the states? o

How many states?

What are the actions?

How many actions from the start state?
What should the step costs be?

S Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded when
the optimal path has...

...4 steps |..8steps |...12 steps

UCS

112 6,300 3.6 x 10°

A*TILES

13 39 227

Statistics from Andrew Moore

S Puzzle |l

What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

. Start Stat
Total Manhattan distance art State Goal State

Average nodes expanded when

Why is it admissible? the optimal path has...
...4 steps |...8 steps |...12 steps
A*TILES 13 39 227

h(start) =3 +1+2+..=18

A*MANHATTAN 12 25 73

Combining heuristics

Dominance: h, 2 h_if
Vn h,(n)=h(n)
= Roughly speaking, larger is better as long as both are admissible
" The zero heuristic is pretty bad (what does A* do with h=07)
" The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
= Form a new heuristic by taking the max of both:
h(n) =max(h,(n), h,(n))
= Max of admissible heuristics is admissible and dominates both!

A*: Summary

A*: Summary

A* uses both backward costs and (estimates of) forward costs
A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

	Slide 1: Warm-up: DFS Graph Search
	Slide 2: Plan
	Slide 3: Uniform Cost Search
	Slide 4: AI: Representation and Problem Solving
	Slide 12: Donuts ASAP!
	Slide 13: Demo Contours UCS Empty
	Slide 14: Demo Contours UCS Pacman Small Maze
	Slide 15: Uninformed vs Informed Search
	Slide 16: Today
	Slide 17: Informed Search
	Slide 18: Search Heuristics
	Slide 19: Example: Euclidean distance to Bucharest
	Slide 20: Effect of heuristics
	Slide 21: Greedy Search
	Slide 22: Donuts ASAP!
	Slide 27: A* Search
	Slide 28: A* Search
	Slide 29: A* Search
	Slide 30: Combining UCS and Greedy
	Slide 31: Combining UCS and Greedy
	Slide 32: Combining UCS and Greedy
	Slide 33: Is A* Optimal?
	Slide 34: The Price is Wrong…
	Slide 35: Admissible Heuristics
	Slide 36: Admissible Heuristics
	Slide 37: Optimality of A* Tree Search
	Slide 38: Optimality of A* Tree Search
	Slide 39: Optimality of A* Tree Search: Blocking
	Slide 40: Optimality of A* Tree Search: Blocking
	Slide 41: Optimality of A* Tree Search: Blocking
	Slide 42: Optimality of A* Tree Search: Blocking
	Slide 43: Optimality of A* Tree Search: Blocking
	Slide 44: UCS vs A* Contours
	Slide 45: UCS vs A* Contours
	Slide 46: Comparison
	Slide 48: A* Search Algorithms
	Slide 49
	Slide 50
	Slide 51: Optimality of A* Graph Search
	Slide 52: A* Tree Search
	Slide 53: A* Graph Search
	Slide 54: Poll 1: A* Graph Search
	Slide 55: Poll 1: A* Graph Search
	Slide 57: A* Graph Search Gone Wrong?
	Slide 58: Admissibility of Heuristics
	Slide 59: Consistency of Heuristics
	Slide 60: Optimality of A* Graph Search
	Slide 61: Optimality
	Slide 62: Creating Heuristics
	Slide 63: Creating Admissible Heuristics
	Slide 64: Example: 8 Puzzle
	Slide 65: 8 Puzzle I
	Slide 66: 8 Puzzle II
	Slide 67: Combining heuristics
	Slide 68: A*: Summary
	Slide 69: A*: Summary

